The expected number of visits to a transient state

Assume that we have a Markov chain with a finite state space S and that $j \in S$ is a transient state. We want to study the number of times the Markov chain visits j, i.e.

$$
N_{j}=\#\left\{n \geq 0 \mid X_{n}=j\right\}
$$

(note that we count visits at $n=0$). Let

$$
s_{i j}=E_{i}\left[N_{j}\right]
$$

be the expected value of N_{j} when we start the process at i. By Lemma 1.9 in the textbook, once the process has reached a recurrent state, it will never go back to a transient state, and hence $s_{i j}=0$ when i is recurrent. We can therefore disregard all the recurrent states, and if P denotes the transition matrix of the Markov chain, we let P_{T} denote the reduced matrix where we have deleted all the rows and columns belonging to recurrent states. We also let T denote the collection of all transient states.

Observe that if i, j are two different transient states, then

$$
s_{i j}=\sum_{k \in T} p_{i k} s_{k j}
$$

but that for $i=j$, we have

$$
s_{i i}=1+\sum_{k \in T} p_{i k} s_{k i}
$$

as we have to take the first visit into account. If we let S be the matrix with entries $s_{i j}$ where $i, j \in T$, these equations can be written on matrix form as

$$
S=I+P_{T} S
$$

where I is the identity matrix. We can rewrite this as

$$
\left(I-P_{T}\right) S=I
$$

which tells us that S is invertible and that

$$
S=\left(I-P_{T}\right)^{-1}
$$

Hence to find all the expected values $s_{i j}$, we only have to invert the matrix $I-P_{T}$.

Example 1: We consider the Markov chain from problem 1, Exam 2005. The state space is $T=\{1,2,3,4,5\}$ and the transition matrix is

$$
P=\left(\begin{array}{ccccc}
0 & \frac{3}{4} & \frac{1}{4} & 0 & 0 \\
\frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & 0
\end{array}\right)
$$

It is easy to see that there are two communication classes, $\{1,2\}$ and $\{3,4,5\}$, the first transient and the second recurrent. The reduced matrix is

$$
P_{T}=\left(\begin{array}{cc}
0 & \frac{3}{4} \\
\frac{1}{3} & \frac{1}{3}
\end{array}\right)
$$

and hence

$$
S=\left(I-P_{T}\right)^{-1}=\left(\begin{array}{cc}
1 & -\frac{3}{4} \\
-\frac{1}{3} & \frac{2}{3}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\frac{8}{5} & \frac{9}{5} \\
\frac{4}{5} & \frac{12}{5}
\end{array}\right)
$$

This means that $s_{11}=\frac{8}{5}$ is the expected number of visits to 1 when we start at 1 , and $s_{21}=\frac{4}{5}$ is expected number of visits to 1 when we start at 2 . Similarly for s_{12} and s_{22}.

We can use the same technique to solve seemingly more complicated problems. Here is an example (from the Mandatory Assignment 2023).

Example 2: A Markov chain has state space $S=\{0,1,2,3,4\}$ and transition matrix

$$
P=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

(it's useful to draw a state diagram). We start the process X at state 0 and want to know how many times in average it visits states $0,1,2$, and 3 before it hits state 4 for the first time.

The trick here is to change 4 into a trap (an absorbing state) before we continue, i.e. we change the transition matrix to

$$
\tilde{P}=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Note that the corresponding Markov chain \tilde{X} behaves exactly like X until it hits 4 , but when it reaches 4 , it is stuck there. For the new Markov chain,
state 4 is recurrent while the others are transient. The reduced transition matrix is therefore:

$$
\tilde{P}_{T}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
\frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\
0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & \frac{1}{3} & \frac{1}{3} & 0
\end{array}\right)
$$

Using Matlab (or some other program), we compute

$$
S=\left(I-\tilde{P}_{T}\right)^{-1}=\left(\begin{array}{cccc}
\frac{8}{3} & 5 & \frac{8}{3} & 3 \\
\frac{5}{3} & 5 & \frac{8}{3} & 3 \\
\frac{4}{3} & 4 & \frac{10}{3} & 3 \\
1 & 3 & 2 & 3
\end{array}\right)
$$

According to the theory above, the component $s_{i j}$ is the expected number of times \tilde{X} visits j when it is started in i, i.e. the expected number of times the original process X hits j before it hits 4 . As we are starting in $i=0$, the numbers we are interested in are in the first row of the matrix: Before it reaches state $4, X$ will in average visit the states $0,1,2,3$ a number of $\frac{8}{3}$ times, 5 times, $\frac{8}{3}$ times, and 3 times, respectively.

