
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Exam in: STK3100/STK4100 –– Introduction to
Generalized Linear Models

Day of examination: Thursday 8th December 2022

Examination hours: 15.00 – 19.00

This problem set consists of 6 pages.

Appendices: Formulas in STK3100/4100

Permitted aids: Approved calculator

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Problem 1

We assume that Y ∼ Poisson(µ), i.e. the random variable Y is Poisson
distributed with parameter µ, and hence has probability mass function
(PMF)

P (Y = y) =
µy

y!
exp (−µ), y = 0, 1, 2, . . . (1)

a

Show that the distribution of Y is in the exponential dispersion family. That
is, show that (1) can be written on the form

f(y; θ, φ) = exp {(θy − b(θ)) /a(φ) + c(y, φ)} (2)

and determine θ, a(·), b(·) and c(·, ·).

We then assume that Y1, . . . , Yn are independent with Yi ∼ Poisson(µi),
and hence E(Yi) = µi, i = 1, . . . , n.

b

Write down the definition of a generalized linear model (GLM) for Y1, . . . , Yn
with associated covariates xij , i = 1, . . . n, j = 1, . . . , p, with xi1 = 1 to
represent the intercept. Use the canonical link function.

c

Assume that y = (y1, . . . , yn)T is an observed value of the random vector
Y = (Y1, . . . , Yn)T , and let µ = (µ1, . . . , µn)T . Derive the expression for the
log-likelihood function L(µ;y). Explain briefly what the saturated model
is, and express the maximum of the log-likelihood L(µ;y) for the saturated
model.

(Continued on page 2.)
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d

Find an expression for the deviance D(y; µ̂) for a Poisson GLM, and explain
how it can be used to compare two different models.

Problem 2

In this problem we assume that Y comes from a negative binomial
distribution. Here we let the pmf of the negative binomial distribution take
the form

p(y;µ, k) =
Γ(y + k)

Γ(k)Γ(y + 1)

(
µ

µ+ k

)y ( k

µ+ k

)k
; y = 0, 1, 2, . . .

We will assume that k > 0 is a given constant, and consider the random
variable Y ∗ = Y/k. Then P (Y ∗ = y∗) = P (Y = ky∗) for y∗ = 0, 1k ,

2
k , . . ., so

Y ∗ has pmf

p∗(y∗;µ, k) =
Γ(ky∗ + k)

Γ(k)Γ(ky∗ + 1)

(
µ

µ+ k

)ky∗ ( k

µ+ k

)k
; y∗ = 0,

1

k
,

2

k
. . .

(3)

a

Show that (3) is a distribution in the exponential dispersion family (2), with
θ = log

(
µ

µ+k

)
, b(θ) = − log

(
1− eθ

)
and a(φ) = 1/k.

b

Find the mean and variance of Y ∗ using the expressions for b(θ) and a(φ).
Use these results to show that E(Y ) = µ and determine var(Y ).

c

Compare the relationship between the mean and variance for negative-
binomial distribution to the relationship between the mean and variance
of the Poisson distribution, and comment on when the Poisson is a good
model and when you need the negative-binomial. What does overdispersion
mean?

Problem 3

In this problem we will consider data collected in Arizona in 1991 on
patients entering the hospital to receive one of two standard cardiovascular
procedures: Coronary Artery Bypass Graft (CABG) and Percutaneous
Transluminal Coronary Angioplasty (PTCA). CABG involves taking a blood
vessel from another part of the body and attaching it to the coronary artery
above and below the narrowed area or blockage, so the the diseased sections
are bypassed. PTCA, is a method of placing a balloon in a blocked coronary
artery to open it to blood flow. The data set contains data on 3589 patients,
and the response variable is length of hospital stay (los). For modeling this,
we will consider the following covariates

(Continued on page 3.)
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• procedure: Type of procedure (1: CABG, 0: PTCA)

• sex: Sex of patient (1: male, 0: female)

• admit: Type of admission (1: Urgent/Emergency; 0: elective/pre-
planned)

• age75: Age group of patient (1: Age>75, 0: Age<=75)

a

We first fit a model with only main effects. The result of this analysis is given
below. Describe the model used in this analysis, including all assumptions.

> fit1 <- glm(los ~ procedure + sex + admit+ age75, family=poisson)
> summary(fit1)

Call:
glm(formula = los ~ procedure + sex + admit + age75, family = poisson)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.45599 0.01585 91.874 <2e-16
procedure 0.96034 0.01218 78.836 <2e-16
sex -0.12393 0.01181 -10.492 <2e-16
admit 0.32659 0.01212 26.939 <2e-16
age75 0.12222 0.01245 9.817 <2e-16
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 16265.0 on 3588 degrees of freedom
Residual deviance: 8874.1 on 3584 degrees of freedom
AIC: 22390

b

We then fit a model with interaction between procedure and admit. In
the following you find the results from this fit, followed by an analysis of
deviance table for the two fits. Explain why the model with interactions is
to be preferred over the model with only main effects. Describe the effects
of procedure and admit on the estimated mean length of stay.

> fit2 = glm(los ~ procedure + sex + admit+ age75 + procedure*admit, family=poisson)
> summary(fit2)

Call:
glm(formula = los ~ procedure + sex + admit + age75 + procedure *

admit, family = poisson)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.23851 0.02302 53.790 <2e-16

(Continued on page 4.)
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procedure 1.24765 0.02417 51.613 <2e-16
sex -0.12488 0.01182 -10.568 <2e-16
admit 0.61606 0.02426 25.395 <2e-16
age75 0.12314 0.01245 9.889 <2e-16
procedure:admit -0.39658 0.02803 -14.149 <2e-16
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 16265.0 on 3588 degrees of freedom
Residual deviance: 8666.6 on 3583 degrees of freedom
AIC: 22184

> anova(fit1,fit2,test="LRT")
Analysis of Deviance Table

Model 1: los ~ procedure + sex + admit + age75
Model 2: los ~ procedure + sex + admit + age75 + procedure * admit

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 3584 8874.1
2 3583 8666.6 1 207.54 < 2.2e-16

c

To address the possible issue of overdispersion, we fit a negative-binomial
model. The result of the analysis is given below. What do the AIC values
for this model and the model in b tell you about which model to prefer? In
the lectures and in the text book we have seen the parametrization γ = 1/k.
Below you also find a transcript of the calculation of a test statistic and an
accompanying p-value for the hypotheses test

H0 : γ = 0 Ha : γ > 0

What is the conclusion from this test? Does it support your conclusion from
the AIC values?

> fit3 = glm.nb(los ~ procedure + sex + admit + age75 + procedure*admit)
> summary(fit3)

Call:
glm.nb(formula = los ~ procedure + sex + admit + age75 + procedure *

admit, init.theta = 6.521921816, link = log)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.24084 0.02958 41.943 < 2e-16
procedure 1.24900 0.03218 38.813 < 2e-16
sex -0.12745 0.01885 -6.761 1.37e-11
admit 0.61482 0.03073 20.009 < 2e-16
age75 0.12198 0.01999 6.101 1.05e-09
procedure:admit -0.39742 0.03894 -10.205 < 2e-16
(Dispersion parameter for Negative Binomial(6.5219) family taken to be 1)

(Continued on page 5.)
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Null deviance: 6869.3 on 3588 degrees of freedom
Residual deviance: 3504.0 on 3583 degrees of freedom
AIC: 19857

Theta: 6.522
Std. Err.: 0.268

2 x log-likelihood: -19843.162
> test.statistic=-as.numeric(2*(logLik(fit2)-logLik(fit3)))
> p.value=(1-pchisq(test.statistic,1))/2
> print(p.value)
[1] 0

Problem 4

The negative-binomial addresses the issue of overdispersed count data that
has a variance greater than the mean. A more general approach which
can be used also for other types of overdispersed data is called the quasi-
likelihood approach for overdispersion. It is based on var(Yi) = φv∗(µi),
where φ is an overdispersion parameter and v∗(µi) is the function specifying
how the variances from the ”standard” GLM depend on the expected values
µi = E[Yi]. For the Poisson distribution v∗(µi) = µi. A transcript of an
analysis with the quasi-likelihood variance inflation approach to the data
from Problem 3, with the same covariates as in Problem 3b, can be seen
below.

a

Compare the estimated βj ’s and their estimated standard errors to the ones
for the Poisson GLM fit fit2 and comment.

b

Explain in general terms the approach, based on the quasi-likelihood
equations for the estimation. Hint: Replace var(Yi) by v(µi) in the likelihood
equations for a GLM that you find in the appendix.

> fit.quasipois=glm(los ~ procedure + sex + admit+ age75+ procedure*admit,
+ family=quasi(link="log",variance="mu"))
> summary(fit.quasipois)

Call:
glm(formula = los ~ procedure + sex + admit + age75 + procedure *

admit, family = quasi(link = "log", variance = "mu"))

Deviance Residuals:
Min 1Q Median 3Q Max

-3.1102 -1.1806 -0.5060 0.5216 12.8660

(Continued on page 6.)
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.23851 0.04087 30.301 < 2e-16
procedure 1.24765 0.04291 29.074 < 2e-16
sex -0.12488 0.02098 -5.953 2.88e-09
admit 0.61606 0.04307 14.305 < 2e-16
age75 0.12314 0.02210 5.571 2.72e-08
procedure:admit -0.39658 0.04976 -7.970 2.11e-15

(Dispersion parameter for quasi family taken to be 3.151389)

Null deviance: 16265.0 on 3588 degrees of freedom
Residual deviance: 8666.6 on 3583 degrees of freedom



APPENDIX: Formulas in STK3100/4100

1) Linear models and least squares

a) Let Y = (Y1, . . . , Yn)T be a vector of random variables with mean vector µ = (µ1, . . . , µn)T

and covariance matrix V = E{(Y − µ)(Y − µ)T}. We consider the linear model µ = Xβ,
where the model matrix X is a n × p matrix, and assume that V = σ2I. If we observe
Y = y = (y1, . . . , yn)T, then the least squares estimate β̂ and the fitted values µ̂ = Xβ̂ are
obtained by minimizing ‖y − µ‖2 = (y − µ)T(y − µ).

b) Let C(X) denote the model space, i.e. the subspace of Rn that is spanned by the columns
of X, and let PX denote the projection matrix onto C(X). Then µ̂ = PXy. The projection
matrix is symmetric and idempotent (i.e. P 2

X = PX), and rank(PX) = trace(PX).

c) The projection matrix PX is unique, i.e. it depends only on the subspace C(X) and not on
the choice of basis vectors for the subspace. If X has full rank, we have PX = X(XTX)−1XT.

d) For a random vector Y with mean vector µ and covariance matrix V and a fixed matrix A,
we have E(Y TAY ) = trace(AV ) + µTAµ.

2) Multivariate normal distribution and normal linear models

a) Y = (Y1, . . . , Yn)T has a multivariate normal distribution with mean vector µ and covariance
matrix V , written Y ∼ N(µ,V ), if its joint pdf is given by

f(y;µ,V ) = (2π)−n/2|V |−1/2 exp{−(1/2)(y − µ)TV −1(y − µ)}

b) Suppose Y ∼ N(µ,V ) is partitioned as

Y =

(
Y1

Y2

)
with µ =

(
µ1

µ2

)
and V =

(
V11 V12

V21 V22

)

then

Y1|Y2 = y2 ∼ N
(
µ1 + V12V

−1
22 (y2 − µ2),V11 − V12V

−1
22 V21

)

c) [Cochran’s theorem] Assume that Y ∼ N(µ, σ2I) and that P1, . . . ,Pk are projection matrices
with

∑k
i=1Pi = I. Then Y TPiY are independent for i = 1, . . . k, and Y TPiY /σ

2 has a non-
central chi-squared distribution with non-centrality parameter λi = µTPiµ/σ

2 and degrees of
freedom equal to the rank of Pi.

3) Generalized linear models (GLMs)

a) A random variable Yi has a distribution in the exponential dispersion family if its pmf/pdf
may be written

f(yi; θi, φ) = exp{[yiθi − b(θi)]/a(φ) + c(yi, φ)},

where θi is the natural parameter and φ is the dispersion parameter. We have E(Yi) = b′(θi)
and var(Yi) = b′′(θi)a(φ).

b) For a GLM we have that Y1, . . . Yn are independent with pmf/pdf from the exponential
dispersion family. The linear predictors η1, . . . , ηn are given by ηi =

∑p
j=1 xijβj = xiβ, and



the expected values µi = E(Yi) satisfy g(µi) = ηi for a strictly increasing and differentiable link
function g. For the canonical link function g(µi) = (b′)−1(µi) we have θi = ηi.

c) The likelihood equations for a GLM are given by

n∑

i=1

(yi − µi)xij
var(Yi)

∂µi
∂ηi

= 0 for j = 1, . . . , p.

d) Let β̂ be the maximum likelihood (ML) estimator for a GLM. Then

β̂ ∼ N
(
β, (XTWX)−1

)
, approximately

whereX is the model matrix andW is the diagonal matrix with elements wi = (∂µi/∂ηi)
2/var(Yi).

e) Consider a GLM with a(φ) = φ/ωi. Let µ̂i = b′(θ̂i) be the ML estimate of µi under the actual
model, and let yi = b′(θ̃i) be the ML estimate of µi under the saturated model. Then

−2 log

(
max likelihood for actual model

max likelihood for saturated model

)
= D(y; µ̂)/φ

where

D(y; µ̂) = 2
n∑

i=1

ωi

[
yi

(
θ̃i − θ̂i

)
− b(θ̃i) + b(θ̂i)

]

is the deviance.

4) Normal and generalized linear mixed models

a) We assume that Yi = (Yi1, . . . , Yid)T for i = 1, . . . n are independent vectors that correspond
to d observations from each of n clusters. A normal linear mixed effects model is given by

Yij = xijβ + zijui + εij ,

where β is a p× 1 vector of fixed effects, ui ∼ N(0,Σu) is a q× 1 vector of random effects, and
εi = (εi1, . . . εid)T ∼ N(0,R) is independent of ui. Often one will have R = σ2I.

b) For a generalized linear mixed model we assume that the conditional pmf/pdf of Yij given
ui ∼ N(0,Σu) is in the exponential dispersion family, and that for a link function g we have

g [E(Yij |ui)] = xijβ + zijui.


