
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Exam in: STK3100/STK4100 –– Introduction to
Generalized Linear Models

Day of examination: Thursday 14th December 2023

Examination hours: 15.00 – 19.00

This problem set consists of 6 pages.

Appendices: Formulas in STK3100/4100

Permitted aids: Approved calculator

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Problem 1

We assume that V ∼ bin(n, π), i.e. the random variable V is binomially
distributed with n trials and probability π of success in each trial. The
probability mass function (PMF) of Y = V/n can be written

P (Y = y) =

(
n

ny

)
πny(1− π)n−ny, y = 0, 1n ,

2
n , . . . ,

n−1
n , 1 (1)

a

Show that the distribution of Y is in the exponential dispersion family. In
other words, show that (1) can be written on the form

f(y; θ, φ) = exp {(θy − b(θ)) /a(φ) + c(y, φ)}

and determine θ, a(φ), b(θ) and c(y, φ).

b

Use the expressions for a(φ) and b(θ) to

(i) show that µ = E(Y ) = π

(ii) determine Var(Y )

Assume in the following that the random variables V1, . . . , VN are
independent with Vi ∼ bin(ni, πi), i = 1, . . . , N , and let Yi = Vi/Ni. Let
x1, . . . , xN denote known explanatory variable values. Consider a generalized
linear model (GLM) for Y1, . . . , YN , with linear predictor ηi = β0+β1xi, and
canonical link function g(µi) = g(πi) = ηi.

(Continued on page 2.)
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c

(i) Show that the canonical link function is

g(πi) = log
πi

1− πi
.

(ii) What is such a GLM called?

(iii) Determine the likelihood equations for this GLM, expressed using πi,
i = 1, . . . , N .

d

Solving the likelihood equations provides the estimator β̂, which has the
approximate distribution

β̂ ∼ N
(
β,
(
XTWX

)−1
)

Determine W such that the i’th diagonal element wi is expressed by πi and
ni.

e

(i) Determine the deviance for this GLM.

(ii) Assuming that the data is ungrouped, i.e. that ni = 1, i = 1, . . . , N ,
explain what the deviance can be used for.

Problem 2

Cardiovascular diseases (CVDs) are the leading cause of death globally,
taking an estimated 17.9 million lives each year, according to World Health
Organization. In this problem we will consider data from N = 3815 residents
in a town in USA, from a study with the goal of finding risk factors
for coronary heart disease (CHD). We will consider how the probability
of experiencing CHD during a 10 year period depends on the following
explanatory variables

• male: Gender of individual (binary; 1: male, 0: female)

• age: Age of individual (numerical; in years)

• currentSmoker: Whether or not the individual is a smoker (binary; 1:
smoker; 0: non-smoker)

• cigsPerDay: Average number of cigarettes the individual smoked
(numerical; per day)

• totChol: Total cholesterol level (numerical)

• sysBP: Systolic blood pressure (numerical)

• glucose: Glucose level (numerical)

The response variable (TenYearCHD) is a binary indicator of whether the
individual experienced CHD during the 10 years of study ("1") or not ("0").

(Continued on page 3.)
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a

Below is given output from fitting a model with all the main effects described
above in R.

(i) Describe the model used, including all necessary assumptions, and
expressed in terms of response variable Yi and explanatory variables
xi1, . . . , xi7, i = 1, . . . , N . Be careful to specify what each variable repre-
sents.

(ii) Give an interpretation of the estimate belonging to the explanatory
variable male.

> summary(hd.fit1)

Call:
glm(formula = TenYearCHD ~ male + age + currentSmoker + cigsPerDay +

totChol + sysBP + glucose, family = binomial, data = hd.data)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.182009 0.467910 -19.623 < 2e-16 ***
male 0.549614 0.103885 5.291 1.22e-07 ***
age 0.066969 0.006262 10.694 < 2e-16 ***
currentSmoker 0.047117 0.151228 0.312 0.7554
cigsPerDay 0.018511 0.006046 3.061 0.0022 **
totChol 0.002459 0.001060 2.320 0.0204 *
sysBP 0.016992 0.002098 8.101 5.46e-16 ***
glucose 0.007620 0.001647 4.626 3.72e-06 ***
---

Null deviance: 3289.6 on 3814 degrees of freedom
Residual deviance: 2908.2 on 3807 degrees of freedom

AIC: 2924.2

b

On the next page is given more output from R.

(i) Give two reasons from this output that indicates that currentSmoker
should be dropped from the model.

(ii) Discuss why smoking status does not seem to be significant in this model.

(Continued on page 4.)
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> drop1(hd.fit1,test="LRT")
Single term deletions

Model:
TenYearCHD ~ male + age + currentSmoker + cigsPerDay + totChol +

sysBP + glucose
Df Deviance AIC LRT Pr(>Chi)

<none> 2908.2 2924.2
male 1 2936.4 2950.4 28.159 1.118e-07 ***
age 1 3027.3 3041.3 119.100 < 2.2e-16 ***
currentSmoker 1 2908.3 2922.3 0.097 0.755622
cigsPerDay 1 2917.5 2931.5 9.257 0.002346 **
totChol 1 2913.6 2927.6 5.312 0.021179 *
sysBP 1 2974.0 2988.0 65.760 5.093e-16 ***
glucose 1 2929.9 2943.9 21.643 3.284e-06 ***

c

We will now consider fits of three different models with all main effects ex-
cept currentSmoker, two with interaction terms. A summary of these fits in
the form of an analysis of variance table is given below. Some of the numbers
have been replaced by question marks.

(i) Determine the numbers that have been replaced by question marks.

(ii) Which of the models has the best fit? Give an explanation.

Analysis of Deviance Table

Model 1: TenYearCHD ~ male + age + cigsPerDay + totChol + sysBP + glucose
Model 2: TenYearCHD ~ male + age + cigsPerDay + totChol + sysBP + glucose +

totChol:glucose
Model 3: TenYearCHD ~ male + age + cigsPerDay + totChol + sysBP + glucose +

totChol:glucose + totChol:sysBP
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 3808 2908.3
2 ? 2904.8 1 ? 0.05926 .
3 3806 ? 1 0.9741 0.32366

Problem 3

In this problem we will consider response variables that represent counts,
which are allowed to be correlated within groups. Let Yij denote response
for subject i, j = 1, . . . , d in group j, i = 1, . . . , n, and xij be a known
explanatory variable value. A mixed Poisson generalized mixed model
(GLMM) with log-link and random intercept ui ∼ N(0, σ2u), i = 1, . . . , n
is then given by that the Yij ’s conditional on ui are Poisson-distributed with
conditional mean E(Yij | ui), with

log (E(Yij | ui)) = β0 + β1xij + ui

(Continued on page 5.)
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a

(i) Show that the marginal (unconditional) mean µij = E(Yij) can be
expressed as

E(Yij) = exp (β0 + β1xij)E (exp (ui))

(ii) Determine E (exp (ui)) as a function of σ2u. Hint: Use that the moment
generating function for the N(0, σ2u) is M(t) = exp

(
σ2ut

2/2
)
.

(iii) Comment on the relationship between the fixed effects (intercept and
effect of the explanatory variable) of the log-link Poisson GLMM and the
marginal model E(Yij) = exp (β0 + β1xij).

b

In this part we will consider a dataset where the response variable counts
the number of awards each of 200 high school students have recieved. The
students come from 20 different schools, and the responses are assumed to be
correlated within a school, but independent between different schools. The
explanatory variable we will consider is the gender of the students. Below
(continues on the next page) you see output from fitting two different models
to this data; a GLMM and a marginal model fitted by generalized estimating
equations (GEE).

Generalized linear mixed model fit by maximum likelihood
(Adaptive Gauss-Hermite Quadrature, nAGQ = 100) [glmerMod]

Family: poisson ( log )
Formula: awards ~ 1 + female + (1 | cid)

Data: award.data

AIC BIC logLik deviance df.resid
221.1 231.0 -107.6 215.1 197

Scaled residuals:
Min 1Q Median 3Q Max

-1.5312 -0.5919 -0.3304 0.2047 2.8806

Random effects:
Groups Name Variance Std.Dev.
cid (Intercept) 1.431 1.196

Number of obs: 200, groups: cid, 20

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.2229 0.2975 -0.749 0.45370
femalefemale 0.3632 0.1193 3.044 0.00234 **

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified 98/01/27 (1998)

Model:

(Continued on page 6.)
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Link: Logarithm
Variance to Mean Relation: Poisson
Correlation Structure: Exchangeable

Call:
gee(formula = awards ~ 1 + female, id = cid, data = award.data,

family = poisson, corstr = "exchangeable")

Summary of Residuals:
Min 1Q Median 3Q Max

-1.9440514 -1.3583181 -0.3583181 0.6416819 5.6416819

Coefficients:
Estimate Naive S.E. Naive z Robust S.E.

(Intercept) 0.3062472 0.2239515 1.367472 0.2310288
femalefemale ? 0.1107031 3.238633 0.1228721

Robust z
(Intercept) 1.325580
femalefemale 2.917886

Estimated Scale Parameter: 1.957069

(i) In the GEE fit of the marginal model, there is a question mark instead
of the estimated coefficient for gender. Determine the missing number.

(ii) In the GEE fit of the marginal model, you see two columns with stan-
dard errors for the estimated coefficients; called ”Naive S.E.” and the "Robust
S.E.". Explain briefly the difference between these two.

(iii) What is the method behind finding the numbers in the column "Robust
S.E." called?



APPENDIX: Formulas in STK3100/4100

1) Linear models and least squares

a) Let Y = (Y1, . . . , Yn)T be a vector of random variables with mean vector µ = (µ1, . . . , µn)T

and covariance matrix V = E{(Y − µ)(Y − µ)T}. We consider the linear model µ = Xβ,
where the model matrix X is a n × p matrix, and assume that V = σ2I. If we observe
Y = y = (y1, . . . , yn)T, then the least squares estimate β̂ and the fitted values µ̂ = Xβ̂ are
obtained by minimizing ‖y − µ‖2 = (y − µ)T(y − µ).

b) Let C(X) denote the model space, i.e. the subspace of Rn that is spanned by the columns
of X, and let PX denote the projection matrix onto C(X). Then µ̂ = PXy. The projection
matrix is symmetric and idempotent (i.e. P 2

X = PX), and rank(PX) = trace(PX).

c) The projection matrix PX is unique, i.e. it depends only on the subspace C(X) and not on
the choice of basis vectors for the subspace. If X has full rank, we have PX = X(XTX)−1XT.

d) For a random vector Y with mean vector µ and covariance matrix V and a fixed matrix A,
we have E(Y TAY ) = trace(AV ) + µTAµ.

2) Multivariate normal distribution and normal linear models

a) Y = (Y1, . . . , Yn)T has a multivariate normal distribution with mean vector µ and covariance
matrix V , written Y ∼ N(µ,V ), if its joint pdf is given by

f(y;µ,V ) = (2π)−n/2|V |−1/2 exp{−(1/2)(y − µ)TV −1(y − µ)}

b) Suppose Y ∼ N(µ,V ) is partitioned as

Y =

(
Y1

Y2

)
with µ =

(
µ1

µ2

)
and V =

(
V11 V12

V21 V22

)

then

Y1|Y2 = y2 ∼ N
(
µ1 + V12V

−1
22 (y2 − µ2),V11 − V12V

−1
22 V21

)

c) [Cochran’s theorem] Assume that Y ∼ N(µ, σ2I) and that P1, . . . ,Pk are projection matrices
with

∑k
i=1Pi = I. Then Y TPiY are independent for i = 1, . . . k, and Y TPiY /σ

2 has a non-
central chi-squared distribution with non-centrality parameter λi = µTPiµ/σ

2 and degrees of
freedom equal to the rank of Pi.

3) Generalized linear models (GLMs)

a) A random variable Yi has a distribution in the exponential dispersion family if its pmf/pdf
may be written

f(yi; θi, φ) = exp{[yiθi − b(θi)]/a(φ) + c(yi, φ)},

where θi is the natural parameter and φ is the dispersion parameter. We have E(Yi) = b′(θi)
and var(Yi) = b′′(θi)a(φ).

b) For a GLM we have that Y1, . . . Yn are independent with pmf/pdf from the exponential
dispersion family. The linear predictors η1, . . . , ηn are given by ηi =

∑p
j=1 xijβj = xiβ, and



the expected values µi = E(Yi) satisfy g(µi) = ηi for a strictly increasing and differentiable link
function g. For the canonical link function g(µi) = (b′)−1(µi) we have θi = ηi.

c) The likelihood equations for a GLM are given by

n∑

i=1

(yi − µi)xij
var(Yi)

∂µi
∂ηi

= 0 for j = 1, . . . , p.

d) Let β̂ be the maximum likelihood (ML) estimator for a GLM. Then

β̂ ∼ N
(
β, (XTWX)−1

)
, approximately

whereX is the model matrix andW is the diagonal matrix with elements wi = (∂µi/∂ηi)
2/var(Yi).

e) Consider a GLM with a(φ) = φ/ωi. Let µ̂i = b′(θ̂i) be the ML estimate of µi under the actual
model, and let yi = b′(θ̃i) be the ML estimate of µi under the saturated model. Then

−2 log

(
max likelihood for actual model

max likelihood for saturated model

)
= D(y; µ̂)/φ

where

D(y; µ̂) = 2
n∑

i=1

ωi

[
yi

(
θ̃i − θ̂i

)
− b(θ̃i) + b(θ̂i)

]

is the deviance.

4) Normal and generalized linear mixed models

a) We assume that Yi = (Yi1, . . . , Yid)T for i = 1, . . . n are independent vectors that correspond
to d observations from each of n clusters. A normal linear mixed effects model is given by

Yij = xijβ + zijui + εij ,

where β is a p× 1 vector of fixed effects, ui ∼ N(0,Σu) is a q× 1 vector of random effects, and
εi = (εi1, . . . εid)T ∼ N(0,R) is independent of ui. Often one will have R = σ2I.

b) For a generalized linear mixed model we assume that the conditional pmf/pdf of Yij given
ui ∼ N(0,Σu) is in the exponential dispersion family, and that for a link function g we have

g [E(Yij |ui)] = xijβ + zijui.


