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Modern simulation techniques and computer power makes it possible to simulate systems with continuous state
spaces. In this paper we consider the problem of simulating aircraft movements. Such simulation studies
are of interest in order to evaluate the risk of collision or near collision events in areas with heavy air traffic.
Application areas include systems for automatic air traffic control (ATC) and airport traffic planning.

Risk elements in this area include arrivals of aircrafts into the area of interest, weather conditions, chosen
runway and landing direction as well as arbitrary deviations from the normal flight trajectories. A realistic
simulation model, incorporating all or most of these elements, require a combination of different tools. A
popular framework for such modeling is stochastic hybrid systems.

A risk event occurs when two (or more) aircrafts are too close to each other in the air. When such an event
occurs, the aircrafts will attempt to change their trajectories in order to avoid fatal accidents. Fortunately, risk
events are fairly rare. Thus, in order to obtain stable results for the probability of a collision or near collision it
is necessary to run the model for a substantial amount of time.

In the paper we propose a methodology for simulating aircraft movements based on ordinary differential equa-

tions and counting processes. The models and methods are illustrated with some simulation examples.

1 INTRODUCTION

The air traffic has experienced an incredible world-
wide growth. As a result the current air traffic control
systems are being pushed to the limit. The computer
technology used in most control systems is often ob-
solete, placing heavy workload on the air traffic con-
trollers. Thus, there is a growing need for improving
the utilization of the airspace using more advanced
technology and control procedures.

Due to the severe security considerations, new con-
trol systems must be tested and optimized within
some sort of simulation environment before they
are implemented. Modern simulation techniques and
computer power makes it possible to carry out such
simulations very efficiently and realistically. Among
the pioneer works in this area are (Koo et al. 1997)
and (Tomlin et al. 1998). Typical for these and simi-
lar works is the use of deterministic hybrid systems,
i.e., simulation systems with mixed discrete event and
continuous time dynamics.

While deterministic models may work very well as
a description of the individual aircrafts, the overall
performance of an air traffic control system depends
on its ability to operate in a stable way in a stochas-
tic environment. More recent approaches to the prob-

lem such as (Bernadsky et al. 2004) and (Glover and
Lygeros 2004) use stochastic differential equations to
model aircraft trajectories. One major risk driver not
included in these works, however, is the traffic den-
sity. A control system that works perfectly under nor-
mal traffic may break down if the workload grows.
Thus, when evaluating a system, it is important to in-
clude

In the recent paper (Bayen et al. 2006) air traffic is
modeled using a network flow model. Instead of mod-
eling the movements of each individual aircraft, they
describe the evolution of the traffic density by using
partial differential equations. This approach, which is
also used in highway traffic models, enables them to
take a more global perspective on the air traffic rather
than looking at the air traffic in some limited area.
Still this model does not include any stochastic ele-
ments.

In the present paper we focus on building and an-
alyzing models for air traffic control in a stochastic
environment. Contrary to (Bernadsky et al. 2004) and
(Glover and Lygeros 2004) we use ordinary differen-
tial equations instead of stochastic differential equa-
tions for the aircraft movements. Such models are
somewhat simpler and less noisy, while at the same



time being sufficiently realistic. Thus, our approach is
closer to the framework used in (Koo et al. 1997) and
(Tomlin et al. 1998). The stochastic elements in our
model include traffic density as well as uncertainty
about the points where the aircrafts enter and leave
the airspace. We believe that these elements are the
most important sources of uncertainty in this context.

The main purpose of this paper is to show how dif-
ferent issues regarding air traffic control can be han-
dled within such a framework. In order to keep the
technical details at a modest level, the models are sim-
plified as much as possible.

Using the proposed framework one can e.g., ana-
lyze how different aircraft trajectories can affect the
security level. This is useful in the process of im-
proving designated trajectories with respect to risk.
One can also determine the maximal acceptable traf-
fic density satisfying a certain security criterion.

In the present paper we have studied the risk reduc-
ing effect of a given flight deviation procedure. Ac-
cording to this procedure, the aircrafts are responsible
for avoiding risk events. However, this procedure can
easily be made much more sophisticated by including
support from an air traffic control center. Although
this leads to a more complex model, it is not difficult
to extend the framework to facilitate this.

A common issue in air traffic control is that the tra-
jectories for take-off and landing may depend on the
weather conditions, especially the wind speed and di-
rection. As a result the movements of the different air-
crafts present become correlated. By incorporating a
weather model into the picture, such effects can be
studied in detail. The proposed framework can easily
be extended to include such elements.

2 CONCEPTUAL MODEL

Throughout this paper we consider some airspace of
interest, denoted .A. For simplicity we assume that .4
is sufficiently small so that all movements within .4
can be described using Euclidian geometry. Thus, in
particular the shortest possible trajectory between any
two points in A is the straight line between them. As
time goes by, aircrafts enter, fly through and eventu-
ally leave A4 according to some suitable random pro-
cess. The randomness includes both the arrival times
as well as the trajectories of the aircrafts.

The aircrafts arrive A according to a suitable count-
ing process { N (t)}, where N(¢) denotes the number
of aircrafts arrived at time ¢. An aircraft flying through
A enters into the airspace at a point, referred to as its
arrival point, and leaves at another which we will call
its departure point. The arrival and departure points
of the ith aircraft are denoted respectively by X ;
and X4, 7 =1,2,.... We assume that (X, ;, X 4,),
1=1,2,... are 1ndependent random vectors with a
common distribution. We also introduce the time of

arrival and departure for each aircraft denoted respec-
tively 7o, and Ty ;,9=1,2,...,where T, ;,i =1,2,...
correspond to the jumps of { N(¢)}. That is, we have:

o0

N(t)=> 1(T.; <t). (1)

=1

We may think of such a model as a queueing sys-
tem where the clients are the aircrafts arriving at times
T,:t=1,2,..., and the processing times are given
by T,; = Ty; — Tos, @ = 1,2,.... The tth aircraft
is present in the queue at time ¢ if 7,; <t < Ty,
i =1,2,.... The queueing process, denoted {Q(t)},
describes the length of the queue as a function of time,
where (Q(t) is given by:

= ZI(Ta,i <t< Td,i)- (2)

i=1

We also introduce the process {M(t)} describing
the number of processed aircrafts at time ¢, where
M (t) is given by:

=) W(Tu; <1). 3)
=1
We observe that Q(t) = N (t) — M(t).

The position of the ¢th aircraft at time ¢ is denoted
x;(t),1=1,2,.... Thus, the trajectories of the ith air-
craft is given by {z;(t) : T, <t < Ty;}, with the
boundary conditions x;(7,;) = X,,; and x;(Ty;) =
Xgi=12,.

The VGIOClty of the ith aircraft at time ¢ is denoted
@;(t), and we have:

t
x;(t) = X, +/ &;(u)du. 4)
Ta,i
for + = 1,2,.... Initially we simply assume the :th

aircraft flies with constant speed s; along a straight
line between X, ; and X 4;. In this case we have for
1=1,2,...

Xagi— X,

Si (5)
1 X ai — Xall

@i(t) =

We say that a risk event occurs when two (or more)
aircrafts are too close to each other in the air. More
precisely we define a critical distance C'. At each point
of time ¢ we let J(t) denote the index set of aircrafts
present in A at ¢ and compute:

D)= min_ {lla:t) —2;@f}  ©)

i,J€J(t),i

A risk event occurs at time ¢ if D(t) < C.



In order to avoid risk events there are several op-
tions to consider. If possible one could allow the air-
crafts to fly through A along designated trajectories
where D(t) is always greater than C'. While this obvi-
ously is a very safe solution, this typically leads to less
than optimal utilization of the airspace. Moreover, if
A is close to an airport, it may be impossible to find
such trajectories. A more realistic strategy would be
to look for trajectories where the risky areas are re-
duced as much as possible, while still allowing the air-
crafts to reach their intended destinations. When de-
signing such trajectories, one must take into account
that different weather conditions may trigger different
needs for trajectories.

Assuming that the allowed trajectories have been
chosen, the next option is to place restrictions on the
number of aircrafts allowed to be present at the same
time in the airspace. In our model this implies control-
ling the properties of the counting process { N(¢)}. An
extreme solution is simply to allow only one aircraft
in A at each point of time. Since this reduces the ca-
pacity drastically, this is rarely an acceptable solution.
Thus, one may try to maximize the airspace capacity
while keeping the frequency of risk events below a
certain level.

Finally, given the allowed trajectories and airspace
capacity, the air traffic control center may instruct the
aircrafts to change their trajectories in order to avoid
risk events. With increasing air traffic, this becomes
more and more complex. Thus, having automatic pro-
cedures is desirable.

For all options it is necessary to evaluate the so-
lutions in some way or the other. In the present pa-
per we will focus on the latter two options, and show
how these problems can be analyzed using simulation.
The solutions will be evaluated with respect to several
measures. The first, and most fundamental measure is
the limiting fraction of the time where the minimum
distance between two aircrafts is below the critical
value C. This measure is denoted R, and given by:

_ 1
R=lim -

Hm I(D(u) < C)du. (7)
>t Jo
In relation to this, we also estimate the asymptotic av-
erage minimum distance between two aircrafts in A,
that is:
_ 1 [t
D= 1lim - [ D(u)du. ®)

t—o00 0

Secondly we consider the process { M (¢) } counting
the number of processed aircrafts as a function of time
and estimate the asymptotic average throughput:

M = lim M—(t) C))

t—oo

Finally, we estimate the asymptotic average pro-
cessing time:

_ 1 —
T, = lim — ) T, (10)
=1
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3  SOFTWARE IMPLEMENTATION

The models described in this paper have been imple-
mented in java. The object structure of the software

ATC

Aircraft
generator

> -
Aircraft | D

Event scheduler

Figure 1: Object Structure

is outlined in Figure 1. The aircraft objects are gen-
erated by the aircraft generator according to to the
chosen counting process { N (¢)}. The aircraft genera-
tor also generates the arrival and departure points for
each of the aircrafts. When generated the aircraft reg-
ister at the ATC (air traffic control) which maintains
a list of objects in the airspace .A. The aircraft ob-
jects keeps track of their positions x;(¢) and veloci-
ties @;(t). Initially the position of the ith aircraft is of
course equal to its arrival point, X, ;, while the veloc-
ity is given by (5), 7 = 1,2, .. .. Each time the position
and velocity of an aircraft is updated, it checks if the
departure point is reached (within a suitable ¢). If so,
the aircraft is removed from the aircraft list.

The aircraft list is made available by the use of pub-
lic static methods. Thus, any object has access to all
the aircrafts in A, their positions and velocities. This
model allows the air traffic control to be handled ei-
ther centralized by the ATC object, or locally by the
aircraft objects. In our implementation, however, we
have chosen to handle everything locally. That is, it is
the aircraft objects that must find a way to avoid risk
events.

The event scheduler handles both discrete events
related to the aircraft generator as well as dense time
events such as position and velocity updates for the
aircrafts. Thus, each aircraft is generated as a re-
sponse to a “GENERATE” event. When this event
is processed by the aircraft generator, it samples the



waiting time to the next “GENERATE” event as well,
and sends this to the event scheduler. Similarly, po-
sition and velocity updates are handled by the air-
craft objects as a response to an “UPDATE” event.
When an aircraft processed an “UPDATE” event, it
computes the time for the next “UPDATE” event and
sends this to the event scheduler. Note that since all
“UPDATE” events are handled locally by the air-
crafts, it is possible to use different update intervals
depending e.g., on the distance to the closest aircraft.
Thus, if an aircraft travels in a “safe” area, it may use
a long update interval, while a short update interval is
used when the distance to the closest aircraft is small.
By using this technique it is possible to accelerate
the simulations considerably without compromising
on the numerical precision.

4 ANALYSIS
4.1 Analysis of airspace capacity

In this section we present results from the simulations
starting out with an analysis of the airspace capacity.
Throughout this section we simplify the problem by
assuming that all aircrafts fly at the same height, say
10,000 ft (3,048 meters). The airspace A is chosen
to be a square with sides of length 10 nautical miles
(18,520 meters). Positions in A are specified relative
to a coordinate system with metric units, and with ori-
gin at the center of A. Thus, A is the set of vectors
x = (x1,x2,23), such that z; € [—9,260;9,260], for
j=1,2and x3 = 3,048.

At this stage we also assume that all aircrafts fly at
constant speed along straight lines from their arrival
points to their departure points. In the simulations the
speed was chosen to be 250 knots (128.6 m/s).

All flights through A are assumed to be either
northbound or eastbound. For northbound flights
the arrival points are sampled within an interval Ig
of the southern border of 4 and departure points
within an interval [n of the northern border of A.
Similarly, for eastbound flights the arrival points
are sampled within an interval Iy, of the western
border of 4 and departure points within an inter-
val I of the eastern border of .A. When an air-
craft is generated, we let Pr(Flight is northbound) =
Pr(Flight is eastbound) = 1/2. We then sample the
arrival and departure points uniformly from the cor-
responding intervals. In the simulations we let all the
intervals have lengths of 200 meters centered at the
midpoint of their respective borders. With such short
intervals the angles between any crossing trajectories
will be approximately 90 degrees.

For the arrival process {/V(t)} we chose a count-
ing process with i.i.d. waiting times sampled from a
censored exponential distribution. More specifically,
if Wy, Ws, ... denote the waiting times between ar-

rivals, we assume that W, W, ... are sampled as:

W; = max(k,U;),i=1,2,..., (11)

where £ is a nonnegative constant, and Uy, Us, . . . are
independent and identically exponentially distributed
with mean p. Here p~! represents the unrestricted
traffic intensity per unit time, while x is a control pa-
rameter which can be used to limit the traffic into A.
For a given p the objective is to find a suitable « such
that the probability of a risk event is small. In the sim-
ulations we let ;1 = 90 seconds, while x was varied
between 10 and 50 seconds.

According to current aviation practice (see e.g.,
(Tomlin et al. 1998)), each flying aircraft should be
given a certain protected zone shaped as a virtual
cylinder centered around the aircraft, where no other
aircrafts should be allowed. The cylinder should have
a radius of 2.5 nautical miles (4,630 meters). The
height of the cylinder varies from 1,000 ft to 4,000
ft depending on the location of the aircraft. In our
context we say that a risk event occurs whenever an
aircraft enters the protected zone of another aircraft.
Thus, if two aircrafts fly through A at the same time,
arisk event occurs when the distance between the air-
crafts is shorter than 4,630 meters.

We simulated the model 2000 times. In each iter-
ation we observed the air traffic in A for two hours.
With the given arrival process this was sufficient to
obtain satisfactory convergence of the various mea-
sures. The main results are listed in Table 1.

Table 1: Estimated criticality and performance mea-
sures as a function of the control parameter k.

K 10 20 30 40 50
R 0250 0.239 0227 0.066 0.020
D 12,108 12,288 12,548 12,840 13,196
M 0660 0650 0632 0611 0.588
T, 144 144 144 144 144

p

We observe that the asymptotic risk fraction of
time, R, is obviously unacceptable when « is 30 or
lower. When & is increased to 40 or 50, however, the
risk fraction drops respectively to 6.6 percent and 2.0
percent. Taking into account that nothing has been
done to the flight trajectories at this stage, this is far
better. The sudden change in risk fraction is related
to the heavy left-hand tail of the exponential distribu-
tion. For such a distribution the left censoring has a
very noticeable effect.

Turning to the asymptotic average minimum dis-
tance, DD, we see that is increasing with increasing
k. This is of course hardly surprising since fewer
aircrafts arriving into A implies that A will be less



crowded. Still this effect is far less dramatic than the
change in R.

_ The results for the asymptotic average throughput,
M, listed as number of aircrafts processed per minute,
indicate a decreasing tendency as x increases. Again
this is natural since this is directly related to the arrival
process. With fewer aircrafts arriving A, clearly the
throughput must go down as well. Yet we notice that
the effect on the throughput is modest.

Since nothing has been done to the flight trajecto-
ries at this stage, the asymptotic average processing
time is constant for all x.

4.2  Avoiding risk events

We now turn to the problem of avoiding risk events
by modifying the trajectories dynamically. To sim-
plify the problem slightly, we assume that the jth air-
craft is flying at a constant speed of s; meters per sec-
ond as long as it is present in 4. Ideally each aircraft
would prefer to fly from its arrival point to its depar-
ture point along a straight line. However, when other
aircrafts are present in .4, it may be necessary to de-
viate from this path. Developing an automatic proce-
dure for handling this is a complex task. One issue
that makes this difficult, is that when more than two
aircrafts are present in 4, handling one risk event may
trigger another event. In our model we handle this is-
sue by taking very small steps at a time. In each step
each aircraft looks only for the closest aircraft in A,
and choses a safe path accordingly. Information about
other aircrafts further away is discarded, at least until
the next step.

The algorithm we are about to present, is similar to
the “left”, “straight”, “right” algorithm discussed in
(Tomlin et al. 1998). However, we allow the directions
to be adjusted at each step of time. The main structure
of the algorithm can be described as follows:

Algorithm 4.1 For each point of time t and for each
j € J(t) do the following:

STEP 1. Calculate the “ideal” velocity for the jth

aircraft as:

: Xa;—x;(1)
(1) = . 12
A b ovEr] I

STEP 2. Identify the closest aircraft, and determine
whether it is necessary to modify the trajectory in or-
der to avoid a risk event.

STEP 3a. Ifno action is needed, use the ideal velocity
in the interval [t,t + dt), and update the position to:

STEP 3b. If an action is needed, make a “turn”. That
is, replace the ideal velocity by:

& (1) = Adiy (1), (14)

where A is the 3 X 3 horizontal rotation matrix given
by:

cos(A) —sin(A) 0
A= | sin(A) cos(A\) O |, (15)
0 0 1

and where \ is the angle between d;(t) and &j(t).
Use the modified velocity in the interval [t,t + dt) in-
stead. Thus, in this case we get:

Note that since A is an orthonormal matrix, the
speed of the aircraft is not altered by the multiplica-
tion. In order to make a left turn, one must choose A
between zero 7 /2. Similarly, a right turn is obtained
by choosing A between zero and —7 /2.

In order to specify the algorithm further, we need to
find a criterion (Step 2) for when an action is needed.
Moreover, we must determine the matrix A as a func-
tion of the relative position and velocity of the two
aircrafts (Step 3b).

To do so, we consider the jth aircraft denoted a; at
time ¢y, and assume that we have identified the closest
aircraft to a;, say a. At this stage it is convenient to
work with the relative positions and velocities of a; as
seen from ay, denoted x; 4, (¢) and & (¢) respectively,
and given by:

zjr(t) = x;(t) —xp(t),

x; k(1) x;(t) — 2p(t).

The distance between a;, and a; at time ¢, can then
be written as ||x; (to)||. If this distance is large, there
is no need to modify the trajectory of a;, at least not
yet. Thus, as part of the procedure, we introduce an
alert distance, denoted C4. Obviously, in order to
avoid risk events C'y must be chosen to be greater
than the critical distance C'. In the simulations C'4 was
chosen to be twice the size of C, i.e., 5 nautical miles
(9,260 meters).

In the following we consider the case where
|z (to)|| < Ca. We must then determine if the two
aircrafts get closer or further apart as time goes by if
no action is taken. That is, we consider the distance
A(t) = ||&;x(t)||. If no action is taken, we have:

xjk(t) = x;k(to) + T, k(to) (t — to). (17)

Inserting this into A(¢) and differentiating with re-
spect to ¢, we find the point of time when A(t) is min-
imized. Denoting this by ¢; we get that:

xyp(to) sk (to)

ti1 =t - - .
P (to) T (fo)

(18)



From this it follows that t; > t, i.e., that the aircrafts
are getting closer to each other, if and only if:

Cl,'j7k(t0)Tfi,'j7k(t0) < 0. (19)

The scalar product of &, x(to) and &, ;(¢o) is negative
if and only if cosine of the angle between these two
vectors is negative, i.e., if this angle is between 7 /2
and 37 /2.

By inserting the expression for ¢; into (17) we get
that the position where a; is closest to ay, is given by:

. mk<t0)T-’i i k(tO)
@ k(t) =z (to) — &0 (to) 22 -
ik (t1) ik (to) =&k O)wj,k(to)ij,k(%)

. (20)

Moreover, the minimal distance between a; and ay,
A(tl) = Hw‘?7k<t1)|| Ift; <tgor A(tl) > (), it is not
necessary to change the trajectory of a;, at least not
yet. On the other hand, if t; > ¢y and A(t;) < C, some
action is needed to avoid a risk event. As already men-
tioned, our approach to this is to make a “turn” by ro-
tating the velocity vectors A radians. To determine A,
we introduce the normal vector to the relative posi-
tion vector, ;1 (to), which we denote by y ;. (to), ob-
tained by rotation x; x(ty) 7/2 radians counterclock-
wise.
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Figure 2: Rotating the relative velocity

We now consider three cases. In the first case,
which is illustrated in Figure 2 we assume that
;1 (to) "y, .(to) > 0. This corresponds to the situa-
tion where the angle between x; ;. (ty) and &; ; (o) is
between 7/2 and 7. In this case we let « be the dif-
ference between 7 and this angle. Thus, « is between
0 and 7/2.

By rotating &, ;(¢y) clockwise A radians, the min-
imal distance between a; and a4 is increased from
A(ty) to some acceptable number A" > A(t;). We

then have:
At
sin(a) #,
[,k (o)l
A/
sinfla+ ) = ———.
[,k (o)l
Hence, we get that:
A’ At
A = arcsin(————) — arcsin(#). (21)
[,k (o)l [,k (o)l

In the second case we assume instead that
;1 (to)"y;x(to) < 0. This corresponds to the situa-
tion where the angle between x; x(to) and &, ; (o) is
between 7 and 37 /2. In this case we let v be the dif-
ference between this angle and 7. Thus, « is between
0 and /2 this time as well. As in the previous case
we can increase the minimal distance between a; and
ay, to some acceptable number A’ > A(t;) by rotating
& 1 (to) A radians, where \ is given by (21). However,
in this case the rotation must be done counterclock-
wise.

The final case covers the situation where
& (to)" y;x(to) = 0, ie., when the angle be-
tween x;;(to) and &;;(fp) is 7. In this case it
does not matter if we do the rotation clockwise
or counterclockwise. As a convention we use a
counterclockwise rotation here.

To complete the specifications we must choose the
acceptable distance A’ > A(t1). Obviously, A’ should
be greater than the critical distance, C'. In the simula-
tions we used the following rule:

Alty) +C
—

A = (22)

Finally, note that so far we have only computed
the rotation angle, A, for the relative velocity vector
&k (to). In order to achieve this rotation by modi-
fying the trajectories of the aircrafts, we must rotate
x;(to) and @&(ty) the same angle. That is, we re-
place &,(t9) and @ (ty) respectively by Ax;(¢y) and
A& (ty), where the matrix A is given by (15). In Al-
gorithm 4.1, however, only &;(to) is rotated. The rea-
son for this is that the algorithm loops through all
j € J(t). Thus, the rotation of & (t) is handled when
the trajectory of aircraft ay is considered. Assuming
that a; is the aircraft closest to ay, both velocity vec-
tors will eventually be rotated correctly. When many
aircrafts are present in A, however, this assumption
may not hold. Thus, as we shall see, Algorithm 4.1
works best when A is not too crowded.



4.3 Simulation results using Algorithm 4.1

In the remaining part of this section we illustrate the
use of Algorithm 4.1 by presenting some simulation
results. In Figure 3 we have plotted the trajectories
of two flights, one northbound and one eastbound,
both starting at the same point of time. Thus, if no ac-
tion is taken, the aircrafts will collide at the center of
A. When the distance between the aircrafts becomes
shorter than the alert distance, C'4, both aircrafts make
left turns. As a result the trajectories follow a curved
path until the distance between the aircrafts become
large enough. When this happens, the aircrafts fol-
low their ideal paths towards their respective depar-
ture points.
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Figure 3: Trajectories of two flights

If the aircrafts do not start at the same time, the
minimum distance between the aircrafts given no ac-
tion is longer. As a result the modified trajectories be-
come less curved, and the processing times become
shorter. We ran six different simulations where we
varied the time between the two flights from 0 to 50
seconds. In Figure 4 we have plotted the distances
between the aircrafts as a function of time for these
six simulations. The leftmost curve represent the case
where the two flights start at the same point of time.
All six curves has a minimum value equal to the crit-
ical value C, i.e., 4630 meters. Thus, when only two
aircrafts are present in A, the risk events are avoided
completely by using Algorithm 4.1.

In the last simulations we ran the same scenarios
as we did in Subsection 4.1. This time, however, we
used Algorithm 4.1 to avoid risk event. The results are
given in Table 2. Compared to corresponding num-
bers in Table 1 we see that the use of this algorithm
has a substantial impact. When the control parameter
r 1s small, the algorithm actually has a strong nega-
tive effect. In particular, if x < 30, the asymptotic risk
fraction of time, R, is close to 50 percent, which of
course is completely unacceptable. However, if & is
increased to 40, R drops down to 0.6 percent. More-
over, if k = 50, the occurrence of risk events is zero.
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Figure 4: Distance (meters) between flights as a func-
tion of time

Thus, the arrival process has a dramatic effect on the
usefulness of Algorithm 4.1.

A similar pattern holds for the asymptotic aver-
age minimum distance, D. When « < 30, D is be-
low 9,000 meters, which is more than a 25 percent
decrease compared to the corresponding numbers in
Table 1.

For the asymptotic average throughput, M, the ef-
fects are much less noticable. Still for x < 30 the
throughput is slightly lower than for case with unmod-
ified trajectories. This is significant, though, since this
indicates that processing does not keep up with the ar-
rival of aircrafts into A.

Finally, we observe that the asymptotic average
processing time increases dramatically when x < 30
compared to the case with unmodified trajectories.

Table 2: Estimated criticality and performance mea-
sures as a function of the control parameter k.

10 20 30 40 50

0.480 0.477 0472 0.006 0.000
8,558 8,672 8,813 12,881 13,223
0.641 0.624 0.610 0.586

K
R
D
M 0.652
T, 219 221 224 145 144

By taking a closer look at the simulation results, it
is easy to see that the poor results for © < 30 is due
to the increased traffic density in 4. As the airspace
gets more and more congested, the aircrafts must fly
longer within A to avoid other aircrafts. Thus, the pro-
cessing time increases as well, which increases the
number of aircrafts present in .A. In fact the process is
not stable within the simulation time frame.

In Figure 5 we have plotted the average minimum
flight distances as functions of time for x = 10 and
r = 50. While the curve for k = 50 becomes stable
almost immediately, the curve for k = 10 decreases
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Figure 5: Average minimum flight distances (meters)
as functions of time for k = 10 (lower curve) and k =
50 (upper curve)
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Figure 6: Average processing times as functions of
time for k = 10 (upper curve) and K = 50 (lower
curve)

throughout the simulation interval. This indicates that
when k = 10, the airspace gets more and more con-
gested.

Similarly, in Figure 6 we have plotted the average
processing time as functions of time for x = 10 and
r = 50. Again the processing time is stable for x = 50.
For x = 10, however, the processing time is increas-
ing all the time. Thus, for x = 10 the aircrafts tend to
become more and more stuck within A.

5 CONCLUSIONS

In this brief paper we have demonstrated how to build
and analyse simulation models for aircraft trajectories
from a risk perspective. The main sources of risk are
the arrival process as well as the arrival and departure
points within the airspace under consideration.

We have studied two issues related to air traffic
control: managing the arrival process, and collision
avoidance systems. One of the main findings in the
simulation examples is that these two issues should

be studied together. Developing a collision avoidance
system without running this in an environment with
stochstic traffic, may produce too optimistic conclu-
sions. On the other hand analysing the risk related to
the arrival process without implementing some sort
of collision avoidance system may result in inefficient
airspace utilization.

We would like to stress that the present paper is
just a preliminary study. There are many model pa-
rameters that needs to be adjusted and optimized. Fur-
ther work would include the study of different arrival
processes and control mechanisms, as well as effects
of different weather conditions. Moreover, the pro-
cedure used as a collision avoidance systems can be
improved in many ways. In this paper we have used
a distributed system where the aircrafts are responsi-
ble for choosing a sensible trajectory. By improving
the coordination between the aircrafts, as well as in-
cluding a central control unit managing arrivals and
supporting the aircrafts may allow for a significantly
improved utilization of the airspace.
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