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Exam in: STK3100/STK4100 –– Introduction to
Generalized Linear Models

Day of examination: Monday 6th December 2021

Examination hours: 15.00 – 19.00

This problem set consists of 5 pages.

Appendices: Formulas in STK3100/4100

Permitted aids: Approved calculator

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Problem 1

A distribution with probability mass function (pmf) or probability density
function (pdf)

f(y; θ, φ) = exp {(θy − b(θ)) /a(φ) + c(y, φ)} (1)

where a(·), b(·) and c(·, ·) are functions, and θ and φ parameters, belongs to
the exponential dispersion family of distributions.

a

Show that if the random variable Y has a distribution from the exponen-
tial dispersion family with parameters θ and φ, then E[Y ] = b′(θ) and
Var[Y ] = b′′(θ)a(φ).

Hint: Use that we have from general likelihood results that

E

[
∂ log f(Y ; θ, φ)

∂θ

]
= 0

−E
[
∂2 log f(Y ; θ, φ)

∂θ2

]
= E

[(
∂ log f(Y ; θ, φ)

∂θ

)2
]
.

and in addition that Var[Y ] = E
[
(Y − E[Y ])2

]
.

In the following we assume that the random variable Y is Poisson distributed
with pmf

P (Y = y) =
µy

y!
exp (−µ), y = 0, 1, 2, . . . (2)

b

Show that the Poisson distribution belongs to the exponential dispersion
family of distributions, that is show that (2) can be written in the form of
(1). Determine θ, a(φ), b(θ) and c(y, φ).

(Continued on page 2.)
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c

Show that E[Y ] = Var[Y ] = µ.

Assume now that Y1, Y2, . . . , Yn are independent and that Yi is Poisson
distributed with mean µi, i = 1, . . . , n. Given the values xi, i = 1, . . . , n,
of an explanatory variable, we assume a generalized linear model (GLM) for
Y1, Y2, . . . , Yn, with the linear predictor ηi = β0 + β1xi linked to the mean
through the canonical link function g(µi) = log(µi) = ηi.

d

Derive an expression for the log-likelihood function L(β0, β1), and show
that the maximum likelihood estimators β̂0 and β̂1 are the solutions to the
following equations

n∑

i=1

(Yi − µi) = 0 and
n∑

i=1

(Yi − µi)xi = 0

Problem 2

In this problem we will consider data collected for a study analysing
the probability of objections agains patents granted by the European
patent office. The data set concerns 2702 patents from the sector of
semiconductor/computer industry. On each of the 2702 patents the following
variables are recorded

• opp: Patent opposition (1=yes; 0=no)

• year: Grant year

• ncit: Number of citations for the patent

• ustwin: US twin patent exists (1=yes; 0=no)

• patus: Patent holder from the US (1=yes; 0=no)

• patgsgr: Patent holder from Germany, Switzerland or Great Britain
(1=yes; 0=no)

• ncountry: Number of designated countries for the patent

We will investigate how the probability of having an objection against a
patent depends on grant year, number of citations for the patent, whether
a US twin patent exists, whether the patent holder is from the US, whether
the patent holder is from Germany, Switzerland or Great Britain, and the
number of designated countries for the patent.

a

On the next page you find output from R from a fit with only main effects.
Describe the model behind this fit, including necessary assumptions. Give
an interpretation of the estimate for patus.

(Continued on page 3.)
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Call:
glm(formula = opp ~ year + ncit + ustwin + patus + patgsgr +

ncountry, family = binomial(link = logit), data = patents)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.7594 -0.8181 -0.6328 1.1397 2.2151

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 185.25738 21.85850 8.475 < 2e-16 ***
year -0.09373 0.01098 -8.537 < 2e-16 ***
ncit 0.12128 0.02214 5.477 4.33e-08 ***
ustwin -0.41085 0.09959 -4.126 3.70e-05 ***
patus -0.43685 0.10998 -3.972 7.12e-05 ***
patgsgr 0.18723 0.11691 1.602 0.109
ncountry 0.10302 0.01481 6.957 3.48e-12 ***
---
Null deviance: 3214.5 on 2701 degrees of freedom
Residual deviance: 2996.8 on 2695 degrees of freedom
AIC: 3010.8

b

We have also fitted models with interactions. A summary of the fits can be
seen in the R output of an analysis of variance table below. Some of the
entries in the table are missing and have been replaced by question marks.
Give the missing numbers, along with an explanation of how you found them.
Which of the models fit the data best, and why?

> anova(fit1,fit2,fit3,fit4,test="LRT")
Analysis of Deviance Table

Model 1: opp ~ year + ncit + ustwin + patus + patgsgr + ncountry
Model 2: opp ~ year + ncit + ustwin + patus + patgsgr + ncountry

+ year:patus
Model 3: opp ~ year + ncit + ustwin + patus + patgsgr + ncountry

+ year:patus + patus:ncountry
Model 4: opp ~ year + ncit + ustwin + patus + patgsgr + ncountry

+ year:patus + patus:ncountry + patgsgr:ncountry
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 2695 2996.8
2 2694 2981.7 ? ? 0.0001011 ***
3 ? 2979.2 1 2.5449 0.1106478
4 2692 ? 1 2.5899 0.1075493

(Continued on page 4.)



Exam in STK3100/STK4100, Monday 6th December 2021 Page 4

c

The table below shows the AIC values for a binomial GLM-model with three
different link functions, and the same linear predictor as for the best model
in b. Explain what AIC is. Argue why it is sensible to use this as a criteria
to compare the different models arising from the different link-functions in
this situation, instead of a test such as the likelihood ratio test. Based on
these values, which link function should be chosen?

Link function AIC
logit 2997.724
probit 2996.969
cloglog 3000.778

Problem 3

Let Yi = (Yi1, Yi2, . . . , Yid)
T , i = 1, . . . , n, be independent vectors that

correspond to observations from each of n groups. Given model matrices
Xi (of dimension d×p, with vector xij for observation j from group i in row
j) and Zi (of dimension d× q with vector zij for observation j from group i
in row j) , we assume a normal linear mixed model

Yi = Xiβ + Ziui + εi, i = 1, . . . , n

where β is a p× 1 vector of fixed effects, ui ∼ N(0,Σu) is a q × 1 vector of
random effects, and εi = (εi1, . . . , εid)

T ∼ N(0,R) is independent of ui.

Now with

Y =




Y1
...

Yn


 , X =




X1
...

Xn


 , Z =




Z1 0 · · · 0
0 Z2 · · · 0

0 0
. . . 0

0 0 · · · Zn


 , u =




u1
...

un


 , ε =



ε1
...
εn


 ,

Σu =




Σu 0 · · · 0
0 Σu · · · 0

0 0
. . . 0

0 0 · · · Σu


 , Rε =




R 0 · · · 0
0 R · · · 0

0 0
. . . 0

0 0 · · · R




we may write Y = Xβ + Zu + ε. Furthermore, we have that

Y ∼ N(Xβ,V)

where V = ZΣuZT +Rε. We assume throughout this problem that that V
is known.

a

Given observed data Y = y, show that the maximum likelihood estimate of
β is

β̃ =
(
XTV−1X

)−1
XTV−1y

Hint: Use the matrix derivative results

∂(aTγ)/∂γ = a and ∂(γTAγ)/∂γ = (A+AT )γ

(Continued on page 5.)
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b

Show that (
Y
u

)
∼ N

[(
Xβ
0

)
,

(
V ZΣu

ΣuZT Σu

)]

and that
E[u|Y = y] = ΣuZTV−1(y −Xβ)

Given Y = y and β̃, what is a sensible prediction for the random effects?

c

With Yi , xij , zij , β and ui defined as before, the generalized linear mixed
model (GLMM) for Yi has the form

g (E[Yij |ui]) = xijβ + zijui, i = 1, . . . , n, j = 1, . . . , d.

Still assuming that g is the identity link function, find the marginal expected
value µij = E[Yij ]. Comment on the link function for this marginal model
implied by the GLMM. Is this relationship a general result for all link
functions?

END



STK3100/STK4100 - Introduction to Generalized Lin-
ear Models

Additional information

• In Problem 3, Σu and Rε can be assumed known.

• Hint for Problem 3 c: E[Y ] = E[E[Y |X]]

1



APPENDIX: Formulas in STK3100/4100

1) Linear models and least squares

a) Let Y = (Y1, . . . , Yn)T be a vector of random variables with mean vector µ = (µ1, . . . , µn)T

and covariance matrix V = E{(Y − µ)(Y − µ)T}. We consider the linear model µ = Xβ,
where the model matrix X is a n × p matrix, and assume that V = σ2I. If we observe
Y = y = (y1, . . . , yn)T, then the least squares estimate β̂ and the fitted values µ̂ = Xβ̂ are
obtained by minimizing ‖y − µ‖2 = (y − µ)T(y − µ).

b) Let C(X) denote the model space, i.e. the subspace of Rn that is spanned by the columns
of X, and let PX denote the projection matrix onto C(X). Then µ̂ = PXy. The projection
matrix is symmetric and idempotent (i.e. P 2

X = PX), and rank(PX) = trace(PX).

c) The projection matrix PX is unique, i.e. it depends only on the subspace C(X) and not on
the choice of basis vectors for the subspace. If X has full rank, we have PX = X(XTX)−1XT.

d) For a random vector Y with mean vector µ and covariance matrix V and a fixed matrix A,
we have E(Y TAY ) = trace(AV ) + µTAµ.

2) Multivariate normal distribution and normal linear models

a) Y = (Y1, . . . , Yn)T has a multivariate normal distribution with mean vector µ and covariance
matrix V , written Y ∼ N(µ,V ), if its joint pdf is given by

f(y;µ,V ) = (2π)−n/2|V |−1/2 exp{−(1/2)(y − µ)TV −1(y − µ)}

b) Suppose Y ∼ N(µ,V ) is partitioned as

Y =

(
Y1

Y2

)
with µ =

(
µ1

µ2

)
and V =

(
V11 V12

V21 V22

)

then

Y1|Y2 = y2 ∼ N
(
µ1 + V12V

−1
22 (y2 − µ2),V11 − V12V

−1
22 V21

)

c) [Cochran’s theorem] Assume that Y ∼ N(µ, σ2I) and that P1, . . . ,Pk are projection matrices
with

∑k
i=1Pi = I. Then Y TPiY are independent for i = 1, . . . k, and Y TPiY /σ

2 has a non-
central chi-squared distribution with non-centrality parameter λi = µTPiµ/σ

2 and degrees of
freedom equal to the rank of Pi.

3) Generalized linear models (GLMs)

a) A random variable Yi has a distribution in the exponential dispersion family if its pmf/pdf
may be written

f(yi; θi, φ) = exp{[yiθi − b(θi)]/a(φ) + c(yi, φ)},

where θi is the natural parameter and φ is the dispersion parameter. We have E(Yi) = b′(θi)
and var(Yi) = b′′(θi)a(φ).

b) For a GLM we have that Y1, . . . Yn are independent with pmf/pdf from the exponential
dispersion family. The linear predictors η1, . . . , ηn are given by ηi =

∑p
j=1 xijβj = xiβ, and



the expected values µi = E(Yi) satisfy g(µi) = ηi for a strictly increasing and differentiable link
function g. For the canonical link function g(µi) = (b′)−1(µi) we have θi = ηi.

c) The likelihood equations for a GLM are given by

n∑

i=1

(yi − µi)xij
var(Yi)

∂µi
∂ηi

= 0 for j = 1, . . . , p.

d) Let β̂ be the maximum likelihood (ML) estimator for a GLM. Then

β̂ ∼ N
(
β, (XTWX)−1

)
, approximately

whereX is the model matrix andW is the diagonal matrix with elements wi = (∂µi/∂ηi)
2/var(Yi).

e) Consider a GLM with a(φ) = φ/ωi. Let µ̂i = b′(θ̂i) be the ML estimate of µi under the actual
model, and let yi = b′(θ̃i) be the ML estimate of µi under the saturated model. Then

−2 log

(
max likelihood for actual model

max likelihood for saturated model

)
= D(y; µ̂)/φ

where

D(y; µ̂) = 2
n∑

i=1

ωi

[
yi

(
θ̃i − θ̂i

)
− b(θ̃i) + b(θ̂i)

]

is the deviance.

4) Normal and generalized linear mixed models

a) We assume that Yi = (Yi1, . . . , Yid)T for i = 1, . . . n are independent vectors that correspond
to d observations from each of n clusters. A normal linear mixed effects model is given by

Yij = xijβ + zijui + εij ,

where β is a p× 1 vector of fixed effects, ui ∼ N(0,Σu) is a q× 1 vector of random effects, and
εi = (εi1, . . . εid)T ∼ N(0,R) is independent of ui. Often one will have R = σ2I.

b) For a generalized linear mixed model we assume that the conditional pmf/pdf of Yij given
ui ∼ N(0,Σu) is in the exponential dispersion family, and that for a link function g we have

g [E(Yij |ui)] = xijβ + zijui.


