
Exercises in STK3100/4100.

The datasets needed in the exercises are available from the package STK3100.
This package can be downloaded from the homepage of the course and
installed using the command install.packages("STK3100 1.0.tar.gz",

repos=NULL, type="source") in R. The command library(STK3100)

will load the package and data() will list the available datasets. For further
info about the datasets use the command help("name of dataset").

Exercise 1
Read chapter 4 in Heller & Jong. Further into the course this material will
be assumed known.

Exercise 2 (Linear models and testing of several coefficients simultaneously)
We study the dataset birthweight from the package STK3100. Use data(birthweight)
to load the data set in R. We assume the model is

Yjk = αj + βxjk + εjk

where j is gender and k is the index of baby in each group of gender. The
Y’s are saved in a single vector with associated covariates. For the analysis
you may use commands below

birthweight$sex = as.factor(birthweight$sex)

lm(vekt~sex+svlengde-1,data=birthweight)

An alternative model is when the slope also depends on sex:

Yjk = αj + βjxjk + εjk

This model can be formulated in various ways. Here we will define

birthweight$x4 = birthweight$svlengde*(birthweight$sex==1)

birthweight$x5 = birthweight$svlengde*(birthweight$sex==2)

and then fit the model by

lm(vekt~sex+x4+x5-1,data=birthweight)

(a) Try out this model and ensure that you understand how the model is
formulated.

(b) We will know test to see if length of pregnancy is relevant for the
modeling of birthweights. This corresponds to test whether H0 : β1 =
β2 = 0. Use the theory of section 4.15 in de Jong & Heller to perform
the F-test. This is a special case of the more general problem in section
4.15.
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Exercise 3
In class we discussed the model

log(πi/(1 − πi)) = β0 + β1xi

for the beetle data (where xi = poisoning dose and πi is the probability of
killing beetles in group i).

(a) Try out the alternative model

log(πi/(1 − πi)) = β0 + β1xi + β2x
2
i

on the beetle data located in the STK3100-package. (Note that you in
R have to use I(x^2) on the quadratic term)

Plot the fitted curve together with the curve from the initial linear
model.

Consider if x2
i is significant by checking the related P-value.

(b) By using that β̂ ≈ N(β, I−1), find correlations between the different
β-estimates. (Here I is the information matrix, we will discuss the
validity of this statement later on in the course, as well as defining I

more properly.)

Why are the correlations that strong?

Given this correlation structure, consider the procedure of testing the
relevance of the quadratic term in the previous subtask.

(Hint: Use the covariance matrix of β̂ = (β̂0, β̂1, β̂2)
′. This can be

found by the command summary(glmfit)$cov.scaled when glmfit

is the fitted glm-model with quadratic term.)

(c) An alternative link-function for the logistic is the probit-function given
by

µi = Φ−1(ηi)

where Φ is the cumulative distribution function of the normal distri-
bution. This model can be fitted using the command

glmfit2 = glm(cbind(dead,tot-dead)~dose,family=binomial(link=probit))

Try out this model and plot the fitted curve together with the fitted
curve for the initial logit-model. Also calculate the likelihood for the
two fitted models and comment.

(Hint: logLik(glmfit2) gives the log-likelihood value.)
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Exercise 4
Moment generating functions are useful tools for determining the means.

For Y with density function f(y), we define moment generating functions as

MY (t) = E[exp(Y t)] =

{∑
exp(yt)f(y) if Y is descrete∫

exp(yt)f(y)dy if Y is continuous

(a) Show that

E[Y ] = M ′

Y (0)

Also show that

E[Y r] = M
(r)
Y (0)

and MY (0) = 1.

(Hint: In the continuous case, we must assume that it is possible to
switch derivation and integration)

(b) Estimate the moment generating function for the Poisson distribution
and use this to show that the mean and variance are equal.

(c) Estimate the moment generating function for the Exponential distri-
bution and use this to find the mean and variance.

(d) Estimate the moment generating function for the Gamma distribution
(use the notation in de Jong & Heller 2.7) and use this to show the
formulas for mean and variance.

Exercise 5
In class we saw that the probability mass function for the Poisson distri-

bution, the binomial distribution and the probability density function for
the normal distribution with variance σ2 = 1 can be written on the form
f(y; θ) = c(y) exp(θy − a(θ)).

a) Find (preferably without looking at the lecture notes) θ as a function
of the initial parameter in these distributions. Also find the functions
a(θ) and c(y).

b) We also saw that the moment generating function MY (t) = exp(a(θ +
t) − a(θ)). Use this to find the moment generating function for the
three distributions.

The normal distribution with variance σ2 is also in the exponential family
with dispersion parameter φ. Then the pdf can be written on the form
f(y; θ) = c(y, φ) exp((θy − a(θ))/φ). The moment generating function for
the exponential class with dispersion parameter is MY (t) = exp((a(θ+ tφ)−
a(θ))/φ).

c) Find φ and the moment generating function for Y ∼ N(µ, σ2) with the
initial parametrization.
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Exercise 6
a) Show that the exponential distribution with pdf λ exp(−λy) is in the

exponential family. That is, show that it can be written on the form
c(y) exp(θy − a(θ)). Find mean and variance for the exponential dis-
tribution.

b) Show that that the pdf for the gamma distribution

f(y) =
yν−1λν

Γ(ν)
exp(−λy)

for a given parameter ν also can be written on this form. Then find
mean and variance for a gamma distributed variable based on what
you have found.

c) Show that the gamma distribution can be written as an exponential
class with dispersion parameter.

Hint: write the density as

f(y) =
1

Γ(ν)

(
ν

µ

)ν

yν−1 exp(−ν

µ
y)

Exercise 7
a) Show that the geometric distribution with pmf π(1−π)y for y = 0, 1, . . .

can be written on the form c(y) exp(θy − a(θ)). Find the mean and
variance for geometric distributed variables.

b) Show that the negative binomial distribution with pmf
f(y) =

(
y+r−1

r−1

)
πr(1 − π)y for y = 0, 1, . . . also can be written in this

way.

c) Suppose Y |λ ∼ Po(λ) (Poisson-distributed) where λ is a gamma dis-
tributed variable with pdf as in exercise 6b. Find the marginal dis-
tribution for Y and discuss why this also is the negative binomial
distribution.

d) Find mean and variance for negative binomial variables.

Exercise 8 (From McCullagh and Nelder, 1989)
Assume f0(y) is a probability density function (or probability mass function
in the discrete case) with moment generating function

M(t) = E[exp(tY )] = exp(a(t))

assumed to be finite for an interval including 0. Consider now the exponen-
tial weighted density

fY (y; θ) ∝ exp(θy)f0(y).
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(a) Find the normalizing constant for fY (y; θ) and show that you get a
distribution within the exponential family.

(b) Assume now that y is a discrete variable and f0(y) ∝ 1/y!. Find
fY (y; θ) and show that this is a well-known distribution.

Exercise 9 (From McCullagh and Nelder, 1989)
Assume Y1, ..., Yn is iid with density fY (y; θ, φ) within the exponential fam-
ily.

(a) Show that the arithmetic average Y also has a distribution within the
exponential family.

Hint: Show first that
∑

i Yi has a distribution within the exponen-
tial family by the use of the moment generating function. Thereafter
transform to the average.

(b) Assume now Y1, ..., Yn are iid from the Bin(1, µ) distribution. Find the
distribution for Y in this case.

Exercise 10
Let l(β, φ) be the log-likelihood based on n independent observations within
the generalized linear model. Define (with φ considered fixed)

sj(β, φ) =
∂

∂βj
l(β, φ), j = 0, ..., p

Ij,k(β, φ) =E

[
− ∂2

∂βjβk

l(β, φ)

]
, j, k = 0, ..., p

Show that

Cov[sj(β, φ), sk(β, φ)] = Ij,k(β, φ).

Use this to show that the matrix I(β, φ) = {Ij,k(β, φ)} cannot be negative
definite.

Exercise 11
We define a p-dimensional vector

Y = (Y1, . . . , Yp)
′

to be multivariate Gaussian distributed if we can write

Y = AZ + µ

where Z
′ = (Z1, . . . , Zp) is a vector of p independent N(0, 1) variables Zi,

µ′ = (µ1, . . . , µp) is an arbitrary p-dimensional vector of numbers and A is
a non-singular matrix of dimension p × p.

(a) Find the expectation vector and the covariance matrix of Y.
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It can be shown that the multivariate Gaussian distribution is uniquely
defined by its expectation vector and covariance matrix, but this you do not
need to show.

(b) Let B be a non-singular p × p matrix. Show that V = BY also is
multivariate Gaussian distributed and find its expectation vector and
covariance matrix.

Define Σ = AAT . Then Σ is positive definite and there exists an lower-
triangular matrix L such that Σ = LLT .

(c) Show that Y = AZ+µ and Y 2 = LZ+µ have identical distributions.

(d) Let B be a q × p matrix with q ≤ p and Bi,j = 1 if j = i and = 0
otherwise.

Show that V = BY is multivariate Gaussian distributed.

(e) Let now B be a q × p matrix av rank q ≤ p. Show that V = BY is
multivariate Gaussian distributed also in this case.

Hint: Extend B with p−q rows that are orthogonal to the first q rows.

Exercise 12 (R exercise)
This exercise considers the beetle data that we have discussed in the lec-

tures. Parts of the exercise can be solved by copying R commands given
there.

(a) Try out logistic regression on the data. Calculate the log-likelihood
value for the fitted model by using the command logLik in R.

(b) Try out probit regression. Calculate the log-likelihood value also in
this case.

(c) Do similarly using the complementary log-log link.

(d) Plot the data and the fitted values for the three models. Comment on
the results in relation to the log-likelihood values you obtained.

Exercise 13 (R exercise)
Repeat the previous exercise but now with Poisson regression on the data

giving number of previous children related to age of pregnant mother. Try
out different link-functions.

Hint: Look at help(poisson) in R to see the options available for link-
functions.
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Exercise 14 (Weighted least squares and GLM-fitting)
We will in this exercise look at a connection between weighted least squares
and the Fisher-scoring algorithm for GLM’s.

Consider first a linear model

yi = β0xi0 + β1xi1 + · · · + βpxip + εi

where xi0 = 1 and εi = N(0, σ2/wi). Here wi signals the precision in
observation i.

(a) Define y∗i =
√

wiyi, x
∗

ij =
√

wixij , ε
∗

i =
√

wiεi. Show that we now
can write a regression model with y∗i as response and x∗

ij as covariates
where the noise terms have constant variance.

(b) Show that the least squares estimate β̂ for β is given by

β̂ = (XT WX)−1XT Wy

where W = diag{wi}.
Hint: Express first β̂ by X∗ and Y ∗.

We will now turn to GLM’s, and we remember that the elements in the score
function s(β) and the expected information matrix I(β) are given by

sj(β) =
1

φ

n∑

i=1

xij
yi − µi

g′(µi)V (µi)
, Ij,k(β) =

1

φ

n∑

i=1

xijxik

g′(µi)2V (µi)

where the µi’s are indirectly specified through β.

(c) Show that by defining X = {xij}, y = (y1, ..., yn)T , µ = µ(β) =
(µ1, ..., µn)T , G(β) = diag{g′(µi)} and W (β) = diag{1/g′(µi)

2V (µi)}
that

s(β) =
1

φ
XT W (β)G(β)(y − µ(β)), J(β) =

1

φ
XT WX.

(d) Show that the Fisher scoring algorithm can be written as

β(k+1) =(XT W (β(k))X)−1XT W (β(k))z(k)

where

z(k) =Xβ(k) + G(µ(β(k)))(y − µ(β((k)))

and use this to explain how weighted least squares can be used to
update β̂.
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(e) Assume now that Yi ∼ N(µi, σ
2) with µi =

∑p
j=0 βjxij . Show that

the Fisher scoring algorithm converges in the 1. iteration to the least
squares estimator β̂ = (XT X)−1XT Y .

Exercise 15 (The inverse Gaussian distribution)
The inverse Gaussian distribution is given by

f(y) =
1√

2πy3σ
exp

{
− 1

2y

(
y − µ

µσ

)2
}

, y > 0

(a) Show that this distribution belongs to the exponential family and iden-
tify θ, φ, a(θ) and c(y; φ).

(b) Use general results about the exponential family to find the expecta-
tion and variance function for the distribution.

(c) Find the canonical link for the inverse Gaussian distribution.

(d) Assume now that Y1, ..., Yn are independent variables from a GLM with
the inverse Gaussian distribution as response distribution. Derive the
deviance in this case.

Consider now the vehicle claim data set from de Jong & Heller. We will be
interested in modeling claim size (restricted to those claims having a positive
claim). You can read the data (available from the course home page) by

car = read.table("car.txt",header=T,sep=",")

car0 = car[car$claimcst0>0,]

car0$agecat = as.factor(car0$agecat)

car0$gender = as.factor(car0$gender)

car0$area = as.factor(car0$area)

where the second command pick out the positive claims. A fit using the
inverse Gaussian response distribution, a log link function and using driver’s
age, gender and area as explanatory variables can be performed through the
command

fit = glm(claimcst0~agecat+gender+area,data=car0,

family=inverse.gaussian(link="log"))

(e) Perform these commands and look at the summary of the results.

(f) Use a Wald test to test whether gender is significant. Compare this
with a likelihood ratio test.



Exercises in STK3100/4100. 9

(g) Assume now we want to test whether driver’s age is significant. Discuss
problems with performing a direct Wald test from the summary of fit
directly.

Perform instead a likelihood ratio test. What is your conclusion?

Exercise 16
Show that the deviances of the normal, Poisson and binomial distributions
are as given below:

• Normal distribution: ∆ = 1
σ2

∑n
i=1(Yi − µi)

2

• Poisson distribution: ∆ = 2
∑n

i=1[Yi log(Yi/µi) − (Yi − µi)]

• Binomial distribution:

∆ = 2
∑n

i=1[Yi log(Yi/(niπi)) + (ni − Yi) log((ni − Yi)/(ni(1 − πi)))]

Exercise 17
In a saturated (full) model we have one parameter for each observation.

The saturated model gives the highest possible log-likelihood (l̃) compared
to all possible models. The deviance is then defined as ∆ = 2[l̃ − l] where l
is the log-likelihood for any given model.

We have that Yi is a independent negative binomial distribution with pmf

f(y) =

(
y + r − 1

r − 1

)
πr

i (1 − πi)
y for y = 0, 1, . . . .

a) Find the estimates π̃i for πi in the saturated model.

b) Express l̃ with the π̃i’s.

c) Express the deviance ∆ by π̃i’s and πi’s.

d) Look at the situation where yi = 0. Check to see if the expressions in
b) and c) still holds if we define 0log0 = 0.

Exercise 18
In this exercise we will look at some data from Baxter et al. (1980) Trans-

actions 21 Congress of Actuaries 2-3, 11-29. The dataset includes claims in
a portfolio of insured cars from an English insurance company. Number of
claims are registered divided in three classification factors with four levels
each:

• Age of policyholder:
1 = below 25
2 = 25-29
3 = 30-35
4 = over 35
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• Engine volume in liter:
1 = below 1
2 = 1-1,5
3 = 1,5-2
4 = over 2

• District:
4 = London and other large cities.
1–3 = other districts.

The dataset is available from the package STK3100. Use data(claims) to
load the dataset and help(claims) for further info. You will also need to
change the classes for the different columns. The first three should be factors
and the last two numeric. You can use the commands below

library(STK3100); data(claims)

claims$alder <- as.factor(claims$alder)

claims$motorvolum <- as.factor(claims$motorvolum)

claims$distrikt <- as.factor(claims$distrikt)

claims$antforsikret <- as.numeric(claims$antforsikret)

claims$antskader <- as.numeric(claims$antskader)

a) What assumptions on the distribution are reasonable with respect to
number of claims? How can you model the significance of policyholders
age, engine volume and district?

b) Perform an analysis on the dataset that clarifies the significance of age,
engine volume, district and any potential interactions between these.

c) At this point the covariates age, engine volume and district are defined
as factors. See if there is a linear trend in age and engine volume by
fitting a model where these factors are added as numeric covariates.
Is it possible to make a simplification in the model from the effect of
district? (i.e. can it me fitted with fewer parameters?)

d) Perform an analysis on the residuals in the final model. Is there some-
thing about the residuals that suggests that the model is not satisfac-
tory?

e) Interpreter the estimates from the model in c) as rate-ratios.

Hint: look at the slides, lecture 5

f) Estimate the rate of an insured person in age category 25-29 years old,
car with engine volume 1,5-2 liter and living in London. Also estimate
a 95% confidence interval for this rate.
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Exercise 19
In this exercise we look at a special case of logistic regression where we

have one binary covariate, such that x ∈ {0, 1}. We denote individuals with
x = 0 as group 0 and x = 1 as group 1. We also let Y be an indicator of
disease. The data can then be written as the 2x2 table below:

Group 1 Group 0 Total

Sick A B n0· = A + B
Healthy C D n1· = C + D

Total n·1 = A + C n·0 = B + D n = A + B + C + D

Let π(0) and π(1) be the probability for sickness in group 0 and group 1.
Then

A ∼ Bin(n·1, π(1))
B ∼ Bin(n·0, π(0))

where A and B are independent of each other.

(a) Show that π̂(1) = A
A+C

and π̂(0) = B
B+D

are ML estimates for π(1)
and π(0).

Use this to find an estimate for the odds ratio. The odds ratio is
defined as

OR =

π(1)
1−π(1)

π(0)
1−π(0)

=
π(1)

π(0)

1 − π(0)

1 − π(1)

(b) An alternative formulation of the binomial distribution is through the
canonical parameter θ(j) = log(π(j)/(1 − π(j))), j = 0, 1.

Discuss why θ̂(j) = log(π̂(j)/(1 − π̂(j)) is an ML estimate for θ(j).

By using standard likelihood theory, show that

var[θ̂(0)] ≈ 1

B
+

1

D

and find a similar expression for var[θ̂(1)].

(c) Show that

var[log ÔR] = se2 =
1

A
+

1

B
+

1

C
+

1

D

Use this to show that

ÔR exp(±1.96se)

is an approximately 95% CI for OR.
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The data underneath is from a health survey in Nord-Trøndelag and shows
the number of people with and without diabetes II divided by gender. The
survey is from 1985 and 1995 where 38676 people where examined. In the
table we see how diabetes is related with gender.

Table 1. Number of people with and without diabetes by gender
Gender Male Female Total
Diseased 377 336 713
Healthy 17864 20099 37963
Total 18241 20435 38676

(d) Use a two-sample binomial test to see if the occurrence of diabetes is
different for men and women (see chi-squared test: 13.1 in Devore &
Berk).

(e) Estimate the odds ratio (OR) for diabetes between men and women
and calculate a 95% confidence interval for OR.

(f) Explain why OR=1 is equivalent to say that the probability for disease
is the same for the two groups. Use this to test if the occurrence of
diabetes is different in the two groups.

(g) Do similar calculations in R using the glm-procedure and compare the
results.

Hint: Make a dataframe with two rows where the first row is data from
men, the second from women and an additional column explaining
gender.

(h) Use the new table underneath based om BMI and repeat the calcula-
tions of OR for diabetes with BMI< 25 and BMI≥ 25 (BMI (Body-
Mass Index) Calculated: w/h2 where w is weight in kilo and h er
height in meter).

Table 2. Number of people with and without diabetes against BMI over and
under 25.

BMI < 25 ≥ 25 Total
Diseased 90 623 713
Healthy 21689 16274 37963
Total 21779 16897 38676
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Exercise 20
The dataset sau contains weight of lambs at slaughter from a Norwegian

county collected in the years 1989-1998. We have the following 7 variables:

• hvkt Body weight for lambs at slaughter (Response variable)

• aar year

• agewe Age of mother

• kjoenn Gender

• burdH Number of lambs in the litter

• alderlam Age of lamb at slaughter (in days)

• NAO a climate index for the current year.

The objective is to explain the variation in the data based on the available
covariates. The dataset is available from the package STK3100.

(a) Do some exploratory analysis to become familiar with the data set.

(b) Try out a generalized linear model with all covariates, gamma distri-
bution and log-link.

What is the (residual) deviance for the model? (remember that R does
not count for the dispersion parameter)

(c) Do a similar analysis, but with the inverse Gaussian distribution and
log-link

Compare the two models using AIC-criterion.

(d) An alternative approach is to log-transform lamb weight and then
do a standard linear regression analysis. We then use a log-normal
distribution. Try out this approach.

Compare the parameter estimates with the ones for the Gamma and
inverse Gaussian distributions and comment.

It is also possible to compare the log-Gaussian model with the two previous
models using the AIC criterion. Be aware that the response variable is on
another scale in the new model. The (log-)likelihood values are therefore
not directly comparable.

(e) Let y be our initial response variable and z = log(y). Show that

fy(y) = fz(log(y))/y

where fy is the probability for y while fz is the probability for z.

Use this to compute the AIC for the log-linear model and compare
with the previous models.
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Further on we will use the Gamma regression

(f) Discuss why a model without NAO as covariate is an improved model.

(g) Examine the final model by

• plotting the residuals

• plotting µ̂ against empirical variance (hint: Look at car.R from
the lectures).

• goodness-of-fit test

From the general glm-theory we know that β̂ ≈ N(β,Σ) where Σ is the
inverse Fisher information matrix (using the estimated parameter values).
If fit is you are fitted model (from the glm-routine), then Σ is available
from the command

Sigma = summary(fit)$cov.scaled

(h) Assume that x is a vector of covariates and that we are interested in
a confidence interval for η = xT β.

Show that η̂ = xT β̂ ∼ N(xT β, xT
Σx)

Use this to make a 95% confidence interval for η.

Now assume that aar=1995, ageewe=5, kjoenn=”m”, burdH=1 and
alderlam=150. Compute the confidence interval for η in this case.

(i) Sample M = 10000 random variables η∗1, ..., η
∗

M from N(xT β̂, xT
Σx).

Show that the empirical 0.025 and 0.975 quantiles from the simulated
variables are approximately the same as the CI from the previous task.
Use this to make a 95% CI for µ = exp(η).

(j) The dispersion parameter is estimated by

φ̂ = X2/(n − q)

where X2 is the value of Pearson’s test-statistic and q is the number
of regression parameters. We also have that X2 ≈ φχ2

n−q. Use this to
make a 95% confidence interval for φ.

(k) Assume that we now are interested in making a 95% prediction interval

for Y with x given as in the previous subtask. In addition to the
uncertainty in β, the uncertainty in Y will also be included. Consider
the following procedure:

(i) For every η∗m, compute µ∗

m = exp(η∗m).

(ii) Simulate φ∗

m = φ̂∗(n−q)/χ2 where χ2 is a variable sampled from
χ2

n−q.
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(iii) Simulate y∗m, m = 1, ..., M from the Gamma distribution with
mean µ∗

m and dispersion parameter φ∗

m.

(iv) Compute the prediction interval by determine the empirical 0.025
and 0.975 quantile from the sample y∗1, ..., y

∗

M .

Perform this procedure to determine a 95% prediction interval for Y
given the same x as before.

Hint: The command rgamma(M,shape=1/phi,scale=mu*phi) gener-
ates M variables from the Gamma distribution with the correct mean
and dispersion parameters (note that mu and phi in this case can be
vectors).

(l) Suggest alternative routines to determine the prediction interval for
Y .

Exercise 21
Assume the random intercept model where

Yij =α + bi + xT
i β + εij i = 1, ..., N, j = 1, ..., n

bi ∼N(0, d2)

εij ∼N(0, σ2)

and the stochastic parts are independent of each other. In this exercise we
will look at how the predictions of bi can be computed. This will be done
on the assumption that the parameters are known.

(a) Calculate mean and variance for Yij . Find the covariance between Yij

and Ykl.

(b) Show that the distribution for bi given all other data depends only on
data from group i, i.e.

p(bi|{ykj , k = 1, ..., N, j = 1, ..., n}) = p(bi|{yij , j = 1, ..., n}).

(c) Find the distribution of Y i = 1
n

∑n
j=1 Yij given bi.

Show that p(bi|{yij , j = 1, ..., n}) = p(bi|yi), i.e. given the mean, the
individual observations will not add any further information on bi.

(d) Find the distribution p(bi|yi).

Use this to determine

b̂i = E[bi|yi]

Also determine Var[bi|yi].

Comment on the results.
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Exercise 22
The dataset Orthodont is available in R from the package nlme. Use the

command llibrary(nlme)

The dataset is grouped after the variable Subject. The response variable is
distance with the two covariates age and Sex. Use help(Orthodont) for
further info.

In this exercise we will look at how linear mixed models can be used to
analyze this dataset.

(a) First transform Subject to the values 1-27 using the command

Orthodont$ID = as.factor(as.numeric(Orthodont$Subject))

(b) Do some exploratory analysis to become familiar with the data set.

(c) Plot distance against age. For every group, add a regression line
with distance as response and age as covariate.

Comment on the results.

(d) Type in the commands

fit1 = lme(distance ~ age,data=Orthodont,random=~1|ID)

plot(Orthodont$age,Orthodont$distance,col=Orthodont$ID)

abline(fit1$coef$fixed,lwd=4)

for (i in 1:27){

abline(cbind(fit1$coef$fixed[1]+fit1$coef$random$ID[i,],

fit1$coef$fixed[2]),col=i)

}

Comment on the results

(e) What are the estimates of d2 and σ2?

(f) Now add sex to the model and see if it is a significant covariate based
on the Wald test.
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Exercise 23
The dataset petrol is available from the package MASS. Load the dataset

and use help(petrol) for further info. We will be interested in modeling
the response Y

The variable ID is a group variable we can use to include mixed effects.

Based on model selection approach, chapter 5 in Zuur et al, find the best
possible model for this data.

For the final model, try out different routines to see if the model is reason-
able.

Exercise 24
In this exercise we will take a closer look on REML estimation in connection
with linear regression.

Assume Y ∼ N(Xβ, σ2V 0), i.e. we have extracted σ2 from the covariance
matrix. Our interest will be to estimate σ2.

We will assume that A is a n× (n−p) matrix such that AT X = 0 with full
rank n − p (where we assume that p < n, p is the dimension of β and n is
the dimension of Y ).

(a) Show that AT Y has a distribution not depending on β and specify
this distribution.

(b) Show that

log f(AT Y ) = Const − n−p
2 log σ2 − 1

2σ2
Y T A[AT V 0A]−1AT Y

and use this to show that the ML estimate for σ2 based on AT Y is

σ̂2
REML =

1

n − p
Y T A[AT V 0A]−1AT Y

(c) Show that

Y T A[AT V 0A]−1AT Y = tr[[AT V 0A]−1AT Y [AT Y ]T ]

where tr describes the sum of diagonal elements (trace).

Hint: For the matrices M1 and M2 with dimension r × s and s × r,
we have that tr[M1M2] = tr[M2M1].

(d) Show that E[AT Y [AT Y ]T ] = σ2AT V 0A and use this to shoe that
σ̂2

REML is unbiased.

Hint: Note that the mean and the trace-operation can change order
(since trace is a linear operator). On the last part it is important to
be sure of the different dimensions on the matrices involved.
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(e) Assume that Ã = AB where B is a non-singular matrix with dimen-
sion (n− p)× (n− p). Show that the REML estimate based on Ã are
identical with the REML estimate based on A.

(f) Assume that X = 1N , i.e. a column vector containing only ones.
Further let

AT =




1 0 0 · · · 0 −1
0 1 0 · · · 0 −1
0 0 1 · · · 0 −1
...

...
...

. . .
...

...
0 0 0 · · · 1 −1




Assume V 0 = I.

Determine σ̂2
REML in this case and show that we end up with the

common unbiased estimator for σ2.

Hint: We have that AT A = I + 11
T . If M = I + vvT where v is a

vector, then M−1 = I − kvvT for suitable choice of k.

Exercise 25 (AR and MA models)
(a) Assume we have a moving average model of order 1, MA(1),

εs = θ1ηs−1 + ηs

where ηs
iid∼ N(0, σ2). Show that εs and εt are independent for |s−t| >

1.

Show that εs ∼ N(0, τ2) for all s and suitable choice of τ2.

What is the correlation between εs and εs+1?

(b) Now assume a more general MA(q) model

εs = θ1ηs−1 + θ2ηs−2 + · · · + θqηs−q + ηs

Show that εs and εt are independent for |s − t| > q.

Show that εs ∼ N(0, τ2) for all s and suitable choice of τ2.

What is the correlation between εs and εs+v for v = 1, ..., q?

(c) Now assume the AR(1) model

εs = φεs−1 + ηs,

where ηs
iid∼ N(0, σ2). Show that if ε1 ∼ N(0, τ2) where τ2 = σ2/(1 −

φ2), then εs ∼ N(0, τ2) for all s > 1.

Estimate cor[εs, εt] for all s, t.
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Exercise 26
Consider the AR(1) model

εs = φεs−1 + ηs, ηs
iid∼ N(0, σ2)

where we assume ε1 ∼ N(0, τ2) and τ2 = σ2/(1 − φ2).

(a) Show that we also can write

cor[εs, εt] = exp{−|t − s|/d}

where d = −1/ log(φ).

The advantage of this formulation is that we are able to generalize the
model to situations where the time between time points may differ.
Such a correlation structure is described as a exponential correlation

function and d is often called the range parameter.

(b) The dataset Hawaii is available from the package STK3100. Load the
dataset and use the commands below

Hawaii$Birds <- sqrt(Hawaii$Moorhen.Kauai)

M0 = gls(Birds ~ Rainfall+Year,na.action=na.omit,data=Hawaii)

M1 = gls(Birds ~ Rainfall + Year, na.action = na.omit,

correlation = corAR1(form =~ Year), data = Hawaii)

Hawaii2 = Hawaii[!is.na(Hawaii$Birds),]

M2 = gls(Birds ~ Rainfall + Year, data = Hawaii2,

correlation = corExp(form =~ Year))

The first commands produce the AR(1) model as shown in class. The
last two commands use the exponential correlation function. Note that
we do not need to have one row per year even when Hawaii2 have some
years missing. It is therefore not necessary to use the extra command
na.action = na.omit.

Show that d̂ = −1/ log(φ̂)

We will now look at the dataset spruce, also available from the package
STK3100. The dataset shows growth of different trees and includes the fol-
lowing covariates:

• Tree, index factor

• days, numeric variable indicating the number of days since the start
of the experiment

• logSize, a numeric value that gives the estimated logarithm of the
volume of the tree trunk.
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• plot, a factor that identifies the piece of land where the tree is located.

We will start by analyzing a single tree, which we select with the command

Spruce1 = Spruce[Spruce$Tree=="O1T18",]

(c) Plot logSize against days. Comment.

Since the time varies will the exponential correlation function be suit-
able.

(d) Try out a model with days as a linear fixed effect and independence
between the error terms. Compare it with a model where you use the
exponential correlation function.

Which model seems to be best suited in this case?

What does it mean to the estimates, standard error and p-values that
we include time dependencies?

(e) We will now include all the trees in the analysis. It is then possible to
include plot as a covariate. Try out the commands

M0 = gls(logSize ~ days+plot,Spruce)

cexp = corExp(form =~days|Tree,fixed=FALSE)

M1 = gls(logSize ~ days+plot,Spruce,correlation = cexp)

The code form =~days|Tree means that the exponential correlation
function will be used on every single tree. The trees indicate the group
structure and we want independence between the groups as before.

Which model seems to be best suited in this case?

What does it mean to the estimates, standard error and p-values that
we include time dependencies in this case?

Within the two models for the correlation structure, perform model
selection for the fixed effects.Will the two models for correlation struc-
ture have influence on the model selection for the fixed effects?

Hint: Remember that gls uses REML as default for estimation.

Exercise 27
We will in this exercise look at the situation where

yij ∼ N(µi, σ
2), i = 1, ..., n, j = 1, ..., m

and all the observations are independent.

We will be interested in the estimation of σ2 and look at how the estimate
for σ2 behave when n increases.

Note that the number of parameters increases with n in this case.

We will in the first part assume that m = 2.
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(a) Find the maximum likelihood estimates for µi, i = 1, ..., n and σ2.

(b) Find E[σ̂2
ML] and show that limn→∞ σ̂2

ML 6= σ2, that is, the ML esti-
mate are not consistent.

Discuss how this is related to the general ML-theory (i.e. which as-
sumptions are not met in this situation?)

(c) Now let zi = yi1−yi2. Show that the ML-estimate σ2 based on z1, ..., zn

is consistent and unbiased.

(d) Show that the estimation in the previous exercise is in fact REML
estimation.

(e) Consider a general m and find the ML-estimates for µ1, ..., µn and σ2

based on {yij , i = 1, ..., n, j = 1, ..., m}.

(f) Determine E[σ̂2
ML]. What is required for σ̂2

ML to be a consistent esti-
mator?

Exercise 28
We will in this exercise look at a dataset from Steele (1998), the Australian

Data and Story Library (OzDASL). An experiment was conducted to study
the effect of surface and vision on balance. The balance of individuals were
observed for two different surfaces (plain and a foam-like surface) and for dif-
ferent types of visual skills (eyes open, closed or partially limited). Balance
was rated on a scale of 1 to 4, but we will here look at a binary response,
where 1 corresponds to 1 while 0 corresponds to 2,3,4. For each individual
gender, age, height and weight were registered. Each individual was tested
twice for each combination of different surface and vision, a total of 12 obser-
vations. The dataset ctsib is available from the package STK3100. stable

is our binary response (CTSIB is the initial qualitative measure).

(a) Start with an ordinary glm-fit with Sex,Age,Height,Weight,Surface

and Vision as covariates. Explain why we can not trust the p-values.

(b) Include Subject as a factorial covariate.

What difficulties do you encounter for this model-fit (look at the sum-
mary).

Compare with the previous model using the anova function.

What is the disadvantage of specifying Subject as a fixed effect?

(c) Try to include Subject as a random effect.

Discuss the advantages of this kind of model.

(d) Try out a model selection strategy to determine the important covari-
ates.

What model do you end up with?
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What effect does it have on the random effects when some fixed effects
are removed?

Hint: Use the lmer routine since glmmPQL is not suitable for model
comparison. You can use the anova routine to compare several models.

Exercise 29 (ANOVA and LMM models)
Consider a single factor ANOVA model

Yij = µ + αi + εij , εij
iid∼ N(0, σ2), i = 1, ..., I, j = 1, ..., J (*)

where for identifiability we impose the constraints
∑I

i=1 αi = 0. Important
quantities when analyzing such models are

SSTr =J
I∑

i=1

(ȳi· − ȳ··)
2

SSE =
I∑

i=1

J∑

j=1

(yij − ȳi·)
2

where ȳi· = 1
J

∑J
j=1 yij and ȳ·· = 1

IJ

∑I
i=1

∑J
j=1 yij .

(a) By looking at textbooks from earlier courses or by your own calcula-
tions, find the expectations of SSTr and SSE under model (*).

Explain how these quantities can be used to test the hypothesis H0 :
α1 = α2 = · · · = αI = 0.

(b) An alternative random effects formulation of the model above is

Yij = µ+Ai + εij , εij
iid∼ N(0, σ2), i = 1, ..., I, j = 1, ..., J (**)

where Ai
iid∼ N(0, σ2

A) and all Ai’s independent of all εij ’s.

Show that this is a special case of a linear mixed model (LMM).

(c) Find the expectations of SSTr and SSE under model (**).

Hint: For finding the expectation of SSE, show that this quantity does
not depend on the αi’s and argue why you then can use results from
(a). For finding the expectation of SSTr, show first that Y i· are iid
and Gaussian.

(d) Show that

σ̂2 =
SSE

I(J − 1)

σ̂2
A =

SSTr

J(I − 1)
− σ̂2

J

are unbiased estimates for σ2 and σ2
A, respectively.
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We will now consider a simulation study, where we generate data according
to model (**) and explore the behavior of the unbiased estimates as well
as the ML estimates (obtained by using lme). For this part, there is an R

script sim_raneff.R available from the course home-page which performs
the simulations for you.

(e) Discuss the two plots you obtain. In particular, comment on the cases
where σ̂2

A < 0. Based on these plots, give an approximate relationship
between the unbiased estimates and the ML estimates.

(f) Now modify the script so that σ2
A = 0. How many of the simulations

result in that σ̂2
A < 0. Up to 4 digits of precision, what are the values

of −2LR for these simulations?

(g) Make a histogram of −2LR for those simulations corresponding to
σ̂2

A > 0. Compare this histogram with a χ2
1 density.

(h) Discuss these results related to the general result that −2LR for testing
H0 : σ2

A = 0 is approximately a mixture of a χ2
0 and a χ2

1 distribution
(with equal weight on each), where here χ2

0 is a distribution putting
all weight in 0.

Modify the script to include a test on H0 based on LR. How many
times is H0 rejected?

(i) An alternative to likelihood ratio tests in this case is to use an F test
directly through the use of SSE and SSTr. Devore and Beck (2007)
state that under H0,

F =
SSTR/(I − 1)

SSE/(I(J − 1))

follows an F -distribution with I − 1 and I(J − 1) degrees of freedom.

Include in the script a test based on this approach and compare with
the LR test.

Comment on the results.

Remarks: Although the F test is easier to use in this case, such a test will
not be possible to use in more general settings such as unbalanced designs
and/or nonlinear models. In such cases, likelihood ratio tests needs to be
used.

Exercise 30
The abrasion data frame has 16 rows and 4 columns and is available from
the package STK3100. Four materials were fed into a abrasion testing ma-
chine and the amount of wear recorded. Four samples could be processed
at the same time and the position of these samples may be important. A
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Latin square design was used (this detail is not important for us here). A
possible model for these data are

yijk = β0 + αi + ηj + γk + εijk

where i is an index for the type of material, j an index for the position and k
for the run. Here β0 and the αi’s are treated as fixed effects while ηj , γk, εijk

are random quantities.

(a) Show that the model can be written as a linear mixed model and
specify the parameters involved.

(b) This model can be fitted by the lmer routine (lme apparently do not
cover this case, use library(lme4)) by the command

fit = lmer(wear~material+(1|run)+(1|position),abrasion)

Look at the output from this call and specify the estimates of the
parameters involved.

(c) Perform tests to check whether a simpler structure on the random
effects can be used.

(d) Also perform a test for checking whether material should be part of
the model.
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Exercise 31 ()
In a larger study to examine the factors that describe lung capacity over
time (measured as changes in lung function in the teens), a total of 13,379
children were studied with respect to lung function at different times. We
will look at a small subset consisting of 300 girls where changes in lung
function was measured by maximal inhalation followed by exhaust pressure
as quickly as possible in a closed container. Total volume blown out the first
second is registered as FEVi.

The plot below shows log(FEV1) against age for 25 randomly selected girls.
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We will consider the following model:

Yij |bi
ind∼N(µij , σ

2)

µij =β0 + β1Ageij + β2 log(Htij) + β3Ageij log(Htij) + bi

bi
iid∼N(0, d)

where Y = log(FEV1), Ageij is age at the measurements, and where Htij is
related height.

(a) Discuss the advantages of using random effects for the analysis on this
dataset.

What is the correlation between two observations from the same indi-
vidual in this model?

(b) Why is it suitable to include fixed effects in the model early on before
the structure of the random effects are determined?

The output underneath shows the results for the fitted model above using
REML estimation.

Linear mixed model fit by REML

Formula: LogFEV1 ~ Age * log(Ht) + (1 | ID)

Data: topeka

AIC BIC logLik deviance REMLdev
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-4515 -4482 2264 -4562 -4527

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 0.0090710 0.095242

Residual 0.0040626 0.063738

Number of obs: 1993, groups: ID, 299

Fixed effects:

Estimate Std. Error t value

(Intercept) -0.1777251 0.0323194 -5.499

Age -0.0008542 0.0043038 -0.198

log(Ht) 1.9188462 0.0648401 29.593

Age:log(Ht) 0.0453024 0.0075763 5.980

(c) Explain what we mean by REML estimation in this case. Why is it
beneficial to use REML estimation in models with mixed effects?

Determine the estimated correlation between two observations from
the same individual in this case.

(d) A model where we included a random effect multiplied with log(Ht)ij

gave the following results:

Linear mixed model fit by REML

Formula: LogFEV1 ~ Age * log(Ht) + (1 + log(Ht) | ID)

Data: topeka

AIC BIC logLik deviance REMLdev

-4629 -4584 2322 -4678 -4645

Random effects:

Groups Name Variance Std.Dev. Corr

ID (Intercept) 0.0138480 0.117678

log(Ht) 0.0784168 0.280030 -0.645

Residual 0.0033921 0.058242

Another model where we also included a random effect multiplied with
Ageij gave the following results:

Linear mixed model fit by REML

Formula: LogFEV1 ~ Age * log(Ht) + (1 + Age + log(Ht) | ID)

Data: topeka

AIC BIC logLik deviance REMLdev

-4624 -4563 2323 -4680 -4646

Random effects:

Groups Name Variance Std.Dev. Corr

ID (Intercept) 1.3935e-02 0.1180468

Age 2.1296e-05 0.0046147 -0.266



Exercises in STK3100/4100. 27

log(Ht) 7.6638e-02 0.2768358 -0.517 -0.237

Residual 3.3631e-03 0.0579925

What is the difference in the number of parameters between the various
models?

Use this to consider which model is best according to the likelihood
ratio principle.

Does your conclusion match with what you get using the AIC/BIC
criteria?

(e) We will now look at the fixed effects. Why is it suitable to use REML
estimation when we are comparing models with different fixed effects?

(f) The model with two random effects and ML estimation gave the fol-
lowing results for the fixed effects:

Fixed effects:

Estimate Std. Error t value

(Intercept) -0.110366 0.035296 -3.127

Age -0.011651 0.004626 -2.519

log(Ht) 1.849369 0.069083 26.770

Age:log(Ht) 0.063350 0.008194 7.731

Use this to argue why there is no reason to remove any of the fixed
effects.

(g) Output from the final model based on REML estimation is given below.
Use this to determine µ = E[Y ] for Age = 9.3415 and Ht = 1.20,
estimate related standard deviation and determine a 95% confidence
interval for µ.

Hint: Remember the correlation between the β-estimates.

Linear mixed model fit by REML

Formula: LogFEV1 ~ Age * log(Ht) + (1 + log(Ht) | ID)

Data: topeka

AIC BIC logLik deviance REMLdev

-4629 -4584 2322 -4678 -4645

Random effects:

Groups Name Variance Std.Dev. Corr

ID (Intercept) 0.0138480 0.117678

log(Ht) 0.0784168 0.280030 -0.645

Residual 0.0033921 0.058242

Number of obs: 1993, groups: ID, 299

Fixed effects:
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Estimate Std. Error t value

(Intercept) -0.110118 0.035344 -3.116

Age -0.011694 0.004631 -2.525

log(Ht) 1.849176 0.069173 26.733

Age:log(Ht) 0.063419 0.008204 7.730

Correlation of Fixed Effects:

(Intr) Age lg(Ht)

Age -0.932

log(Ht) -0.814 0.608

Age:log(Ht) 0.963 -0.967 -0.770


