STK2130: Solution to delayed exam, August 17th, 2023

Problem 1 a) The state diagram is:

b) State 0 is its own communication class as it is impossible to get to 0 from the other states. States 2 and 3 communicate, but it is impossible to get from them to 0 and 1 , and hence $\{2,3\}$ is a communication class. This means that 1 must also be its own class, and hence the classes are $\{0\},\{1\},\{2,3\}$. The classes $\{0\}$ and $\{1\}$ are transient as what they give away to $\{2,3\}$ never comes back. As a Markov chain with finite state space must to have at least one recurrent class, this means that $\{2,3\}$ is recurrent.
c) Note that the states 0,1 are giving away at least $\frac{1}{3}$ of their content to states 2,3 at each step without getting anything back. This means that $\pi_{0}=\pi_{1}=0$. As all the content ends up in states 2 and 3 , we may disregard states 0 and 1 , and just consider the Markov chain X^{\prime} with states 2 and 3 and transition matrix

$$
P^{\prime}=\left(\begin{array}{ll}
\frac{1}{4} & \frac{3}{4} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

As X^{\prime} is obviously ergodic (i.e., irreducible, recurrent, and aperiodic), it has limit probabilities π_{2}, π_{3} given by $\pi_{2}+\pi_{3}=1$ and

$$
\left(\pi_{2}, \pi_{3}\right) P^{\prime}=\left(\pi_{2}, \pi_{3}\right)
$$

If we write out this equation, we get

$$
\frac{1}{4} \pi_{2}+\frac{1}{2} \pi_{3}=\pi_{2}
$$

and

$$
\frac{3}{4} \pi_{2}+\frac{1}{2} \pi_{3}=\pi_{3} .
$$

Both these equations reduce to $\pi_{3}=\frac{2}{3} \pi_{2}$, and putting this into $\pi_{2}+\pi_{3}=1$, we get $\pi_{2}+\frac{2}{3} \pi_{2}=1$. Hence $\pi_{2}=\frac{2}{5}$ and $\pi_{3}=\frac{3}{5}$.
d) If we only consider the transient states 0 and 1 , we get the reduced matrix

$$
P_{T}=\left(\begin{array}{cc}
0 & \frac{1}{2} \\
0 & \frac{2}{3}
\end{array}\right)
$$

And hence

$$
I-P_{T}=\left(\begin{array}{cc}
1 & -\frac{1}{2} \\
0 & \frac{1}{3}
\end{array}\right)
$$

We are interested in the inverse

$$
S=\left(I-P_{T}\right)^{-1}=\left(\begin{array}{cc}
1 & -\frac{1}{2} \\
0 & \frac{1}{3}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & \frac{3}{2} \\
0 & 3
\end{array}\right)
$$

According to the theory, $s_{01}=\frac{3}{2}$ is the average number of times X started in 0 visits 1.

Problem 2 a) The figure shows the intensity function (not in scale):

The mean value function is the integral of the rate function:

$$
\begin{gathered}
m(t)=\int_{0}^{t} \lambda(s) d s=\int_{0}^{t} 6 s(10-s) d s=\int_{0}^{t}\left(60 s-6 s^{2}\right) d s \\
=\left[30 s^{2}-2 s^{3}\right]_{0}^{t}=30 t^{2}-2 t^{3}
\end{gathered}
$$

b) As $\lambda^{\prime}(t)=60-12 t$ is 0 for $t=5$, it is easy to check that the intensity function is maximal for $t=5$, and that the rate then is $\lambda(5)=6 \cdot 5 \cdot 5=150$. This means that customers arrive at a rate of 150 customers per hour.
c) As $N(t)$ is Poisson distributed with rate $m(t)$ and $m(10)=30 \cdot 10^{2}-2$. $10^{3}=1000$, we have $E[N(t)]=1000$ and $\operatorname{Var}(N(t))=1000$.

Problem 3 a) A birth corresponds to a new customer joining the queue, and a death corresponds to a customer receiving their hamburger and leaving the queue. As customers arrive at a rate of 0.4 , we have $\lambda_{n}=0.4$. As serving time is exponential with mean 2 minutes, we get $\mu_{n}=\frac{1}{2}=0.5$.
b) The probability that a new customer will arrive before the current customer has been served, is

$$
\frac{\lambda_{3}}{\lambda_{3}+\mu_{3}}=\frac{0.4}{0.4+0.5}=\frac{4}{9} .
$$

c) As it is long since the shop opened, we may assume that we are close to the limit distribution. Since $\lambda_{n}=0.4$ and $\mu_{n}=0.5$, the condition

$$
\sum_{n=1}^{\infty} \frac{\lambda_{0} \lambda_{1} \ldots \lambda_{n-1}}{\mu_{1} \mu_{2} \ldots \mu_{n}}<\infty
$$

for a limit distribution to exist, becomes

$$
\sum_{n=1}^{\infty} \frac{0.4^{n}}{0.5^{n}}=\sum_{n=1}^{\infty}\left(\frac{0.4}{0.5}\right)^{n}<\infty
$$

which is satisfied as $\sum_{n=1}^{\infty}\left(\frac{0.4}{0.5}\right)^{n}$ is a geometric series with quotient less than one. In fact, by the formula for the sum of a geometric series,

$$
\sum_{n=1}^{\infty}\left(\frac{0.4}{0.5}\right)^{n}=\frac{\frac{0.4}{0.5}}{1-\frac{0.4}{0.5}}=4
$$

By the formula for the limit distribution, we have

$$
P_{0}=\frac{1}{1+\sum_{n=1}^{\infty} \frac{\lambda_{0} \lambda_{1} \ldots \lambda_{n-1}}{\mu_{1} \mu_{2} \ldots \mu_{n}}}=\frac{1}{1+\sum_{n=1}^{\infty}\left(\frac{0.4}{0.5}\right)^{n}}=\frac{1}{1+4}=\frac{1}{5}
$$

Similarly,

$$
\begin{gathered}
P_{2}=\frac{\lambda_{0} \lambda_{1}}{\mu_{1} \mu_{2}\left(1+\sum_{n=1}^{\infty} \frac{\lambda_{0} \lambda_{1} \ldots \lambda_{n-1}}{\mu_{1} \mu_{2} \ldots \mu_{n}}\right)}=\frac{0.4^{2}}{0.5^{2}\left(1+\sum_{n=1}^{\infty}\left(\frac{0.4}{0.5}\right)^{n}\right)} \\
=\frac{16}{25} \cdot \frac{1}{5}=\frac{16}{125}=0.128 .
\end{gathered}
$$

d) For $n>0$, we have in general

$$
P_{n}=\frac{\lambda_{0} \lambda_{1} \ldots \lambda_{n-1}}{\mu_{1} \mu_{2} \ldots \mu_{n}\left(1+\sum_{n=1}^{\infty} \frac{\lambda_{0} \lambda_{1} \ldots \lambda_{n-1}}{\mu_{1} \mu_{2} \ldots \mu_{n}}\right)}=\frac{\left(\frac{4}{5}\right)^{n}}{5}=\frac{1}{5}\left(\frac{4}{5}\right)^{n}
$$

The expected number of customers waiting is thus

$$
E=\sum_{n=1}^{\infty} n P_{n}=\sum_{n=1}^{\infty} n \frac{1}{5}\left(\frac{4}{5}\right)^{n}
$$

We shall look at two ways to find this sum. The first is to observe that the sum is almost the expectation of a geometric distribution: If we pull a factor $\frac{4}{5}$ out of the sum, we get

$$
E=\frac{4}{5} \sum_{n=1}^{\infty} n \frac{1}{5}\left(\frac{4}{5}\right)^{n-1}
$$

where the new sum $\sum_{n=1}^{\infty} n \frac{1}{5}\left(\frac{4}{5}\right)^{n-1}$ is the expectation of a geometric random variable Y with probability $p=\frac{1}{5}$. Since $E[Y]=\frac{1}{p}=5$ (see formula sheet), we get

$$
E=\frac{4}{5} \cdot 5=4
$$

For the second way to find the sum, we first observe that by summing a geometric series, we get

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

for all x with $|x|<1$. Differentiating both sides, we get

$$
\frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n-1}
$$

and hence

$$
\sum_{n=1}^{\infty} n x^{n}=\frac{x}{(1-x)^{2}}
$$

With $x=\frac{4}{5}$, we get that the expected number of customers in the queue is

$$
\frac{1}{5} \sum_{n=1}^{\infty} n\left(\frac{4}{5}\right)^{n}=\frac{1}{5} \frac{\frac{4}{5}}{\left(1-\frac{4}{5}\right)^{2}}=4
$$

Problem 4 a) As a preliminary calculation, we observe that by the sum formula for a geometric series
$P[T>m]=\sum_{n=m+1}^{\infty} P[T=n]=\sum_{n=m+1}^{\infty}(1-p)^{n-1} p=p \frac{(1-p)^{m}}{1-(1-p)}=(1-p)^{m}$.
To solve the problem, we need to compute

$$
P[T>n \mid T>k]=\frac{P([T>n] \cap[T>k])}{P[T>k]}
$$

As $[T>n] \cap[T>k]=[T>n]$ (if T is larger than n, it is automatically larger than k since k is less than n), we get

$$
P[T>n \mid T>k]=\frac{P([T>n])}{P[T>k]}=\frac{(1-p)^{n}}{1-p)^{k}}=(1-p)^{n-k}=P[T>n-k]
$$

b) Since S is memoryless, we have

$$
P[S>n+1 \mid S>n]=P[S>1]=1-q
$$

On the other hand,

$$
P[S>n+1 \mid S>n]=\frac{P([S>n+1] \cap[S>n])}{P[S>n]}=\frac{P[S>n+1]}{P[S>n]}
$$

Combining the two expressions above, we get $P[S>n+1]=(1-q) P[S>n]$. As $P[S>1]=1-q$, it follows by induction that $P[S>n]=(1-q)^{n}$. Hence

$$
\begin{aligned}
P[S=n] & =P[S>n-1]-P[S>n]=(1-q)^{n-1}-(1-q)^{n} \\
& =(1-q)^{n-1}\left((1-(1-q))=(1-q)^{n-1} q\right.
\end{aligned}
$$

which shows that S is geometric with probability q.

