
Exercises Ch2

Section 2.2
Exercise 2.2.1 Consider log-normal financial returns R = eξ+σε − 1 where ε ∼ N(0, 1) and let
ξ = 0.005 and σ = 0.05 (could be monthly equity). a) Run Monte Carlo experiments with m = 100,
m = 1000 and m = 10000 simulations and in each case compute the average R̄∗ and the standard
deviation s∗ [R-commands: eps=rnorm(m); R=exp(0.005+0.05*eps)-1); mean(R); sqrt(var(R)).].

b) Compare with the exact values E(R) = eξ+σ2/2 − 1 and sd(R) = eξ+σ2/2
√

eσ2 − 1. c) What
is the prospect of determining ξ and σ if we are dealing with historical equity returns instead of
simulated ones?

Exercise 2.2.2 Distributions can be compared through Q-Q plots. If F−1(u) and G−1(u) are the
percentiles of two distribution functions F (x) and G(x), then F−1(ui) is plotted against G−1(ui)
for i = 1, . . . , n where ui = (i − 1/2)/n. Use this technique to look at the difference between
normal R = ξ + σε and log-normal R = eξ+σε − 1 equity returns where ε ∼ N(0, 1). a) Argue
that ξ + σΦ−1(u) and eξ+σΦ−1(u) − 1 are the precentiles of the two models when Φ−1(u) is the
inverse Gaussian integral. b) Write a program which Q-Q plots the normal against the log-normal
[R-commands: u=(1:n-0.5)/n; qno=ξ+σ*qnorm(u); qln=exp(qno)-1; plot(qno,qln).]. c) Run the
program when n = 1000, ξ = 0.005 and σ = 0.05 and try to understand the pattern. d) Redo c)
when σ = 0.005 instead of 0.05 and note how the plot changes.

Exercise 2.2.3 Suppose Y = a + bX where a and b are coefficients. If F−1(u) and G−1(u)
are the pecentiles of X and Y , argue that G−1(u) = a+bF−1(u) so that their Q-Q plot is a straight
line. Changing the mean and standard deviation of a distribution only shift and rotate QQ-plots
without doing anything to the shape

Exercise 2.2.4 Q-Q plotting can also be used with Monte Carlo when the underlying distri-
bution functions are too complicated to calculate exactly. Let X∗

(1) ≤ . . . ≤ X∗
(m) be ordered

simulations under one model and Y ∗
(1) ≤ . . . ≤ Y ∗

(m) under another. a) Explain that Q-Q plotting

means X∗
(i) being plotted against Y ∗

(i) for i = 1, . . . ,m. b) Write a program which compares normal
and log-normal equity returns as in Exercise 2.2.2 with Monte Carlo replacing exact mathematics
[R-commands: X=ξ+σ*rnorm(m); Y=exp(ξ+σ*rnorm(m))-1; plot(sort(X),sort(Y)).]. c) Run
the program for ξ = 0.005 and σ = 0.05 and 0.005. Use m = 100000 and verify that the conclusions
in Exercise 2.2.c,d) haven’t changed.

Exercise 2.2.5 a) Generate m = 1000000 simulations of R = eξ+σε − 1 when ξ = 0.005 and
σ = 0.05 and plot the estimated density function [R-commands: R=exp(ξ+σ*rnorm(m))-1;
plot(density(R)).]. This has produced an accurate reconstruction of the the exact density function,
but suppose only m = 100 simulations could be afforded under circumstances with much heav-
ier computation. b) Imitate this situation by selecting the first 100 simulations in a), plot their
estimated density function and compare with the result in a) [R-commands: Add to those in
a) R1=R[1:100]; d1=density(R1); lines(d1$x,d1$y).]. c) Redo b) when you smooth the estimate
stronger [R-commands: d2=density(R1,bw=0.005); lines(d2$x,d2$y).]. d) Describe the errors in
the estimates in b) and c). Those are typical! e) Experiment with other values of the smoothing
parameter [R-commands: for example use bw=0.01.].

Exercise 2.2.6 a) Write a program which produces m1 Monte Carlo evaluations of the lower
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1% percentile of R of the preceding exercise with m simulations per experiment [R-commands:
X=ξ+σ*rnorm(m*m1); R=matrix(exp(X)-1,m,m1); q=apply(R,2,sort)[0.01*m].] b) Let ξ = 0.005
and σ = 0.05 and run the program when m = 1000 and m1 = 100. c) Plot the density function
of the m1 = 100 estimates and compute their mean which you compare with the exact value
−0.105345. [R-commands: plot(density(q)); mean(q).]. d) Redo b)and c) when m = 10000 and
comment on how the errors have changed. The pattern you have seen in this exercise is typical for
a large variety of situations!

Exercise 2.2.7 Recall from (??) that sd(s∗)
.
= (σ/

√
2m)

√

1 + κ/2. where κ is the kurtosis.
Compute how much sd(s∗) is inflated when κ moves from 0 (Gaussian data) to 6 (which might be
realistic for daily equity returns).

Exercise 2.2.8 The mathematical definition of kurtosis is κ = E(X− ξ)4)/σ4−3 where ξ = E(X)
and σ = sd(X), and it has a simple interpretion when X follows the stochastic volatility model (??).
It is then assumed that X = ξ + σξ

√
Z ε where ε and Z are independent and ε ∼ N(0, 1). a) Show

that

(X − ξ)2 = σ2
ξZε2 so that σ2 = E(X − ξ)2 = σ2

ξE(Z).

b) By utilising that E(ε4) = 3 also show that

(X − ξ)4 = σ4
ξZ

2ε4 which yields E(X − ξ)4 = 3σ4
ξE(Z2).

c) Deduce that κ = 3var(Z)/(EZ)2. d) Why is κ = 0 for normal variables? Usually Z is scaled so
that E(Z)

.
= 1 which makes κ

.
= 3var(Z).

Exercise 2.2.9 The standard kurtosis estimate from an independent and identically distributed
sample X1, . . . ,Xn is

κ̂ =
ν̂4

s4
− 3 where ν̂4 =

1

n

n
∑

i=1

(Xi − X̄)4

and where s2 is the ordinary sample variance. a) Write a program which simulates a log-
nornal sample Xi = eξ+σεi for i = 1, . . . , n and compute κ̂.[R-commands X=exp(ξ+σ*rnorm(n));
e=mean(X); κ̂=mean((X-e)**4)/var(X)**2.]. b) Run the program under equity return parameters
ξ = 0.005 and σ = 0.05 and compute κ̂ when n = 100, n = 1000 and n = 10000. c) Redo b) when
ξ = 0.005 and σ = 1 (could be losses in general insurance). d) Compare estimation results with
the exact expression which is κ = e4σ2

+ 2e3σ2

+ 3e2σ2 − 3 (see Johnson, Kotz and Balakrishnan,
1994) and try to draw some conclusions about the kurtosis estimate.

Section 2.3
Exercise 2.3.1 The Cauchy model has density function

f(x) =
(βπ)−1

1 + (x/β)2
and distribution function F (x) = 1/2 + atan(x/β)/π.

a) Show that F−1(u) = β tan{(u− 1/2)π} and write down the inversion sampler. b) Write a pro-
gram which generates m Cachy-distributed variables. [R-commands: U=runif(m); X=β*tan((U-
0.5)*pi), or the intrinsic one X=rcauchy(m,β)]. c) Generate m = 100, m = 1000 and m = 10000
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independent realisations when β = 1 and compute each time the mean [R-command: mean(X).].
The pattern (or lack of it) is due to the underlying expectation being infinite. The Cauchy distri-
bution belongs to the NIG family introduced in Execise 13.2.3.

Exercise 2.3.2 Truncated distributions which appear frequently in property insurance, are dis-
tributions confined to sub-domaines. For example, we may seek the distribution of X inside some
interval (a, b). a) Argue that such sampling can be carried out by acceptance-rejection by generating
simulations X∗ from the original distribution and keeping those that satisfy a < X∗ < b. b) Write
a program which generates simulations from the truncated Gamma distribution [R-commands:
fac=ξ/α; X=fac*rgamma(m,α); X=X[X>a&X<b].]. c) Run the program with m = 100000,
ξ = 10, α = 4, a = 5 and b = 15, compute mean and standard devaitaion of the truncated
distribution and find out how many simulations you have been left with [R-commands: mean(X);
sqrt(var(X)); length(X).]. d) Why is the standard deviation smaller than for the original distri-
bution? Acceptance-rejection may be inefficient if the interval is short or far out from the centre.
The table method of Section 4.2 is an alternative.

Exercise 2.3.3 A special case of truncation is distributions above or below some threshold, a
common situation in property insurance and in finance. a) Modify the program in Exercise
2.3.2.b) so that only values exceeding a lower threshold a is kept [R-commands: fac=ξ/α;
X=fac*rgamma(m,α); X=X[X>a].]. b) Run the program when m = 100000, ξ = 10, α = 4
and a = 5, 15 and 25, compute each time the mean of the simulations you keep and find out the
number you have been left with [R-commands: mean(X); length(X).]. c) Redo b) when α = 1
with the other parameters as before. How has the relationship between a and the mean of the
truncated distribution changed?

Exercise 2.3.4 This exercise constructs a Gamma sampler by acceptance-rejection from the expo-
nential. Let f(x) = cxα−1e−αx and g(x) = e−x be the two density functions where x > 0. a) Show
that f(x)/g(x) attains its maximum at x = 1 and argue that with M = f(1)/g(1) = Ce−α+1 this
means that

f(x)

Mg(x)
= e(α−1)(log(x)−x) ≤ 1.

b) Explain that an acceptance-rejection sampler for Gamma(α) generates uniforms U∗
1 and U∗

2 and
enter the scheme

X∗ ← − log(U∗
1 ) which is accepted if log(U∗

2 ) < (α− 1)(log(X∗)−X∗).

c) Implement the algorithm [R-commands: U1=runif(m); U2=runif(m) X=-log(U1), X=X[log(U2)<(a-
1)*log(X)-X].] d) Run the program with m = 100000 and α = 2.5 and check that average and
standard deviation are close to E(X)=1 and sd(X) = 1/

√
2.5

.
= 0.632 [R-commands: mean(X);

sqrt(var(X)).] e) Find out how many of the original sampes you have retained [R-command:
length(X).]. The exercise is an illustration of how acceptance-rejection procedures are constructed.
Although the method is usable, those in the text are more efficient.

Exercise 2.3.5 Let g(x) = e−x2/2 with maximum at x = 0 so that a =
√

g(0) = 1 in Algo-
rithm 2.3. a) Show that the minimum and maximum of x

√

g(x) occurs at x = −
√

2 and x =
√

2
which means that b− = −e−1/2/2 and b+ = e−1/2/2 in Algorithm 2.3. b) Implement Algorithm

3



2.3 for the standard normal distribution [R-commands: b1=-exp(-0.5)/2, b2=-b1, U1=runif(m),
U2=runif(m), X=(b1+(b2-b1)*U2)/U1, X=X[U1<exp(-0.25*X*X).]. c) Run it for m = 10000
and check that mean and standard deviation of the sample are close to 0 and 1. d) How many
simulations did you obtain? [R-command: length(X)]. As in the previous exercise, the method is
usable, yet included only to illustate the mechanics of ratio of uniforms sampling.

Section 2.4
Exercise 2.4.1 Let X = e−σ2/2+σε where ε ∼ N(0, 1) be a model for losses in property insurance.
a) Draw m = 10000 simulations when σ = 0.25, compute their mean and plot the density function
[R-commands: eps=rnorm(m); X=exp(-σ**2/2+σ*eps); mean(X); plot(density(X)).]. b) Redo
a) when σ = 0.5 and σ = 1 and note how the density function changes while the mean does not.

Exercise 2.4.2 Consider the stochastic volatility model R = eξ+ξσ

√
Z ε − 1 for log-returns where

ε and Z are independent and ε ∼ N(0, 1). One specification for Z is 1/Z = G where G ∼
Gamma(α) which makes log(1 + R) t-distributed. a) Generate m = 10000 simulations of R
when ξ = 0.005, ξσ = 0.08 and α = 10 [R-commands:. eps=rnorm(m); G=rgamma(α)/α;
R1=exp(ξ + ξσ/sqrt(G)*eps)-1, see Exercise 2.5.1 for the sampling of G.]. b) Plot the density
function [R-command: plot(density(R1)).].

Exercise 2.4.3 An alternative model for Z in the previous exercise could be Z = eτ2/2+τη where
η ∼ N(0, 1) and τ ≥ 0 a parameter. a) Use the formulae for the mean and standard deviation of

log-normal variables to argue that E(1/Z) = 1 and sd(1/Z) =
√

eτ2 − 1. b) Show that 1/Z has
the same mean and variance as G of Exercise 2.4.2 when τ =

√

log(1 + 1/α) so that τ = 0.3087
when α = 10 as in the previous exercise. [Hint: Look up sd(G) in Section 2.5.] c) Generate

m = 10000 simulations of R = eξ+ξσ

√
Z ε − 1 when ξ = 0.005, ξσ = 0.08 and τ = 0.3087 and

plot the density function [R-commands: eps=rnorm(m); eta=rnorm(m); Z=exp(τ**2/2+τ*eta);
R2=exp(ξ + ξσ*sqrt(Z)*eps)-1; plot(density(R2)).]. d) Q-Q plot the simulations against those of
the previous exercise and judge how strongly the two models deviate [R-command: Take R1 from
Exercise 2.2.2a) and use plot(sort(R1),sort(R2)).].

Exercise 2.4.4 Let R1 = eξ+σε1 − 1 and R2 = eξ+σε2 − 1 where ξ and σ are drift and volatil-
ity and ǫ1, ǫ2 ∼ N(0, 1) with ρ = cor(ε1, ε2). a) Write a program which generates m simulations
of (ε1, ε2) [R-commands: eps=matrix(rnorm(2*m),m,2) eps[,2]=ρ*eps[,1]+sqrt(1-ρ**2)*eps[,2].]
b) Extend the program in a) so that the portfolio return R = (R1 + R2)/2 is simulated [R-
commands: R=exp(ξ+σ*eps)-1; R=0.5*(R[,1]+R[,2]).]. Let ξ = 0.05 and σ = 0.25. c) Draw
m = 100000 simulations of R when ρ = 0, 0.6 and 0.9, compute each time mean and standard
deviation and compare their values. [R-commands: mean(R); sqrt(var(R)).].

Exercise 2.4.5 Suppose the volatilities of the previous exercise are made stochastic so that
σ = ξσ/

√
G where G ∼ Gamma(α). a) Extend the program so that it generates m simula-

tions of R under this exptended model [R-commands: Take eps from Exercise 2.4.4a) and use
sig=ξσ/sqrt(rgamma(α)/α); R=exp(ξ+sig*eps)-1; R=0.5*(R[,1]+R[,2]).]. b) Redo the simulations
in Exercise 2.4.4c) when ξ = 0.05, ξσ = 0.25, and α = 10 for the same values of ρ and comment on
how E(R) and sd(R) change. [R-commands: mean(R); sqrt(var(R)).].

Exercise 2.4.6 Change the equally weighted portfolio in Exercise 2.4.4 so that R = (R1 + . . . +
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RJ)/J . There are now J assets with returns Ri = eξ+σεi − 1. Drift and volatility ξ and σ are
the same for all as are ρ = cor(εi, εj) for i 6= j. a) Write a program which generates m simu-
lations of (ε1, . . . , εJ ) [R-commands: eps=matrix(rnorm(J*m),m,J) eps[,2:J]=ρ*eps[,1]+sqrt(1-
ρ**2)*eps[,2:J].] b) Use the program in a) to simulate R [R-commands: R=exp(ξ+σ*eps)-1;
R=apply(R,1,mean).]. c) Let ξ = 0.05, σ = 0.25 and J = 5, and draw m = 10000 simulations of
R when ρ = 0, 0.6 and 0.9, compute each time mean and standard deviation and compare their
values with those in Exercise 2.4.4c) [R-commands: mean(R); sqrt(var(R)).].

Exercise 2.4.7 An avant-garde model is to allow stochastic correlations as in Ball and Torus
(2000). Again start with the model in Exercise 2.4.4, but now specify ρ as

ρ =
(1 + ρ0)e

τη − (1− ρ0)

(1 + ρ0)eτη + (1− ρ0)
where η ∼ N(0, 1).

Here τ ≥ 0 is a parameter. a) How do you make ρ a fixed parameter and what’s its value
then? b) Argue that −1 < ρ < 1 and that ρ0 is the median of ρ [Hint: The median ap-
pears when η = 0.]. c) Simulate(ε1, ε2) by extending the program the in Exercise 2.4.4a) [R-
commands: eps=matrix(rnorm(2*m),m,2); eta=rnorm(m); Z=exp(τ*eta); rho=((1+ρ0)*Z-(1-
ρ0))/((1+ρ0)*Z+ 1-ρ0); eps[,2]=ρ*eps[,1]+sqrt(1-ρ**2)*eps[,2].] c) Simulate R = (R1+R2)/2 un-
der this stochastic correlation model. [R-commands: Those in Exercise 2.4.4b); i.e. R=exp(ξ+σ*eps)-
1; R=0.5*(R[,1]+R[,2]).]. d) Draw m = 10000 simulations of R when ξ = 0.05 and σ = 0.25,
ρ0 = 0.6 and τ = 0, 0.5 and 1, compute each time mean and standard deviation and compare their
values. [R-commands: mean(R); sqrt(var(R)).].

Section 2.5
Exercise 2.5.1 The way Gamma variables are defined in this book as X = ξG where G has shape
α and mean 1 differs slightly from common usage where the ’standard’ Gamma usually means
ξ = α. a) Check that public software works this way by generating m = 1000 simulations of G
when α = 4 and compute the sample mean [R-commands: G=rgamma(1000,4)/4; mean(G).]. b)
Write a program producing m simulations of X [R-commands: fac=ξ/α; X=fac*rgamma(m,α).]
c) Check that your program is correct by drawing m = 1000 simulations of X when ξ = 10 and
α = 4 and compare with the exact values E(X) = 10 and sd(X) = 5 [R-commands: mean(X);
sqrt(var(X)).].

Exercise 2.5.2 Consider the Weibull model X = βY 1/α where Y is exponential with mean one
and α and β positive. a) Argue that the distribution function of X is

F (x) = Pr(Y ≤ (x/β)α) = 1− e−(x/β)α

and show that the Weibull sampler in Algorithm 2.12 is the inversion sampler. Let med(X) =
F−1(1/2) and qd(X) = F−1(3/4) − F−1(1/4) be median and quartile difference. b) Show that
med(X)

.
= β 0.69311/α qd(X)

.
= β(1.38621/α − 0.28771/α). c) Write a program generating m

Weibull simulations [R-command: Y=rexp(m); X=β*Y**(1/α) or use the the Weibull routine
of R.]. d) Check the program by running it when m = 100000, α = 2 and β = 1 and compute
the sample median and sample quartile difference which you compare with med(X) = 0.8326 and
qd(X) = 0.6411 [R-commands: X=sort(X); med=X[50000]; qd=X[75000]-X[25000].].

Exercise 2.5.3 a) Generate m = 10000 simulations from the Weibull distribution when β = 1 and
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α = 2, estimate the density function from the simulations and plot it [R-commands: Y=rexp(m);
X=β*Y**(1/α); plot(density(X)).] b) Redo a) when α = 5 and when α = 3.6. The shape of the
Weibull density varies strongly with α and appears almost symmetric for α = 3.6. c) Q-Q compare
with the normal when α = 3.6 and interprete the pattern. [R-commands: With m = 10000 and
X as the Weibull sample use Y=rnorm(m); plot(sort(X),sort(Y),”l”).].

Exercise 2.5.4 The Fréchet distribution belongs to the so-called extreme value type and has
been used as model for losses in property insurance. The distribution function is

F (x) = e−(x/β)−α

, x > 0

and α and β are positive parameters. a) Show that F−1(u) = β{− log(1 − u)}−1/α. b) Program
the inversion sampler with m simulations [R-commands: U=runif(m); X=β*(-log(U))**(-1/α).].
c) Run the program when m = 100000, α = 2 and β = 1 and check it by comparing sample me-
dian and sample quartile difference with their exact values med(X) = 1.2011 and qd(X) = 1.0151
[R-commands: See Exercise 2.5.2d).].

Exercise 2.5.5 Another model for losses in property insurance is the logistic one for which the
distribution function is

F (x) = 1− 1 + α

1 + αex/β
, x > 0.

where α and β are postive parameters. a) Show that F−1(u) = β log{(1+u/α)/(1−u)}. b) Program
the inversion sampler with m simulations [R-commands: U=runif(m); X=β*log((1+U/α)/(1-
U)).]. c) Run the program when m = 100000, α = 2 and β = 1 and check it by comparing sample
median and sample quartile difference with their exact values med(X) = 0.9163 and qd(X) = 1.2993
[R-commands: See Exercise 2.5.2d).].

Exercise 2.5.6 The Burr model is still another model that has been proposed for losses in property
insurance. The distribution function is now

F (x) = 1− {1 + (x/β)α1}−α2 , x > 0.

where α1, α2 and β are positive parameters, a) Show that F−1(u) = β{(1−u)−1/α2−1}1/α1 . b) Pro-
gram the inversion sampler with m simulations [R-commands: U=runif(m); X=β*(U**(-1/α2)-
1)**(1/α1).]. c) Run the program when m = 100000, α1 = 2, α2 = 2 and β = 1 and check it by
comparing sample median and sample quartile difference with their exact values med(X) = 0.6436
and qd(X) = 0.6069 R-commands: See Exercise 2.5.2d).].

Exercise 2.5.7 Let S = N1 + N2 where N1 and N2 are independent and Poisson distributed
with parameters λ1 = 4 and λ2 = 7. a) Generate m = 1000 simulations of S [R-command:
S=rpois(m,4)+rpois(m,7).]. b) If N ∼ Poisson(λ1 + λ2), draw the same number of simulations
of N . [R-command: N=rpois(m,11).] c) Compare the distributions of S and N through Q-Q
plotting and comment on the pattern [R-command: plot(sort(S),sort(N)).] For the general story
consult Section 8.2.

Exercise 2.5.8 Let S = G1 + G2 where G1 ∼ Gamma(α), G2 ∼ Gamma(α) and G1 and and
G2 independent. a) Generate m = 1000 Monte Carlo samples of S when α = 2.5 [R-commands:
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G1=rgamma(m,2.5)/2.5; G2=rgamma(m,2.5)/2.5; S=G1+G2.]. b) Draw the same number
of simulations of G when G ∼ Gamma(2α) [R-commands: G=rgamma(m,5)/5.] c) Compare
the distributions of S and G through Q-Q plotting and comment on the pattern [R-command:
plot(sort(S),sort(G)).] For the general story consult Section 9.3.
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