
APPENDIX: Formulas in STK3100/4100

1) Linear models and least squares

a) Let Y = (Y1, . . . , Yn)T be a vector of random variables with mean vector µ = (µ1, . . . , µn)T

and covariance matrix V = E{(Y − µ)(Y − µ)T}. We consider the linear model µ = Xβ,
where the model matrix X is a n × p matrix, and assume that V = σ2I. If we observe
Y = y = (y1, . . . , yn)T, then the least squares estimate β̂ and the fitted values µ̂ = Xβ̂ are
obtained by minimizing ‖y − µ‖2 = (y − µ)T(y − µ).

b) Let C(X) denote the model space, i.e. the subspace of Rn that is spanned by the columns
of X, and let PX denote the projection matrix onto C(X). Then µ̂ = PXy. The projection
matrix is symmetric and idempotent (i.e. P 2

X = PX), and rank(PX) = trace(PX).

c) The projection matrix PX is unique, i.e. it depends only on the subspace C(X) and not on
the choice of basis vectors for the subspace. If X has full rank, we have PX = X(XTX)−1XT.

d) For a random vector Y with mean vector µ and covariance matrix V and a fixed matrix A,
we have E(Y TAY ) = trace(AV ) + µTAµ.

2) Multivariate normal distribution and normal linear models

a) Y = (Y1, . . . , Yn)T has a multivariate normal distribution with mean vector µ and covariance
matrix V , written Y ∼ N(µ,V ), if its joint pdf is given by

f(y;µ,V ) = (2π)−n/2|V |−1/2 exp{−(1/2)(y − µ)TV −1(y − µ)}

b) Suppose Y ∼ N(µ,V ) is partitioned as

Y =

(
Y1

Y2

)
with µ =

(
µ1

µ2

)
and V =

(
V11 V12

V21 V22

)
then

Y1|Y2 = y2 ∼ N
(
µ1 + V12V

−1
22 (y2 − µ2),V11 − V12V

−1
22 V21

)
c) [Cochran’s theorem] Assume that Y ∼ N(µ, σ2I) and that P1, . . . ,Pk are projection matrices
with

∑k
i=1Pi = I. Then Y TPiY are independent for i = 1, . . . k, and Y TPiY /σ

2 has a non-
central chi-squared distribution with non-centrality parameter λi = µTPiµ/σ

2 and degrees of
freedom equal to the rank of Pi.

3) Generalized linear models (GLMs)

a) A random variable Yi has a distribution in the exponential dispersion family if its pmf/pdf
may be written

f(yi; θi, φ) = exp{[yiθi − b(θi)]/a(φ) + c(yi, φ)},

where θi is the natural parameter and φ is the dispersion parameter. We have E(Yi) = b′(θi)
and var(Yi) = b′′(θi)a(φ).

b) For a GLM we have that Y1, . . . Yn are independent with pmf/pdf from the exponential
dispersion family. The linear predictors η1, . . . , ηn are given by ηi =

∑p
j=1 xijβj = xiβ, and



the expected values µi = E(Yi) satisfy g(µi) = ηi for a strictly increasing and differentiable link
function g. For the canonical link function g(µi) = (b′)−1(µi) we have θi = ηi.

c) The likelihood equations for a GLM are given by

n∑
i=1

(yi − µi)xij
var(Yi)

∂µi
∂ηi

= 0 for j = 1, . . . , p.

d) Let β̂ be the maximum likelihood (ML) estimator for a GLM. Then

β̂ ∼ N
(
β, (XTWX)−1

)
, approximately

whereX is the model matrix andW is the diagonal matrix with elements wi = (∂µi/∂ηi)
2/var(Yi).

e) Consider a GLM with a(φ) = φ/ωi. Let µ̂i = b′(θ̂i) be the ML estimate of µi under the actual
model, and let yi = b′(θ̃i) be the ML estimate of µi under the saturated model. Then

−2 log

(
max likelihood for actual model

max likelihood for saturated model

)
= D(y; µ̂)/φ

where

D(y; µ̂) = 2
n∑

i=1

ωi

[
yi

(
θ̃i − θ̂i

)
− b(θ̃i) + b(θ̂i)

]
is the deviance.

4) Normal and generalized linear mixed models

a) We assume that Yi = (Yi1, . . . , Yid)T for i = 1, . . . n are independent vectors that correspond
to d observations from each of n clusters. A normal linear mixed effects model is given by

Yij = xijβ + zijui + εij ,

where β is a p× 1 vector of fixed effects, ui ∼ N(0,Σu) is a q× 1 vector of random effects, and
εi = (εi1, . . . εid)T ∼ N(0,R) is independent of ui. Often one will have R = σ2I.

b) For a generalized linear mixed model we assume that the conditional pmf/pdf of Yij given
ui ∼ N(0,Σu) is in the exponential dispersion family, and that for a link function g we have

g [E(Yij |ui)] = xijβ + zijui.


