Exercises Ch2

Section 2.2

Exercise 2.2.1 Consider log-normal financial returns $R = e^{\xi + \sigma \varepsilon} - 1$ where $\varepsilon \sim N(0, 1)$ and let $\xi = 0.005$ and $\sigma = 0.05$ (could be monthly equity). **a**) Run Monte Carlo experiments with m = 100, m = 1000 and m = 10000 simulations and in each case compute the average \bar{R}^* and the standard deviation s^* [**R-commands:** eps=rnorm(m); R=exp(0.005+0.05*eps)-1); mean(R); sqrt(var(R)).]. **b**) Compare with the exact values $E(R) = e^{\xi + \sigma^2/2} - 1$ and $sd(R) = e^{\xi + \sigma^2/2} \sqrt{e^{\sigma^2} - 1}$. **c**) What is the prospect of determining ξ and σ if we are dealing with historical equity returns instead of simulated ones?

Exercise 2.2.2 Distributions can be compared through **Q-Q plots**. If $F^{-1}(u)$ and $G^{-1}(u)$ are the percentiles of two distribution functions F(x) and G(x), then $F^{-1}(u_i)$ is plotted against $G^{-1}(u_i)$ for i = 1, ..., n where $u_i = (i - 1/2)/n$. Use this technique to look at the difference between normal $R = \xi + \sigma \varepsilon$ and log-normal $R = e^{\xi + \sigma \varepsilon} - 1$ equity returns where $\varepsilon \sim N(0, 1)$. **a)** Argue that $\xi + \sigma \Phi^{-1}(u)$ and $e^{\xi + \sigma \Phi^{-1}(u)} - 1$ are the precentiles of the two models when $\Phi^{-1}(u)$ is the inverse Gaussian integral. **b)** Write a program which Q-Q plots the normal against the log-normal [**R-commands:** u = (1:n-0.5)/n; $qno = \xi + \sigma^* qnorm(u)$; qln = exp(qno) - 1; plot(qno,qln).]. **c)** Run the program when $n = 1000, \xi = 0.005$ and $\sigma = 0.05$ and try to understand the pattern. **d)** Redo c) when $\sigma = 0.005$ instead of 0.05 and note how the plot changes.

Exercise 2.2.3 Suppose Y = a + bX where a and b are coefficients. If $F^{-1}(u)$ and $G^{-1}(u)$ are the pecentiles of X and Y, argue that $G^{-1}(u) = a + bF^{-1}(u)$ so that their Q-Q plot is a straight line. Changing the mean and standard deviation of a distribution only shift and rotate QQ-plots without doing anything to the shape

Exercise 2.2.4 Q-Q plotting can also be used with Monte Carlo when the underlying distribution functions are too complicated to calculate exactly. Let $X_{(1)}^* \leq \ldots \leq X_{(m)}^*$ be ordered simulations under one model and $Y_{(1)}^* \leq \ldots \leq Y_{(m)}^*$ under another. **a)** Explain that Q-Q plotting means $X_{(i)}^*$ being plotted against $Y_{(i)}^*$ for $i = 1, \ldots, m$. **b)** Write a program which compares normal and log-normal equity returns as in Exercise 2.2.2 with Monte Carlo replacing exact mathematics [**R-commands:** $X = \xi + \sigma * rnorm(m)$; $Y = exp(\xi + \sigma * rnorm(m)) - 1$; plot(sort(X), sort(Y)).]. **c)** Run the program for $\xi = 0.005$ and $\sigma = 0.05$ and 0.005. Use m = 100000 and verify that the conclusions in Exercise 2.2.c,d) haven't changed.

Exercise 2.2.5 a) Generate m = 1000000 simulations of $R = e^{\xi + \sigma \varepsilon} - 1$ when $\xi = 0.005$ and $\sigma = 0.05$ and plot the estimated density function [**R-commands:** $R = exp(\xi + \sigma * rnorm(m)) - 1$; plot(density(R)).]. This has produced an accurate reconstruction of the the exact density function, but suppose only m = 100 simulations could be afforded under circumstances with much heavier computation. **b)** Imitate this situation by selecting the first 100 simulations in a), plot their estimated density function and compare with the result in a) [**R-commands:** Add to those in a) R1=R[1:100]; d1=density(R1); lines(d1\$x,d1\$y).]. **c)** Redo b) when you smooth the estimate stronger [**R-commands:** d2=density(R1,bw=0.005); lines(d2\$x,d2\$y).]. **d)** Describe the errors in the estimates in b) and c). Those are typical! **e)** Experiment with other values of the smoothing parameter [**R-commands:** for example use bw=0.01.].

Exercise 2.2.6 a) Write a program which produces m_1 Monte Carlo evaluations of the lower

1% percentile of R of the preceding exercise with m simulations per experiment [**R-commands**: $X = \xi + \sigma * rnorm(m*m_1)$; $R = matrix(exp(X)-1,m,m_1)$; q = apply(R,2,sort)[0.01*m].] b) Let $\xi = 0.005$ and $\sigma = 0.05$ and run the program when m = 1000 and $m_1 = 100$. c) Plot the density function of the $m_1 = 100$ estimates and compute their mean which you compare with the exact value -0.105345. [**R-commands**: plot(density(q)); mean(q).]. d) Redo b)and c) when m = 10000 and comment on how the errors have changed. The pattern you have seen in this exercise is typical for a large variety of situations!

Exercise 2.2.7 Recall from (??) that $\operatorname{sd}(s^*) \doteq (\sigma/\sqrt{2m})\sqrt{1+\kappa/2}$. where κ is the kurtosis. Compute how much $\operatorname{sd}(s^*)$ is inflated when κ moves from 0 (Gaussian data) to 6 (which might be realistic for daily equity returns).

Exercise 2.2.8 The mathematical definition of kurtosis is $\kappa = E(X - \xi)^4)/\sigma^4 - 3$ where $\xi = E(X)$ and $\sigma = \operatorname{sd}(X)$, and it has a simple interpretion when X follows the stochastic volatility model (??). It is then assumed that $X = \xi + \sigma_{\xi}\sqrt{Z} \varepsilon$ where ε and Z are independent and $\varepsilon \sim N(0, 1)$. a) Show that

$$(X - \xi)^2 = \sigma_{\xi}^2 Z \varepsilon^2$$
 so that $\sigma^2 = E(X - \xi)^2 = \sigma_{\xi}^2 E(Z).$

b) By utilising that $E(\varepsilon^4) = 3$ also show that

 $(X - \xi)^4 = \sigma_{\xi}^4 Z^2 \varepsilon^4$ which yields $E(X - \xi)^4 = 3\sigma_{\xi}^4 E(Z^2).$

c) Deduce that $\kappa = 3\operatorname{var}(Z)/(EZ)^2$. d) Why is $\kappa = 0$ for normal variables? Usually Z is scaled so that $E(Z) \doteq 1$ which makes $\kappa \doteq 3\operatorname{var}(Z)$.

Exercise 2.2.9 The standard kurtosis estimate from an independent and identically distributed sample X_1, \ldots, X_n is

$$\hat{\kappa} = \frac{\hat{\nu}_4}{s^4} - 3$$
 where $\hat{\nu}_4 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^4$

and where s^2 is the ordinary sample variance. **a)** Write a program which simulates a lognormal sample $X_i = e^{\xi + \sigma \varepsilon_i}$ for i = 1, ..., n and compute $\hat{\kappa}.[\mathbf{R}\text{-commands } X = exp(\xi + \sigma * rnorm(n));$ $e = mean(X); \hat{\kappa} = mean((X-e)^{**}4)/var(X)^{**}2.]$. **b)** Run the program under equity return parameters $\xi = 0.005$ and $\sigma = 0.05$ and compute $\hat{\kappa}$ when n = 100, n = 1000 and n = 10000. **c)** Redo b) when $\xi = 0.005$ and $\sigma = 1$ (could be losses in general insurance). **d)** Compare estimation results with the exact expression which is $\kappa = e^{4\sigma^2} + 2e^{3\sigma^2} + 3e^{2\sigma^2} - 3$ (see Johnson, Kotz and Balakrishnan, 1994) and try to draw some conclusions about the kurtosis estimate.

Section 2.3 Exercise 2.3.1 The Cauchy model has density function

$$f(x) = \frac{(\beta \pi)^{-1}}{1 + (x/\beta)^2}$$
 and distribution function $F(x) = 1/2 + \operatorname{atan}(x/\beta)/\pi$

a) Show that $F^{-1}(u) = \beta \tan\{(u-1/2)\pi\}$ and write down the inversion sampler. b) Write a program which generates *m* Cachy-distributed variables. [**R-commands:** U=runif(m); $X=\beta*tan((U-0.5)*pi)$, or the intrinsic one $X=rcauchy(m,\beta)$]. c) Generate m = 100, m = 1000 and m = 10000

independent realisations when $\beta = 1$ and compute each time the mean [**R-command**: mean(X).]. The pattern (or lack of it) is due to the underlying expectation being infinite. The Cauchy distribution belongs to the **NIG** family introduced in Execise 13.2.3.

Exercise 2.3.2 Truncated distributions which appear frequently in property insurance, are distributions confined to sub-domaines. For example, we may seek the distribution of X inside some interval (a, b). **a)** Argue that such sampling can be carried out by acceptance-rejection by generating simulations X^* from the original distribution and keeping those that satisfy $a < X^* < b$. **b)** Write a program which generates simulations from the truncated Gamma distribution [**R-commands:** $fac=\xi/\alpha$; $X=fac*rgamma(m,\alpha)$; X=X[X>a&X<b]. **c)** Run the program with m = 100000, $\xi = 10$, $\alpha = 4$, a = 5 and b = 15, compute mean and standard devaitation of the truncated distribution and find out how many simulations you have been left with [**R-commands:** mean(X); sqrt(var(X)); length(X).]. **d)** Why is the standard deviation smaller than for the original distribution? Acceptance-rejection may be inefficient if the interval is short or far out from the centre. The table method of Section 4.2 is an alternative.

Exercise 2.3.3 A special case of truncation is distributions above or below some threshold, a common situation in property insurance and in finance. **a)** Modify the program in Exercise 2.3.2.b) so that only values exceeding a lower threshold *a* is kept [**R-commands:** $fac=\xi/\alpha$; $X=fac*rgamma(m,\alpha)$; X=X[X>a].]. **b)** Run the program when m = 100000, $\xi = 10$, $\alpha = 4$ and a = 5, 15 and 25, compute each time the mean of the simulations you keep and find out the number you have been left with [**R-commands:** mean(X); length(X).]. **c)** Redo b) when $\alpha = 1$ with the other parameters as before. How has the relationship between *a* and the mean of the truncated distribution changed?

Exercise 2.3.4 This exercise constructs a Gamma sampler by acceptance-rejection from the exponential. Let $f(x) = cx^{\alpha-1}e^{-\alpha x}$ and $g(x) = e^{-x}$ be the two density functions where x > 0. a) Show that f(x)/g(x) attains its maximum at x = 1 and argue that with $M = f(1)/g(1) = Ce^{-\alpha+1}$ this means that

$$\frac{f(x)}{Mg(x)} = e^{(\alpha-1)(\log(x)-x)} \le 1.$$

b) Explain that an acceptance-rejection sampler for $\text{Gamma}(\alpha)$ generates uniforms U_1^* and U_2^* and enter the scheme

$$X^* \leftarrow -\log(U_1^*)$$
 which is accepted if $\log(U_2^*) < (\alpha - 1)(\log(X^*) - X^*).$

c) Implement the algorithm [**R-commands:** U1=runif(m); U2=runif(m) X=-log(U1), X=X[log(U2)<(a-1)*log(X)-X].] d) Run the program with m = 100000 and $\alpha = 2.5$ and check that average and standard deviation are close to E(X)=1 and $sd(X) = 1/\sqrt{2.5} \doteq 0.632$ [**R-commands:** mean(X); sqrt(var(X)).] e) Find out how many of the original samples you have retained [**R-command:** length(X).]. The exercise is an illustration of how acceptance-rejection procedures are constructed. Although the method is usable, those in the text are more efficient.

Exercise 2.3.5 Let $g(x) = e^{-x^2/2}$ with maximum at x = 0 so that $a = \sqrt{g(0)} = 1$ in Algorithm 2.3. a) Show that the minimum and maximum of $x\sqrt{g(x)}$ occurs at $x = -\sqrt{2}$ and $x = \sqrt{2}$ which means that $b_{-} = -e^{-1/2}/2$ and $b_{+} = e^{-1/2}/2$ in Algorithm 2.3. b) Implement Algorithm

2.3 for the standard normal distribution [**R-commands**: b1=-exp(-0.5)/2, b2=-b1, U1=runif(m), U2=runif(m), X=(b1+(b2-b1)*U2)/U1, X=X[U1<exp(-0.25*X*X).]. c) Run it for m = 10000 and check that mean and standard deviation of the sample are close to 0 and 1. d) How many simulations did you obtain? [**R-command**: length(X)]. As in the previous exercise, the method is usable, yet included only to illustate the mechanics of ratio of uniforms sampling.

Section 2.4

Exercise 2.4.1 Let $X = e^{-\sigma^2/2 + \sigma\varepsilon}$ where $\varepsilon \sim N(0, 1)$ be a model for losses in property insurance. **a)** Draw m = 10000 simulations when $\sigma = 0.25$, compute their mean and plot the density function [**R-commands:** eps=rnorm(m); $X=exp(-\sigma **2/2+\sigma *eps)$; mean(X); plot(density(X)).]. **b)** Redo a) when $\sigma = 0.5$ and $\sigma = 1$ and note how the density function changes while the mean does not.

Exercise 2.4.2 Consider the stochastic volatility model $R = e^{\xi + \xi_{\sigma}\sqrt{Z}\varepsilon} - 1$ for log-returns where ε and Z are independent and $\varepsilon \sim N(0,1)$. One specification for Z is 1/Z = G where $G \sim Gamma(\alpha)$ which makes $\log(1 + R)$ t-distributed. **a**) Generate m = 10000 simulations of R when $\xi = 0.005$, $\xi_{\sigma} = 0.08$ and $\alpha = 10$ [**R-commands:** eps=rnorm(m); $G=rgamma(\alpha)/\alpha$; $R1=exp(\xi + \xi_{\sigma}/sqrt(G)^*eps)-1$, see Exercise 2.5.1 for the sampling of G.]. **b**) Plot the density function [**R-command:** plot(density(R1)).].

Exercise 2.4.3 An alternative model for Z in the previous exercise could be $Z = e^{\tau^2/2+\tau\eta}$ where $\eta \sim N(0,1)$ and $\tau \geq 0$ a parameter. **a)** Use the formulae for the mean and standard deviation of log-normal variables to argue that E(1/Z) = 1 and $\operatorname{sd}(1/Z) = \sqrt{e^{\tau^2} - 1}$. **b)** Show that 1/Z has the same mean and variance as G of Exercise 2.4.2 when $\tau = \sqrt{\log(1 + 1/\alpha)}$ so that $\tau = 0.3087$ when $\alpha = 10$ as in the previous exercise. [**Hint:** Look up $\operatorname{sd}(G)$ in Section 2.5.] **c)** Generate m = 10000 simulations of $R = e^{\xi + \xi_{\sigma}\sqrt{Z}\varepsilon} - 1$ when $\xi = 0.005$, $\xi_{\sigma} = 0.08$ and $\tau = 0.3087$ and plot the density function [**R-commands:** eps=rnorm(m); eta=rnorm(m); $Z=exp(\tau^{**}2/2+\tau^{*}eta)$; $R2=exp(\xi + \xi_{\sigma}*sqrt(Z)*eps)-1$; plot(density(R2)).]. **d)** Q-Q plot the simulations against those of the previous exercise and judge how strongly the two models deviate [**R-command:** Take R1 from Exercise 2.2.2a) and use plot(sort(R1), sort(R2)).].

Exercise 2.4.4 Let $R_1 = e^{\xi + \sigma \varepsilon_1} - 1$ and $R_2 = e^{\xi + \sigma \varepsilon_2} - 1$ where ξ and σ are drift and volatility and $\epsilon_1, \epsilon_2 \sim N(0, 1)$ with $\rho = \operatorname{cor}(\varepsilon_1, \varepsilon_2)$. **a)** Write a program which generates m simulations of $(\varepsilon_1, \varepsilon_2)$ [**R-commands:** $eps=matrix(rnorm(2^*m), m, 2)$ $eps[,2]=\rho^*eps[,1]+sqrt(1-\rho^{**}2)^*eps[,2].]$ **b)** Extend the program in a) so that the portfolio return $\mathcal{R} = (R_1 + R_2)/2$ is simulated [**R-commands:** $R=exp(\xi+\sigma^*eps)-1$; $R=0.5^*(R[,1]+R[,2]).]$. Let $\xi = 0.05$ and $\sigma = 0.25$. **c)** Draw m = 100000 simulations of \mathcal{R} when $\rho = 0$, 0.6 and 0.9, compute each time mean and standard deviation and compare their values. [**R-commands:** mean(R); sqrt(var(R)).].

Exercise 2.4.5 Suppose the volatilities of the previous exercise are made stochastic so that $\sigma = \xi_{\sigma}/\sqrt{G}$ where $G \sim \text{Gamma}(\alpha)$. **a)** Extend the program so that it generates m simulations of \mathcal{R} under this exptended model [**R-commands:** Take eps from Exercise 2.4.4a) and use $sig = \xi_{\sigma}/sqrt(rgamma(\alpha)/\alpha)$; $R = exp(\xi + sig^*eps) - 1$; $R = 0.5^*(R[,1] + R[,2])$.]. **b)** Redo the simulations in Exercise 2.4.4c) when $\xi = 0.05$, $\xi_{\sigma} = 0.25$, and $\alpha = 10$ for the same values of ρ and comment on how $E(\mathcal{R})$ and $sd(\mathcal{R})$ change. [**R-commands:** mean(R); sqrt(var(R)).].

 $R_J)/J$. There are now J assets with returns $R_i = e^{\xi_+ \sigma \varepsilon_i} - 1$. Drift and volatility ξ and σ are the same for all as are $\rho = \operatorname{cor}(\varepsilon_i, \varepsilon_j)$ for $i \neq j$. **a)** Write a program which generates m simulations of $(\varepsilon_1, \ldots, \varepsilon_J)$ [**R-commands:** $eps=matrix(rnorm(J^*m), m, J)$ $eps[, 2:J] = \rho^* eps[, 1] + sqrt(1 - \rho^{**2})^* eps[, 2:J] = \rho^* eps[, 1] + sqrt(1 - \rho^{**2})^* eps[, 2:J] = \rho^* eps[, 1] + sqrt(1 - \rho^{**2})^* eps[, 2:J] = \rho^* eps[, 1] + sqrt(1 - \rho^{**2})^* eps[, 2:J] = \rho^* eps[, 1] + sqrt(1 - \rho^{**2})^* eps[, 2:J] = \rho^* eps[, 1] + sqrt(1 - \rho^{**2})^* eps[, 2:J] = \rho^* eps[, 1] + sqrt(1 - \rho^{**2})^* eps[, 2:J] = \rho^* eps[, 1] + sqrt(1 - \rho^{**2})^* eps[, 2:J] = \rho^* eps[, 1] + sqrt(1 - \rho^{**2})^* eps[, 2:J] = \rho^* eps[, 1] + sqrt(1 - \rho^{**2})^* eps[, 2:J] = \rho^* eps[, 1] + sqrt(1 - \rho^{**2})^* eps[, 2:J] = \rho^* eps[, 1] + sqrt(1 - \rho^{**2})^* eps[, 2:J] = \rho^* eps[, 1] + sqrt(1 - \rho^{**2})^* eps[, 2:J] = \rho^* eps[, 1] + sqrt(1 - \rho^{**2})^* eps[, 2:J] = \rho^* eps[, 2:J] = \rho^* eps[, 1] + sqrt(1 - \rho^{**2})^* eps[, 2:J] = \rho^* eps[, 2:J] = \rho^* eps[, 1] + sqrt(1 - \rho^{**2})^* eps[, 2:J] = \rho^* eps[, 2:J] = \rho^* eps[, 1] + sqrt(1 - \rho^{**2})^* eps[, 2:J] = \rho^* eps[, 2:J] = \rho^* eps[, 1] + sqrt(1 - \rho^{**2})^* eps[, 2:J] = \rho^* eps[, 2:J] = \rho^* eps[, 1] + sqrt(1 - \rho^{**2})^* eps[, 2:J] = \rho^* eps[, 2:$

Exercise 2.4.7 An avant-garde model is to allow stochastic correlations as in Ball and Torus (2000). Again start with the model in Exercise 2.4.4, but now specify ρ as

$$\rho = \frac{(1+\rho_0)e^{\tau\eta} - (1-\rho_0)}{(1+\rho_0)e^{\tau\eta} + (1-\rho_0)} \qquad \text{where} \qquad \eta \sim N(0,1).$$

Here $\tau \geq 0$ is a parameter. **a**) How do you make ρ a fixed parameter and what's its value then? **b**) Argue that $-1 < \rho < 1$ and that ρ_0 is the median of ρ [Hint: The median appears when $\eta = 0$.]. **c**) Simulate($\varepsilon_1, \varepsilon_2$) by extending the program the in Exercise 2.4.4a) [**Rcommands:** eps=matrix(rnorm(2*m),m,2); eta=rnorm(m); $Z=exp(\tau*eta)$; $rho=((1+\rho_0)*Z-(1-\rho_0))/((1+\rho_0)*Z+1-\rho_0)$; $eps[,2]=\rho*eps[,1]+sqrt(1-\rho**2)*eps[,2]$.] **c**) Simulate $\mathcal{R} = (R_1+R_2)/2$ under this stochastic correlation model. [**R-commands:** Those in Exercise 2.4.4b); i.e. $R=exp(\xi+\sigma*eps)-1$; R=0.5*(R[,1]+R[,2]).]. **d**) Draw m = 10000 simulations of \mathcal{R} when $\xi = 0.05$ and $\sigma = 0.25$, $\rho_0 = 0.6$ and $\tau = 0, 0.5$ and 1, compute each time mean and standard deviation and compare their values. [**R-commands:** mean(R); sqrt(var(R)).].

Section 2.5

Exercise 2.5.1 The way Gamma variables are defined in this book as $X = \xi G$ where G has shape α and mean 1 differs slightly from common usage where the 'standard' Gamma usually means $\xi = \alpha$. **a**) Check that public software works this way by generating m = 1000 simulations of G when $\alpha = 4$ and compute the sample mean [**R-commands:** G=rgamma(1000,4)/4; mean(G).]. **b**) Write a program producing m simulations of X [**R-commands:** $fac=\xi/\alpha$; $X=fac*rgamma(m,\alpha)$.] **c**) Check that your program is correct by drawing m = 1000 simulations of X when $\xi = 10$ and $\alpha = 4$ and compare with the exact values E(X) = 10 and sd(X) = 5 [**R-commands:** mean(X); sqrt(var(X)).].

Exercise 2.5.2 Consider the Weibull model $X = \beta Y^{1/\alpha}$ where Y is exponential with mean one and α and β positive. **a**) Argue that the distribution function of X is

$$F(x) = \Pr(Y \le (x/\beta)^{\alpha}) = 1 - e^{-(x/\beta)^{\alpha}}$$

and show that the Weibull sampler in Algorithm 2.12 is the inversion sampler. Let $\operatorname{med}(X) = F^{-1}(1/2)$ and $\operatorname{qd}(X) = F^{-1}(3/4) - F^{-1}(1/4)$ be median and quartile difference. b) Show that $\operatorname{med}(X) \doteq \beta 0.6931^{1/\alpha} \operatorname{qd}(X) \doteq \beta (1.3862^{1/\alpha} - 0.2877^{1/\alpha})$. c) Write a program generating m Weibull simulations [**R-command:** $Y = \operatorname{rexp}(m)$; $X = \beta^* Y^{**}(1/\alpha)$ or use the the Weibull routine of R.]. d) Check the program by running it when m = 100000, $\alpha = 2$ and $\beta = 1$ and compute the sample median and sample quartile difference which you compare with $\operatorname{med}(X) = 0.8326$ and $\operatorname{qd}(X) = 0.6411$ [**R-commands:** $X = \operatorname{sort}(X)$; $\operatorname{med} = X/50000$]; $\operatorname{qd} = X/75000$]-X/25000].

Exercise 2.5.3 a) Generate m = 10000 simulations from the Weibull distribution when $\beta = 1$ and

 $\alpha = 2$, estimate the density function from the simulations and plot it [**R-commands:** Y = rexp(m); $X = \beta^* Y^{**}(1/\alpha)$; plot(density(X)).] **b**) Redo a) when $\alpha = 5$ and when $\alpha = 3.6$. The shape of the Weibull density varies strongly with α and appears almost symmetric for $\alpha = 3.6$. **c**) Q-Q compare with the normal when $\alpha = 3.6$ and interpret the pattern. [**R-commands:** With m = 10000 and X as the Weibull sample use Y = rnorm(m); plot(sort(X), sort(Y), "l").].

Exercise 2.5.4 The **Fréchet** distribution belongs to the so-called extreme value type and has been used as model for losses in property insurance. The distribution function is

$$F(x) = e^{-(x/\beta)^{-\alpha}}, \quad x > 0$$

and α and β are positive parameters. **a)** Show that $F^{-1}(u) = \beta \{-\log(1-u)\}^{-1/\alpha}$. **b)** Program the inversion sampler with *m* simulations [**R-commands:** $U=runif(m); X=\beta^*(-log(U))^{**}(-1/\alpha).$]. **c)** Run the program when m = 100000, $\alpha = 2$ and $\beta = 1$ and check it by comparing sample median and sample quartile difference with their exact values med(X) = 1.2011 and qd(X) = 1.0151[**R-commands:** See Exercise 2.5.2d).].

Exercise 2.5.5 Another model for losses in property insurance is the **logistic** one for which the distribution function is

$$F(x) = 1 - \frac{1 + \alpha}{1 + \alpha e^{x/\beta}}, \quad x > 0$$

where α and β are postive parameters. **a)** Show that $F^{-1}(u) = \beta \log\{(1+u/\alpha)/(1-u)\}$. **b)** Program the inversion sampler with m simulations [**R-commands:** U=runif(m); $X=\beta *log((1+U/\alpha)/(1-U))$.]. **c)** Run the program when m = 100000, $\alpha = 2$ and $\beta = 1$ and check it by comparing sample median and sample quartile difference with their exact values med(X) = 0.9163 and qd(X) = 1.2993[**R-commands:** See Exercise 2.5.2d).].

Exercise 2.5.6 The **Burr** model is still another model that has been proposed for losses in property insurance. The distribution function is now

$$F(x) = 1 - \{1 + (x/\beta)^{\alpha_1}\}^{-\alpha_2}, \quad x > 0.$$

where α_1, α_2 and β are positive parameters, **a**) Show that $F^{-1}(u) = \beta\{(1-u)^{-1/\alpha_2}-1\}^{1/\alpha_1}$. **b**) Program the inversion sampler with *m* simulations [**R-commands:** $U=runif(m); X=\beta^*(U^{**}(-1/\alpha_2)-1)^{**}(1/\alpha_1)$.]. **c**) Run the program when $m = 100000, \alpha_1 = 2, \alpha_2 = 2$ and $\beta = 1$ and check it by comparing sample median and sample quartile difference with their exact values med(X) = 0.6436 and qd(X) = 0.6069 **R-commands:** See Exercise 2.5.2d).].

Exercise 2.5.7 Let $S = N_1 + N_2$ where N_1 and N_2 are independent and Poisson distributed with parameters $\lambda_1 = 4$ and $\lambda_2 = 7$. **a**) Generate m = 1000 simulations of S [**R-command:** S=rpois(m,4)+rpois(m,7).]. **b**) If $N \sim \text{Poisson}(\lambda_1 + \lambda_2)$, draw the same number of simulations of N. [**R-command:** N=rpois(m,11).] **c**) Compare the distributions of S and N through Q-Q plotting and comment on the pattern [**R-command:** plot(sort(S), sort(N)).] For the general story consult Section 8.2.

Exercise 2.5.8 Let $S = G_1 + G_2$ where $G_1 \sim \text{Gamma}(\alpha)$, $G_2 \sim \text{Gamma}(\alpha)$ and G_1 and and G_2 independent. a) Generate m = 1000 Monte Carlo samples of S when $\alpha = 2.5$ [**R-commands:**

G1=rgamma(m,2.5)/2.5; G2=rgamma(m,2.5)/2.5; S=G1+G2.]. b) Draw the same number of simulations of G when $G \sim \text{Gamma}(2\alpha)$ [**R-commands:** G=rgamma(m,5)/5.] c) Compare the distributions of S and G through Q-Q plotting and comment on the pattern [**R-command:** plot(sort(S), sort(G)).] For the general story consult Section 9.3.