
STK2130: Solution to the exam spring 2024

Problem 1 a) The state diagram:

1

2 3

4 5

b) From the diagram we see that it is possible to get from all of the states
1, 2, 3 to any of the other states by following the arrows, but that it is impossible
to get from states 4 and 5 to states 1, 2, and 3. This means that {1, 2, 3} is a
communication class, and since 4 and 5 communicate, {4, 5} is also a commu-
nication class. The class {1, 2, 3} is transient as it is losing mass to {4, 5} that
it doesn’t get back. As a Markov chain with a finite state space always has a
recurrent class, this means that {4, 5} is recurrent.

c) Since the states 1, 2, and 3 are transient, we know that π1 = π2 = π3 = 0.
The equation π = πP then becomes

(0, 0, 0, π4, π5) = (0, 0, 0, π4, π5)


0 1

2
1
2 0 0

1
4 0 1

2
1
4 0

2
3 0 0 0 1

3
0 0 0 0 1
0 0 0 1 0

 = (0, 0, 0, π5, π4) ,

and hence we need to have π4 = π5. As we also need to have π1 + π2 + π3 +
π4 + π5 = 1, we must have π4 = π5 = 1

2 . Hence the stationary distribution is
π = (0, 0, 0, 12 ,

1
2 ).

d) Observe that the states 4 and 5 have period 2 as we can only go back and
forth between them. This means that

p
(n)
4,4 =

 1 if n is even

0 if n is odd
,

and hence limn→∞ p
(n)
4,4 does not exist, and the Markov chain does not converge

to the stationary distribution.

e) We give two solutions of this problem:
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Solution 1: If we start with the transition matrix P and delete the rows and
columns associated with states 4 and 5, we get the reduced matrix

r =

 0 1
2

1
2

1
4 0 1

2
2
3 0 0


Obviously, I − r =

 1 − 1
2 − 1

2
− 1

4 1 − 1
2

− 2
3 0 1

, and by the formula in the problem

(I − r)−1 =

 8
3

4
3 2

14
9

16
9

5
3

16
9

8
9

7
3


Now

(I − r)−11 =

 8
3

4
3 2

14
9

16
9

5
3

16
9

8
9

7
3

 1
1
1

 =

 6
5
5

 ,

and according to the theory in the textbook, 6 is the average number of steps
it takes to get from 1 to {4, 5}.

Solution 2: Let x, y, z be the average number of steps it takes to get to {4, 5}
from 1, 2, and 3, respectively. By “one step analysis”,

x = 1 +
1

2
y +

1

2
z

y = 1 +
1

4
x+

1

2
z +

1

4
· 0

z = 1 +
2

3
x+

1

3
· 0

Rearranging the equations, we get

x− 1

2
y − 1

2
z = 1

−1

4
x+ y − 1

2
z = 1

−2

3
x+ z = 1

If we solve this system either from scratch or by using the inverse matrix in the
problem set, we get x = 6, y = 5, z = 5. Hence the average time to get from 1
to {4, 5} is 6.

f) Let x be the probability that X started in 1 hits 4 before 5, and let y, z
be the corresponding probabilities for X started in 2 and 3, respectively. By
“one step analysis”,

x =
1

2
y +

1

2
z

y =
1

4
x+

1

2
z +

1

4
· 1

z =
2

3
x+

1

3
· 0
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Rearranging the equations, we get

x− 1

2
y − 1

2
z = 0

−1

4
x+ y − 1

2
z =

1

4

−2

3
x+ z = 0

Solving these equations (again it is possible to use the inverse matrix from e)),
we get x = 1

3 , y = 4
9 , z = 2

9 . Hence the probability of hitting 4 before 5 when
we start from 1 is 1

3 .

Problem 2 a) The length of the queue follows a birth and death process with
rates λn = 1

5 and µn = 1
3 . Using the formulas on the problem sheet plus that

the sum of the geometric series
∑∞
n=0

(
3
5

)n
is 5

2 , we see that the stationary
distribution is given by

π0 =
1

1 +
∑∞
n=1

λ0λ1...λn−1

µ1µ2...µn

=
1

1 +
∑∞
n=1

( 1
5 )

n

( 1
3 )

n

=
1∑∞

n=0

(
3
5

)n =
2

5

and for n > 0

πn =
λ0λ1 . . . λn−1

µ1µ2 . . . µn

(
1 +

∑∞
n=1

λ0λ1...λn−1

µ1µ2...µn

) =

(
1
5

)n(
1
3

)n∑∞
n=0

(
3
5

)n =
2

5

(
3

5

)n
Note that this last formula also works for n = 0, and hence

πn =
2

5

(
3

5

)n
for all n.

In the long run, the proportion of time the counter is idle equals π0 = 2
5 .

b) According to the theory, the customers are leaving the first queue accord-
ing to a Poisson process with rate 1

5 . The fraction that continues to the other
counter, does it according to a Poisson process with rate pλ1 = 1

3 ·
1
5 = 1

15 (thin-
ning). Hence counter number two is fed by two independent Poisson processes
with rates 1

15 and 1
3 , respectively. The sum N2(t) is a Poisson process with rate

1
15 + 1

3 = 2
5 .

c) When the first counter is in equilibrium, the second counter receives new
customers at a rate of 2

5 and serves them at a rate of 1
2 , hence the queue behaves

like a birth and death process with λn = 2
5 and µn = 1

2 . Using the same formulas
as above, we see that the stationary state π′ is given by

π′0 =
1

1 +
∑∞
n=1

λ0λ1...λn−1

µ1µ2...µn

=
1∑∞

n=0
( 2

5 )
n

( 1
2 )

n

and

π′n =
λ0λ1 . . . λn−1

µ1µ2 . . . µn

(
1 +

∑∞
n=1

λ0λ1...λn−1

µ1µ2...µn

) =

(
2
5

)n(
1
2

)n∑∞
n=0

( 2
5 )

n

( 1
2 )

n
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for n > 0. Summing a geometric series, we see that

∞∑
n=0

(
2
5

)n(
1
2

)n =

∞∑
n=0

(
4

5

)n
= 5

and the formulas above simplify to

π′0 =
1

5

and

π′n =
4n

5n+1

for n > 0. Again, the last formula also works for n = 0, and we get

π′n =
4n

5n+1

for all n.
This means that the combined stationary state for both queues is

π̂(n,m) = πnπ
′
m =

2

5

(
3

5

)n
· 4m

5m+1
= 2

3n4m

5n+m+2

The counters will be idle simultaneously a proportion of time that equals π̂(0, 0) =
2
25 , i.e. 8 % of the time.

Problem 3 a) The waiting time Tw for the first whiting is exponential with
rate λw = 4, and the waiting time Tc for the first cod is exponential with rate
λc = 1. The waiting time for the first catch (the minimum of Tw and Tc) is
then λ = λw + λc = 4 + 1 = 5. This means that in average Fredrik has to wait
1
λ = 1

5 hour for the first catch, i.e. 12 minutes.

The probability that the first catch is a whiting, is λw

λw+λc
= 4

5 .

b) According to a), the probability of the first catch being a whiting is 4
5 .

When the first fish has been caught, the process starts anew as exponential dis-
tributions are memoryless, and hence the probability of the second catch being
a whiting is also 4

5 . This means that the probability of the first two catches
being whitings is 4

5 ·
4
5 = 16

25 .

c) Using the independence, we have

E[Z] = E[XY1+(1−X)Y2] = E[X]E[Y1]+E[1−X]E[Y2] = pE[Y1]+(1−p)E[Y2]

Using the independence and observing that X(1−X) = 0, we get

E[Z2] = E[(XY1+(1−X)Y2)2] = E[X2Y 2
1 ]+2E[X(1−X)Y1Y2]+E[(1−X)2Y 2

2 ]

= E[X2]E[Y 2
1 ] + 0 + E[(1−X)2]E[Y 2

2 ] = pE[Y 2
1 ] + (1− p)E[Y 2

2 ].

d) The first (and any later) catch is a whiting with probability 4
5 and a cod

with probability 1
5 . If Y1 is the distribution of the weight of the whitings, and

Y2 is the distribution of the weight of the cods, the weight of the first catch
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(and any later catch) has the distribution of Z = XY1 + (1−X)Y2 where X is
independent of Y1, Y2, and X = 1 with probability 4

5 and 0 with probability 1
5 .

Applying the result from c), we see that

E[Z] =
4

5
E[Y1] +

1

5
E[Y2] =

4

5
· 1 +

1

5
· 3 =

7

5

(you can, of course, also find this much less formally!).
Since E[Y 2

1 ] = var[Y1] + E[Y1]2 = ( 1
2 )2 + 1 = 5

4 and E[Y 2
2 ] = var[Y2] +

E[Y2]2 = ( 3
2 )2 + 9 = 45

4 , we get from c) that

E[Z2] =
4

5
· 5

4
+

1

5
· 45

4
=

13

4
.

Hence

var[Z] = E[Z2]− E[Z]2 =
13

4
−
(

7

5

)2

=
13

4
− 49

25
=

129

100

and the standard deviation is

σZ =

√
129

100
=

√
129

10
≈ 1.136.

e) The weight of any catch has the distribution of the random variable Z in
part d). Hence if we have caught N(t) fish by time t, the weight of the catch at
time t is

Y (t) =

N(t)∑
n=1

Zn

where the Zn’s are independent copies of Z. This is a compound Poisson process,
and by the first formula for random sums on the problem sheet,

E[Y (t)] = E[N(t)]E[Z] = (5t) · 7

5
= 7t

since N is a Poisson process of rate 5. Similarly, by the second formula on the
formula sheet,

var[Y (t)] = E[N(t)]E[Z2] = (5t) · 13

4
=

65

4
t.
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