APPENDIX: Formulas in STK3100/4100

1) Linear models and least squares

a) Let Y = (Y1,...,Y,)T be a vector of random variables with mean vector p = (pu1,. .., in)"*
and covariance matrix V' = E{(Y — p)(Y — u)T}. We consider the linear model p = X3,
where the model matrix X is a n x p matrix, and assume that V = o’I. If we observe
Y =vy=(y,... ,yn)T, then the least squares estimate B and the fitted values p = X3 are

obtained by minimizing ||y — p|? = (y — u) T (y — ).

b) Let C(X) denote the model space, i.e. the subspace of R™ that is spanned by the columns
of X, and let Px denote the projection matrix onto C(X). Then g = Pxy. The projection
matrix is symmetric and idempotent (i.e. P% = Px), and rank(Px) = trace(Px).

c) The projection matrix Px is unique, i.e. it depends only on the subspace C(X) and not on
the choice of basis vectors for the subspace. If X has full rank, we have Px = X(XTX) !XT,

d) For a random vector Y with mean vector g and covariance matrix V' and a fixed matrix A,
we have E(YTAY) = trace(AV) + uT Ap.

2) Multivariate normal distribution and normal linear models

a) Y = (Y1,...,Y,)T has a multivariate normal distribution with mean vector u and covariance
matrix V', written Y ~ N(u, V'), if its joint pdf is given by

Flysp, V) = 2m) 2V [ 2 exp{—(1/2)(y — )"V (y — p)}

b) Suppose Y ~ N(u, V) is partitioned as
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Y1|Ys = yo ~ N (p1 + ViaViy ' (Y2 — p2), Vit — Via Vi, ' Vi)

then

¢) [Cochran’s theorem] Assume that Y ~ N(u,02I) and that Pi, ..., P, are projection matrices
with Zle P, = 1. Then Y'PY are independent for i = 1,...k, and Y'P;Y /o? has a non-
central chi-squared distribution with non-centrality parameter \; = pu* P;u/0? and degrees of
freedom equal to the rank of P;.

3) Generalized linear models (GLMs)

a) A random variable Y; has a distribution in the exponential dispersion family if its pmf/pdf
may be written

[ (yi; 05, @) = exp{[yi0; — b(6;)]/a(d) + c(vyi, &)},

where 6; is the natural parameter and ¢ is the dispersion parameter. We have FE(Y;) = b'(6;)
and var(Y;) = 0"(0;)a(o).

b) For a GLM we have that Yi,...Y,, are independent with pmf/pdf from the exponential
dispersion family. The linear predictors ni,...,n, are given by n; = Z?:l x;iB; = x;3, and



the expected values u; = E(Y;) satisfy g(u;) = n; for a strictly increasing and differentiable link
function g. For the canonical link function g(u;) = (b')~!(u;) we have 6; = n;.

c¢) The likelihood equations for a GLM are given by

n

(yi — pa)zij Opi :
R =0 f =1,...,p.
> vy on or j=1,...,p

d) Let B be the maximum likelihood (ML) estimator for a GLM. Then
B ~ N (,8, (XTWX)*l) , approximately

where X is the model matrix and W is the diagonal matrix with elements w; = (Op;/0n;)? /var(Y;).

~

e) Consider a GLM with a(¢) = ¢/w;. Let 1; = b/(6;) be the ML estimate of y; under the actual

model, and let y; = b'(6;) be the ML estimate of p; under the saturated model. Then

max likelihood for actual model -
—2log < ) =D(y; 1)/ 9

max likelihood for saturated model

D(y;p) = ini [yz (éi - @) —b(6;) + b(@)}
i=1
is the deviance.

4) Normal and generalized linear mixed models

a) We assume that Y; = (Y1, ... ,Y;d)T for i = 1,...n are independent vectors that correspond
to d observations from each of n clusters. A normal linear mixed effects model is given by

Yij = B + ziju; + €,

where (3 is a p X 1 vector of fixed effects, u; ~ N(0,3,) is a ¢ x 1 vector of random effects, and
€ = (€i1,...64)T ~ N(0,R) is independent of u;. Often one will have R = o1I.

b) For a generalized linear mixed model we assume that the conditional pmf/pdf of Y;; given
u; ~ N(0,X,) is in the exponential dispersion family, and that for a link function g we have

g E(Yij |wi)] = ziiB + ziju,.



