STK2130: Solution to the exam spring 2024

Problem 1 a) The state diagram:

b) From the diagram we see that it is possible to get from all of the states $1,2,3$ to any of the other states by following the arrows, but that it is impossible to get from states 4 and 5 to states 1,2 , and 3 . This means that $\{1,2,3\}$ is a communication class, and since 4 and 5 communicate, $\{4,5\}$ is also a communication class. The class $\{1,2,3\}$ is transient as it is losing mass to $\{4,5\}$ that it doesn't get back. As a Markov chain with a finite state space always has a recurrent class, this means that $\{4,5\}$ is recurrent.
c) Since the states 1,2 , and 3 are transient, we know that $\pi_{1}=\pi_{2}=\pi_{3}=0$. The equation $\pi=\pi P$ then becomes

$$
\left(0,0,0, \pi_{4}, \pi_{5}\right)=\left(0,0,0, \pi_{4}, \pi_{5}\right)\left(\begin{array}{ccccc}
0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\
\frac{1}{4} & 0 & \frac{1}{2} & \frac{1}{4} & 0 \\
\frac{2}{3} & 0 & 0 & 0 & \frac{1}{3} \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)=\left(0,0,0, \pi_{5}, \pi_{4}\right),
$$

and hence we need to have $\pi_{4}=\pi_{5}$. As we also need to have $\pi_{1}+\pi_{2}+\pi_{3}+$ $\pi_{4}+\pi_{5}=1$, we must have $\pi_{4}=\pi_{5}=\frac{1}{2}$. Hence the stationary distribution is $\pi=\left(0,0,0, \frac{1}{2}, \frac{1}{2}\right)$.
d) Observe that the states 4 and 5 have period 2 as we can only go back and forth between them. This means that

$$
p_{4,4}^{(n)}=\left\{\begin{array}{cc}
1 & \text { if } n \text { is even } \\
0 & \text { if } n \text { is odd }
\end{array}\right.
$$

and hence $\lim _{n \rightarrow \infty} p_{4,4}^{(n)}$ does not exist, and the Markov chain does not converge to the stationary distribution.
e) We give two solutions of this problem:

Solution 1: If we start with the transition matrix P and delete the rows and columns associated with states 4 and 5 , we get the reduced matrix

$$
r=\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{4} & 0 & \frac{1}{2} \\
\frac{2}{3} & 0 & 0
\end{array}\right)
$$

Obviously, $I-r=\left(\begin{array}{rrr}1 & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{4} & 1 & -\frac{1}{2} \\ -\frac{2}{3} & 0 & 1\end{array}\right)$, and by the formula in the problem

$$
(I-r)^{-1}=\left(\begin{array}{rrr}
\frac{8}{3} & \frac{4}{3} & 2 \\
\frac{14}{9} & \frac{16}{9} & \frac{5}{3} \\
\frac{16}{9} & \frac{8}{9} & \frac{7}{3}
\end{array}\right)
$$

Now

$$
(I-r)^{-1} \mathbf{1}=\left(\begin{array}{rrr}
\frac{8}{3} & \frac{4}{3} & 2 \\
\frac{14}{9} & \frac{16}{9} & \frac{5}{3} \\
\frac{16}{9} & \frac{8}{9} & \frac{7}{3}
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
6 \\
5 \\
5
\end{array}\right)
$$

and according to the theory in the textbook, 6 is the average number of steps it takes to get from 1 to $\{4,5\}$.

Solution 2: Let x, y, z be the average number of steps it takes to get to $\{4,5\}$ from 1,2 , and 3 , respectively. By "one step analysis",

$$
\begin{aligned}
& x=1+\frac{1}{2} y+\frac{1}{2} z \\
& y=1+\frac{1}{4} x+\frac{1}{2} z+\frac{1}{4} \cdot 0 \\
& z=1+\frac{2}{3} x+\frac{1}{3} \cdot 0
\end{aligned}
$$

Rearranging the equations, we get

$$
\begin{aligned}
x-\frac{1}{2} y-\frac{1}{2} z & =1 \\
-\frac{1}{4} x+y-\frac{1}{2} z & =1 \\
-\frac{2}{3} x+z & =1
\end{aligned}
$$

If we solve this system either from scratch or by using the inverse matrix in the problem set, we get $x=6, y=5, z=5$. Hence the average time to get from 1 to $\{4,5\}$ is 6 .
f) Let x be the probability that X started in 1 hits 4 before 5 , and let y, z be the corresponding probabilities for X started in 2 and 3 , respectively. By "one step analysis",

$$
\begin{aligned}
x & =\frac{1}{2} y+\frac{1}{2} z \\
y & =\frac{1}{4} x+\frac{1}{2} z+\frac{1}{4} \cdot 1 \\
z & =\frac{2}{3} x+\frac{1}{3} \cdot 0
\end{aligned}
$$

Rearranging the equations, we get

$$
\begin{aligned}
x-\frac{1}{2} y-\frac{1}{2} z & =0 \\
-\frac{1}{4} x+y-\frac{1}{2} z & =\frac{1}{4} \\
-\frac{2}{3} x+z & =0
\end{aligned}
$$

Solving these equations (again it is possible to use the inverse matrix from e)), we get $x=\frac{1}{3}, y=\frac{4}{9}, z=\frac{2}{9}$. Hence the probability of hitting 4 before 5 when we start from 1 is $\frac{1}{3}$.

Problem 2 a) The length of the queue follows a birth and death process with rates $\lambda_{n}=\frac{1}{5}$ and $\mu_{n}=\frac{1}{3}$. Using the formulas on the problem sheet plus that the sum of the geometric series $\sum_{n=0}^{\infty}\left(\frac{3}{5}\right)^{n}$ is $\frac{5}{2}$, we see that the stationary distribution is given by

$$
\pi_{0}=\frac{1}{1+\sum_{n=1}^{\infty} \frac{\lambda_{0} \lambda_{1} \ldots \lambda_{n-1}}{\mu_{1} \mu_{2} \ldots \mu_{n}}}=\frac{1}{1+\sum_{n=1}^{\infty} \frac{\left(\frac{1}{5}\right)^{n}}{\left(\frac{1}{3}\right)^{n}}}=\frac{1}{\sum_{n=0}^{\infty}\left(\frac{3}{5}\right)^{n}}=\frac{2}{5}
$$

and for $n>0$

$$
\pi_{n}=\frac{\lambda_{0} \lambda_{1} \ldots \lambda_{n-1}}{\mu_{1} \mu_{2} \ldots \mu_{n}\left(1+\sum_{n=1}^{\infty} \frac{\lambda_{0} \lambda_{1} \ldots \lambda_{n-1}}{\mu_{1} \mu_{2} \ldots \mu_{n}}\right)}=\frac{\left(\frac{1}{5}\right)^{n}}{\left(\frac{1}{3}\right)^{n} \sum_{n=0}^{\infty}\left(\frac{3}{5}\right)^{n}}=\frac{2}{5}\left(\frac{3}{5}\right)^{n}
$$

Note that this last formula also works for $n=0$, and hence

$$
\pi_{n}=\frac{2}{5}\left(\frac{3}{5}\right)^{n}
$$

for all n.
In the long run, the proportion of time the counter is idle equals $\pi_{0}=\frac{2}{5}$.
b) According to the theory, the customers are leaving the first queue according to a Poisson process with rate $\frac{1}{5}$. The fraction that continues to the other counter, does it according to a Poisson process with rate $p \lambda_{1}=\frac{1}{3} \cdot \frac{1}{5}=\frac{1}{15}$ (thinning). Hence counter number two is fed by two independent Poisson processes with rates $\frac{1}{15}$ and $\frac{1}{3}$, respectively. The sum $N_{2}(t)$ is a Poisson process with rate $\frac{1}{15}+\frac{1}{3}=\frac{2}{5}$.
c) When the first counter is in equilibrium, the second counter receives new customers at a rate of $\frac{2}{5}$ and serves them at a rate of $\frac{1}{2}$, hence the queue behaves like a birth and death process with $\lambda_{n}=\frac{2}{5}$ and $\mu_{n}=\frac{1}{2}$. Using the same formulas as above, we see that the stationary state π^{\prime} is given by

$$
\pi_{0}^{\prime}=\frac{1}{1+\sum_{n=1}^{\infty} \frac{\lambda_{0} \lambda_{1} \ldots \lambda_{n-1}}{\mu_{1} \mu_{2} \ldots \mu_{n}}}=\frac{1}{\sum_{n=0}^{\infty} \frac{\left(\frac{2}{5}\right)^{n}}{\left(\frac{1}{2}\right)^{n}}}
$$

and

$$
\pi_{n}^{\prime}=\frac{\lambda_{0} \lambda_{1} \ldots \lambda_{n-1}}{\mu_{1} \mu_{2} \ldots \mu_{n}\left(1+\sum_{n=1}^{\infty} \frac{\lambda_{0} \lambda_{1} \ldots \lambda_{n-1}}{\mu_{1} \mu_{2} \ldots \mu_{n}}\right)}=\frac{\left(\frac{2}{5}\right)^{n}}{\left(\frac{1}{2}\right)^{n} \sum_{n=0}^{\infty} \frac{\left(\frac{2}{5}\right)^{n}}{\left(\frac{1}{2}\right)^{n}}}
$$

for $n>0$. Summing a geometric series, we see that

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{2}{5}\right)^{n}}{\left(\frac{1}{2}\right)^{n}}=\sum_{n=0}^{\infty}\left(\frac{4}{5}\right)^{n}=5
$$

and the formulas above simplify to

$$
\pi_{0}^{\prime}=\frac{1}{5}
$$

and

$$
\pi_{n}^{\prime}=\frac{4^{n}}{5^{n+1}}
$$

for $n>0$. Again, the last formula also works for $n=0$, and we get

$$
\pi_{n}^{\prime}=\frac{4^{n}}{5^{n+1}}
$$

for all n.
This means that the combined stationary state for both queues is

$$
\hat{\pi}(n, m)=\pi_{n} \pi_{m}^{\prime}=\frac{2}{5}\left(\frac{3}{5}\right)^{n} \cdot \frac{4^{m}}{5^{m+1}}=2 \frac{3^{n} 4^{m}}{5^{n+m+2}}
$$

The counters will be idle simultaneously a proportion of time that equals $\hat{\pi}(0,0)=$ $\frac{2}{25}$, i.e. 8% of the time.

Problem 3 a) The waiting time T_{w} for the first whiting is exponential with rate $\lambda_{w}=4$, and the waiting time T_{c} for the first cod is exponential with rate $\lambda_{c}=1$. The waiting time for the first catch (the minimum of T_{w} and T_{c}) is then $\lambda=\lambda_{w}+\lambda_{c}=4+1=5$. This means that in average Fredrik has to wait $\frac{1}{\lambda}=\frac{1}{5}$ hour for the first catch, i.e. 12 minutes.

The probability that the first catch is a whiting, is $\frac{\lambda_{w}}{\lambda_{w}+\lambda_{c}}=\frac{4}{5}$.
b) According to a), the probability of the first catch being a whiting is $\frac{4}{5}$. When the first fish has been caught, the process starts anew as exponential distributions are memoryless, and hence the probability of the second catch being a whiting is also $\frac{4}{5}$. This means that the probability of the first two catches being whitings is $\frac{4}{5} \cdot \frac{4}{5}=\frac{16}{25}$.
c) Using the independence, we have
$E[Z]=E\left[X Y_{1}+(1-X) Y_{2}\right]=E[X] E\left[Y_{1}\right]+E[1-X] E\left[Y_{2}\right]=p E\left[Y_{1}\right]+(1-p) E\left[Y_{2}\right]$
Using the independence and observing that $X(1-X)=0$, we get

$$
\begin{aligned}
E\left[Z^{2}\right] & =E\left[\left(X Y_{1}+(1-X) Y_{2}\right)^{2}\right]=E\left[X^{2} Y_{1}^{2}\right]+2 E\left[X(1-X) Y_{1} Y_{2}\right]+E\left[(1-X)^{2} Y_{2}^{2}\right] \\
& =E\left[X^{2}\right] E\left[Y_{1}^{2}\right]+0+E\left[(1-X)^{2}\right] E\left[Y_{2}^{2}\right]=p E\left[Y_{1}^{2}\right]+(1-p) E\left[Y_{2}^{2}\right] .
\end{aligned}
$$

d) The first (and any later) catch is a whiting with probability $\frac{4}{5}$ and a cod with probability $\frac{1}{5}$. If Y_{1} is the distribution of the weight of the whitings, and Y_{2} is the distribution of the weight of the cods, the weight of the first catch
(and any later catch) has the distribution of $Z=X Y_{1}+(1-X) Y_{2}$ where X is independent of Y_{1}, Y_{2}, and $X=1$ with probability $\frac{4}{5}$ and 0 with probability $\frac{1}{5}$. Applying the result from c), we see that

$$
E[Z]=\frac{4}{5} E\left[Y_{1}\right]+\frac{1}{5} E\left[Y_{2}\right]=\frac{4}{5} \cdot 1+\frac{1}{5} \cdot 3=\frac{7}{5}
$$

(you can, of course, also find this much less formally!).
Since $E\left[Y_{1}^{2}\right]=\operatorname{var}\left[Y_{1}\right]+E\left[Y_{1}\right]^{2}=\left(\frac{1}{2}\right)^{2}+1=\frac{5}{4}$ and $E\left[Y_{2}^{2}\right]=\operatorname{var}\left[Y_{2}\right]+$ $E\left[Y_{2}\right]^{2}=\left(\frac{3}{2}\right)^{2}+9=\frac{45}{4}$, we get from c) that

$$
E\left[Z^{2}\right]=\frac{4}{5} \cdot \frac{5}{4}+\frac{1}{5} \cdot \frac{45}{4}=\frac{13}{4}
$$

Hence

$$
\operatorname{var}[Z]=E\left[Z^{2}\right]-E[Z]^{2}=\frac{13}{4}-\left(\frac{7}{5}\right)^{2}=\frac{13}{4}-\frac{49}{25}=\frac{129}{100}
$$

and the standard deviation is

$$
\sigma_{Z}=\sqrt{\frac{129}{100}}=\frac{\sqrt{129}}{10} \approx 1.136
$$

e) The weight of any catch has the distribution of the random variable Z in part d). Hence if we have caught $N(t)$ fish by time t, the weight of the catch at time t is

$$
Y(t)=\sum_{n=1}^{N(t)} Z_{n}
$$

where the Z_{n} 's are independent copies of Z. This is a compound Poisson process, and by the first formula for random sums on the problem sheet,

$$
E[Y(t)]=E[N(t)] E[Z]=(5 t) \cdot \frac{7}{5}=7 t
$$

since N is a Poisson process of rate 5 . Similarly, by the second formula on the formula sheet,

$$
\operatorname{var}[Y(t)]=E[N(t)] E\left[Z^{2}\right]=(5 t) \cdot \frac{13}{4}=\frac{65}{4} t
$$

