APPENDIX: Formulas in STK3100/4100

1) Linear models and least squares

a) Let $\mathbf{Y} = (Y_1, \ldots, Y_n)^{\mathrm{T}}$ be a vector of random variables with mean vector $\boldsymbol{\mu} = (\mu_1, \ldots, \mu_n)^{\mathrm{T}}$ and covariance matrix $\mathbf{V} = E\{(\mathbf{Y} - \boldsymbol{\mu})(\mathbf{Y} - \boldsymbol{\mu})^{\mathrm{T}}\}$. We consider the linear model $\boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$, where the model matrix \mathbf{X} is a $n \times p$ matrix, and assume that $\mathbf{V} = \sigma^2 \mathbf{I}$. If we observe $\mathbf{Y} = \mathbf{y} = (y_1, \ldots, y_n)^{\mathrm{T}}$, then the least squares estimate $\hat{\boldsymbol{\beta}}$ and the fitted values $\hat{\boldsymbol{\mu}} = \mathbf{X}\hat{\boldsymbol{\beta}}$ are obtained by minimizing $\|\boldsymbol{y} - \boldsymbol{\mu}\|^2 = (\boldsymbol{y} - \boldsymbol{\mu})^{\mathrm{T}}(\boldsymbol{y} - \boldsymbol{\mu})$.

b) Let $C(\mathbf{X})$ denote the model space, i.e. the subspace of \mathbb{R}^n that is spanned by the columns of \mathbf{X} , and let $\mathbf{P}_{\mathbf{X}}$ denote the projection matrix onto $C(\mathbf{X})$. Then $\hat{\boldsymbol{\mu}} = \mathbf{P}_{\mathbf{X}} \mathbf{y}$. The projection matrix is symmetric and idempotent (i.e. $\mathbf{P}_{\mathbf{X}}^2 = \mathbf{P}_{\mathbf{X}}$), and rank $(\mathbf{P}_{\mathbf{X}}) = \text{trace}(\mathbf{P}_{\mathbf{X}})$.

c) The projection matrix P_X is unique, i.e. it depends only on the subspace C(X) and not on the choice of basis vectors for the subspace. If X has full rank, we have $P_X = X(X^T X)^{-1} X^T$.

d) For a random vector \boldsymbol{Y} with mean vector $\boldsymbol{\mu}$ and covariance matrix \boldsymbol{V} and a fixed matrix \boldsymbol{A} , we have $E(\boldsymbol{Y}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{Y}) = \operatorname{trace}(\boldsymbol{A}\boldsymbol{V}) + \boldsymbol{\mu}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{\mu}$.

2) Multivariate normal distribution and normal linear models

a) $\mathbf{Y} = (Y_1, \dots, Y_n)^{\mathrm{T}}$ has a multivariate normal distribution with mean vector $\boldsymbol{\mu}$ and covariance matrix \mathbf{V} , written $\mathbf{Y} \sim N(\boldsymbol{\mu}, \mathbf{V})$, if its joint pdf is given by

$$f(\boldsymbol{y}; \boldsymbol{\mu}, \boldsymbol{V}) = (2\pi)^{-n/2} |\boldsymbol{V}|^{-1/2} \exp\{-(1/2)(\boldsymbol{y} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{V}^{-1}(\boldsymbol{y} - \boldsymbol{\mu})\}$$

b) Suppose $\boldsymbol{Y} \sim N(\boldsymbol{\mu}, \boldsymbol{V})$ is partitioned as

$$oldsymbol{Y} = \left(egin{array}{c} oldsymbol{Y}_1\ oldsymbol{Y}_2\end{array}
ight) \quad ext{with} \quad oldsymbol{\mu} = \left(egin{array}{c} oldsymbol{\mu}_1\ oldsymbol{\mu}_2\end{array}
ight) \quad ext{and} \quad oldsymbol{V} = \left(egin{array}{c} oldsymbol{V}_{11} & oldsymbol{V}_{12}\ oldsymbol{V}_{21} & oldsymbol{V}_{22}\end{array}
ight)$$

then

$$Y_1|Y_2 = y_2 \sim N\left(\mu_1 + V_{12}V_{22}^{-1}(y_2 - \mu_2), V_{11} - V_{12}V_{22}^{-1}V_{21}\right)$$

c) [Cochran's theorem] Assume that $\mathbf{Y} \sim N(\boldsymbol{\mu}, \sigma^2 \mathbf{I})$ and that $\mathbf{P}_1, \ldots, \mathbf{P}_k$ are projection matrices with $\sum_{i=1}^k \mathbf{P}_i = \mathbf{I}$. Then $\mathbf{Y}^{\mathrm{T}} \mathbf{P}_i \mathbf{Y}$ are independent for $i = 1, \ldots, k$, and $\mathbf{Y}^{\mathrm{T}} \mathbf{P}_i \mathbf{Y} / \sigma^2$ has a noncentral chi-squared distribution with non-centrality parameter $\lambda_i = \boldsymbol{\mu}^{\mathrm{T}} \mathbf{P}_i \boldsymbol{\mu} / \sigma^2$ and degrees of freedom equal to the rank of \mathbf{P}_i .

3) Generalized linear models (GLMs)

a) A random variable Y_i has a distribution in the exponential dispersion family if its pmf/pdf may be written

$$f(y_i; \theta_i, \phi) = \exp\{[y_i\theta_i - b(\theta_i)]/a(\phi) + c(y_i, \phi)\},\$$

where θ_i is the natural parameter and ϕ is the dispersion parameter. We have $E(Y_i) = b'(\theta_i)$ and $\operatorname{var}(Y_i) = b''(\theta_i)a(\phi)$.

b) For a GLM we have that Y_1, \ldots, Y_n are independent with pmf/pdf from the exponential dispersion family. The linear predictors η_1, \ldots, η_n are given by $\eta_i = \sum_{j=1}^p x_{ij}\beta_j = \mathbf{x}_i\boldsymbol{\beta}$, and

the expected values $\mu_i = E(Y_i)$ satisfy $g(\mu_i) = \eta_i$ for a strictly increasing and differentiable link function g. For the canonical link function $g(\mu_i) = (b')^{-1}(\mu_i)$ we have $\theta_i = \eta_i$.

c) The likelihood equations for a GLM are given by

$$\sum_{i=1}^{n} \frac{(y_i - \mu_i)x_{ij}}{\operatorname{var}(Y_i)} \frac{\partial \mu_i}{\partial \eta_i} = 0 \quad \text{for} \quad j = 1, \dots, p.$$

d) Let $\hat{\beta}$ be the maximum likelihood (ML) estimator for a GLM. Then

$$\widehat{\boldsymbol{\boldsymbol{\partial}}} \sim N\left(\boldsymbol{\boldsymbol{\beta}}, (\boldsymbol{X}^{\mathrm{T}} \boldsymbol{W} \boldsymbol{X})^{-1}\right), \quad \text{approximately}$$

where \boldsymbol{X} is the model matrix and \boldsymbol{W} is the diagonal matrix with elements $w_i = (\partial \mu_i / \partial \eta_i)^2 / \operatorname{var}(Y_i)$.

e) Consider a GLM with $a(\phi) = \phi/\omega_i$. Let $\hat{\mu}_i = b'(\hat{\theta}_i)$ be the ML estimate of μ_i under the actual model, and let $y_i = b'(\tilde{\theta}_i)$ be the ML estimate of μ_i under the saturated model. Then

$$-2\log\left(\frac{\max \text{ likelihood for actual model}}{\max \text{ likelihood for saturated model}}\right) = D(\boldsymbol{y}; \hat{\boldsymbol{\mu}})/\phi$$

where

$$D(\boldsymbol{y}; \widehat{\boldsymbol{\mu}}) = 2\sum_{i=1}^{n} \omega_i \left[y_i \left(\widetilde{\theta}_i - \widehat{\theta}_i \right) - b(\widetilde{\theta}_i) + b(\widehat{\theta}_i) \right]$$

is the deviance.

4) Normal and generalized linear mixed models

a) We assume that $\mathbf{Y}_i = (Y_{i1}, \dots, Y_{id})^{\mathrm{T}}$ for $i = 1, \dots, n$ are independent vectors that correspond to d observations from each of n clusters. A normal linear mixed effects model is given by

$$Y_{ij} = \boldsymbol{x}_{ij}\boldsymbol{\beta} + \boldsymbol{z}_{ij}\boldsymbol{u}_i + \epsilon_{ij},$$

where $\boldsymbol{\beta}$ is a $p \times 1$ vector of fixed effects, $\boldsymbol{u}_i \sim N(\boldsymbol{0}, \boldsymbol{\Sigma}_u)$ is a $q \times 1$ vector of random effects, and $\boldsymbol{\epsilon}_i = (\epsilon_{i1}, \ldots, \epsilon_{id})^{\mathrm{T}} \sim N(\boldsymbol{0}, \boldsymbol{R})$ is independent of \boldsymbol{u}_i . Often one will have $\boldsymbol{R} = \sigma^2 \boldsymbol{I}$.

b) For a generalized linear mixed model we assume that the conditional pmf/pdf of Y_{ij} given $u_i \sim N(\mathbf{0}, \Sigma_u)$ is in the exponential dispersion family, and that for a link function g we have

$$g\left[E(Y_{ij} \mid \boldsymbol{u}_i)\right] = \boldsymbol{x}_{ij}\boldsymbol{\beta} + \boldsymbol{z}_{ij}\boldsymbol{u}_i.$$