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Solution proposal

Problem 1

1a

i) Show that if Y is a stochastic variable with a distribution belonging to the
exponential family, then E(Y ) = a′(θ) and Var(Y ) = φa′′(θ), where a′ and
a′′ denote the first and second derivatives of a. [Hint: Start with calculating
the first derivative of f(y; θ, φ) with respect to θ.]

Proof for E[Y ] = a′(θ)

First derivative of f: f ′(y; θ, φ) = y−a′(θ)
φ f(y; θ, φ)

Integral of left side:∫
f ′(y; θ, φ)dy =

∂

∂θ

∫
f(y; θ, φ)dy =

∂

∂θ
(1) = 0

Integral of right side:

1

φ
(

∫
yf(y; θ, φ)dy − a′(θ)

∫
f(y; θ, φ)dy) =

E[Y ]− a′(θ)

φ
,

which gives E[Y ] = a′(θ).

We have here assumed that differentiation and integration can be
interchange.

Proof for Var(Y ) = φa′′(θ):

Second derivative: f ′′(y; θ, φ) =
[(

y−a′(θ)
φ

)2
− a′′(θ)

φ

]
f(y; θ, φ)

(Continued on page 2.)
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Integral of left side:∫
f ′′(y; θ, φ)dy =

∂2

∂θ2

∫
f(y; θ, φ)dy =

∂2

∂θ2
(1) = 0

Integral of right side:∫ [(
y − a′(θ)

φ

)2

− a′′(θ)

φ

]
f(y; θ, φ)dy =

Var(Y )

φ2
− a′′(θ)

φ

which gives Var(Y ) = φa′′(θ).

1b

i) Show that the Poisson distribution belongs to the exponential family.

The probability mass function can be written

f(y;λ) =
λy

y!
exp(−λ) = 1

y!
exp(y log(λ)− λ),

and it therefore belongs to the exponential family with

• θ = log(λ)

• a(θ) = λ = exp(θ)

• φ = 1

• c(y;φ = 1) = 1
y!

ii) Show that E(Y ) = Var(Y ) = λ.

E[Y ] = a′(θ) = exp(θ) = λ

Var(Y ) = φa′′(θ) = exp(θ) = λ

1c

i) Give an interpretation of the parameter β1 or some transformation of it.

If we first calculate µ = µ(x1, x2) = exp(β0 + β1x1 + β2x2 and then increase
the value first explanatory by one and calculate µ′ = µ(x1 + 1, x2) =
exp(β0 + β1(x1 + 1) + β2x2), then the ratio µ′/µ = exp(β1).

So, the expectation of the response increases by a multiplicative factor
exp(β1) when x1 is increased by one unit and x2 is unchanged.

The expectation of a Poisson distributed variable is also the rate of a Poisson
process over a given time interval, so exp(β1) can also be called a rate-ratio
and β1 can be called a log-rate-ratio.

ii) Assume then that β0 = 1, β1 = 2 and β2=3 and predict the response Y
for x1 = 1 and x2 = 1 and then for x1 = 2 and x2 = 1.

ŷ = µ̂ = exp(1 + 2 · 1 + 3 · 1) = exp(6) = 403.4288

ŷ = µ̂ = exp(1 + 2 · 2 + 3 · 1) = exp(8) = 2980.958

(Continued on page 3.)
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1d

i) Explain what over-dispersion means in Poisson regression.

If the Poisson assumption holds, then for an observation Yi, E(Yi) = Var(Yi).
Over-dispersion occurs if Var(Yi) > E(Yi).

ii) Explain why the results above show that the current count data are over-
dispersed.

The phihat which is reported here is an estimate of the dispersion factor
φ, given by φ̂ = (1/(n − p + 1))

∑
i(yi − µ̂i)

2/µ̂i, where n is the number of
observations and p+1 is the number or parameters estimated. Since phihat
is much larger than 1, the data are over-dispersed.

iii) Discuss shortly two different possibilities for performing a more correct
analysis than that given above.

Possibility 1 - Quasi-likelihood: Specify only a structure on the expectation
and another on the variance, but do not assume a specific distribution. For
instance, assume Var(Yi) = φµi. The quasi-likelihood estimates are then
exactly the same as the Poisson estimates, but their standard errors are
adjusted.

Possibility 1 - Negative binomial distribution: Assume that the response
follows a negative binomial distribution, which is a distribution for count
data that allows over-dispersion. The variance structure is then Var(Yi) =
µi + θµ2i , where θ is a positive parameter that controls the degree of over-
dispersion.

Problem 2

2a

i) Give an interpretation of a regression coefficient β, or a transformation of
it, in binary regression with logit link function.

Odds is defined as p/(1 − p), so g(p) = log(p/(1 − p)) is the log-odds.
Furthermore the ratio of two odds is called an odds-ratio. If we compute a
probability p for some values of the explanatory variables and a probability p′

for the same values of the explanatory variables except for the j-th variable,
which is increased by one, then g(p)−g(p′) = log(p/(1−p))−log(p′/(1−p′)) =
log[p/(1−p)]/[p′/(1−p′)] = βj . Therefore βj is the log-odds-ratio and exp(β)
is the odds-ratio for one unit increase in the j-th explanatory variable.

ii) Give then a simpler interpretation of β which holds approximately for
small probabilities.

When both the probabilities p and p′ are small, the odds ratio [p/(1 −
p)]/[p′/(1 − p′)] is approximately p/p′, which we can call a relative risk.
Then exp(βj) is the relative risk for one unit increase in the j-th explanatory
variable.

(Continued on page 4.)
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2b

i) Define AIC.

AIC = -2 log likelihood + 2 p where p is the number of parameters in the
model. It gives a balance between the fit to the data and the number of
parameters in the model.

ii) Which one of the models above would you choose based on the given
results? Why?

The model m1.probit with only x1 and the probit link has the lowest AIC
value, and could therefore be chosen as the preferred model. But the model
m1.logit with only x1 and the logit link has almost the same AIC value. I
personally think that models with logit link are easier to interpret, therefore
I choose the m1.logit model.

2c

i) Define the two terms sensitivity and specificity.

Sensitivity: Proportion of correct predictions when true Yi = 1

Specificity: Proportion of correct predictions when true Yi = 0

ii) Describe what a ROC (Receiver Operating Characteristics) curve is, and
draw a plot with one curve for a model with good classification performance
and another model which is no better than random classification.

Compute the sensitivity and the specificity for different threshold values γ
between 0 and 1. Plot sensitivity on the y-axis and (1-specificity) on the
x-axis. A curve for a good model lies in the upper left corner. A curve for
random classification is a straight line.

Problem 3

3a

i) Discuss whether the random effect term bi is an important part of the
model compared to other parts of the model.

The estimated variance of bi is 0.0061 and its standard deviation is 0.0818.
On the original scale, the factor exp(bi) is between exp(−1.96·0.0818) = 0.85
and exp(1.96 · 0.0818) = 1.18 for 95 % of the individuals, and this can
be a seen as an important difference between individuals. However, x1
does also account for individual variation, and Var(β1x1) is estimated to be
2.062022 · 0.087 = 0.369 which is much higher than the variance of bi. Other
terms in the model have also much higher variance than bi. So, compared to
the rest of the model, the random term bi can be neglected.

3b

i) Use the information you have to suggest simplifications or improvements
of the model.

(Continued on page 5.)
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The p value for the Wald test for H0 : β3 = 0 is 0.404, so x3 can be deleted
from the model. This is confirmed by the scatter plot with log(y) vs. x3
which shows no obvious relation between log(y) and x3.

The scatter plot of log(y) vs. x4 shows a clear non-linear relationship between
the two. One possibility can be to divide x4 into two variables around the
value of about 0.5 and estimate a model with two linear pieces joined at 0.5.
Another possibility could be to constrain the curve to be flat for x4 > 0.5.
A third probability could be to include a second order term of x4, i.e. x24.

END


