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Problem Description
I Building and analyzing models for air traffic control in a

stochastic environment
I Aircraft movements are modeled using ordinary differential

equations
I Stochastic elements in the model:

I Arrival of aircrafts into the system
I Arrival and departure points of the aircrafts

I Presently the work is in a preliminary state where the
purpose is to demonstrate how to deal with the various
issues related to such models

I Ultimate goals:
I Optimize designated aircraft trajectories w.r.t. risk
I Determine maximal acceptable traffic density w.r.t. risk
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Main Processes and Variables

I A Airspace of interest

I {N(t)} Aircraft arrival process

I (Ta,i ,Td ,i) Arrival and departure times of i th aircraft

I Tp,i = Td ,i − Ta,i Processing time of i th aircraft

I (X a,i ,X d ,i) Arrival and departure points of i th aircraft
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Derived Processes

I N(t) =
∑∞

i=0 I(Ta,i ≤ t)

I M(t) =
∑∞

i=0 I(Td ,i ≤ t)

I Q(t) =
∑∞

i=1 I(Ta,i ≤ t < Td ,i)

I Q(t) = N(t)−M(t)
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Aircraft Position Model

I Aircraft trajectory:
I {x i (t) : Ta,i ≤ t ≤ Td,i}

I Boundary conditions:
I x i (Ta,i ) = X a,i
I x i (Td,i ) = X d,i

I Position expressed in terms of velocity:
I x i (t) = X a,i +

∫ t
Ta,i

ẋ i (u)du

I Assuming constant velocity (and speed si ):
I ẋ i (t) =

X d,i−X a,i

‖X d,i−X a,i‖
si
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ẋ i (u)du

I Assuming constant velocity (and speed si ):
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Risk Events

I J(t) The index set of aircrafts present in A at time t

I The minimum distance between aircrafts at time t :
I D(t) = mini,j∈J(t),i 6=j{‖x i (t)− x j (t)‖}

I C Critical distance (2.5 nautical miles [4,630 meters])

I The system is in a risky state at time t if:
I D(t) < C
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Risk Measures

I The limiting fraction of time where the system is in a risky
state:

I R̄ = limt→∞
1
t

∫ t
0 I(D(u) < C)du

I The asymptotic average minimum distance between two
aircrafts in A:

I D̄ = limt→∞
1
t

∫ t
0 D(u)du

I The asymptotic average throughput:
I M̄ = limt→∞

M(t)
t

I The asymptotic average processing time:
I T̄p = limn→∞

1
n

∑n
i=1 Tp,i
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Avoiding Risk Events
Algorithm
For each point of time t and for each j ∈ J(t) do the following:

STEP 1. Calculate the “ideal” velocity for the jth aircraft as:

ẋ j (t) =
X d,j − x j (t)
‖X d,j − x j (t)‖

sj .

STEP 2. Identify the closest aircraft, and determine whether the
trajectory needs to be adjusted to avoid a risk event.

STEP 3a. If no action is needed, use the ideal velocity in the interval
[t , t + dt), and update the position.

STEP 3b. If an action is needed, make a “turn”, i.e., replace the ideal
velocity by ẋ ′j (t) = Λẋ j (t) in the interval [t , t + dt) where Λ is a suitable
rotation matrix, and update the position.
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Trajectories of two flights entering A at the same time
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Main Object Structure

ATC

AircraftAircraftAircraftAircraft
Aircraft 

generator

Event scheduler
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Hybrid Event Scheduler

I Handles both discrete events and continuous time events:
I Aircraft generator (discrete events)
I Aircraft position updates (continuous time events)

I Allows assigning flexible update intervals for each
individual aircraft

I Short update intervals are used in risky periods
I Long update intervals are used in safe periods
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The Arrival Process {N(t)}

The process {N(t)} was chosen as a counting process with i.i.d.
waiting times sampled from a censored exponential distribution.

Let W1,W2, . . . denote the waiting times between arrivals. Then
W1,W2, . . . are sampled as:

Wi = max(κ,Ui ), i = 1,2, . . . ,

where U1,U2, . . . are independent and identically exponentially
distributed with mean µ = 90 seconds.

The constant κ is a control parameter limiting the traffic into A. In the
simulations κ was varied between 10 and 50 seconds.
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Arrival and Departure Points

I All flights through A are assumed to be either northbound
or eastbound.

I Pr(Flight is northbound) = Pr(Flight is eastbound) = 1/2.

I For northbound flights the arrival points are sampled within
an interval IS of the southern border of A and departure
points within an interval IN of the northern border of A.

I For eastbound flights the arrival points are sampled within
an interval IW of the western border of A and departure
points within an interval IE of the eastern border of A.
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Simulation Results
Without Risk Event Avoidance:

κ 10 20 30 40 50
R̄ 0.250 0.239 0.227 0.066 0.020
D̄ 12,108 12,288 12,548 12,840 13,196
M̄ 0.660 0.650 0.632 0.611 0.588
T̄p 144 144 144 144 144

With Risk Event Avoidance:

κ 10 20 30 40 50
R̄ 0.480 0.477 0.472 0.006 0.000
D̄ 8,558 8,672 8,813 12,881 13,223
M̄ 0.652 0.641 0.624 0.610 0.586
T̄p 219 221 224 145 144
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Summary

I We have shown how to implement hybrid simulation
models for aircraft trajectories in a stochastic environment

I We have analyzed two interrelated issues related to the
model:

I Managing the arrival process
I Avoiding risk events by adjusting trajectories dynamically

I The two issues should be studied together in an integrated
model

I Future work:
I Fine-tuning the models and algorithms
I Modeling smoother aircraft movements (in 3D)
I Include other stochastic aspects e.g., weather
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