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Problem 1

The random variable Y is Poisson distributed with pmf

P (Y = y |λ) = λy

y!
exp(−λ), y = 0, 1, 2, . . . . (1)

a) We may rewrite (1) as

P (Y = y |λ) = λy

y!
exp(−λ) = exp{y log(λ)− λ− log(y!)},

which is on the form

exp{[yθ − b(θ)]/a(ϕ) + c(y, ϕ)}, (2)

with θ = log(λ), b(θ) = λ = eθ, a(ϕ) = 1 and c(y, ϕ) = − log(y!).

We now assume that Y1, Y2, . . . , Yn are independent with pmf of the form (1), and let
µi = λi = E(Yi); i = 1, . . . , n.

b) A GLM for Y1, Y2, . . . , Yn with link function g, is speci�ed by assuming that

� Y1, Y2, . . . , Yn are independent and all have pmf on the form (2), which in our
case is the same as (1).

� Corresponding to each Yi we have covariates xi = (xi1, xi2, . . . , xip), often with
xi1 = 1 for all i, and a linear predictor ηi = xiβ =

∑p
j=1 βjxij.

� The mean µi = E(Yi) is linked with the linear predictor by the relation
g(µi) = ηi. Here the link function g is a strictly increasing, di�erentiable
function.

(Continued on page 2.)
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We have a canonical link function when the linear predictor ηi is equal to the natural
parameter θi, i.e. when g(µi) = θi. From question a we have that

log(µi) = log(λi) = θi,

so g(µi) = log(µi) is the canonical link function.

c) We have that Y1, Y2, . . . , Yn are independent with pmf of the form (1) with λi = µi.
Therefore the likelihood function is given by

ℓ(µ;y) =
n∏

i=1

µyi
i

yi!
exp(−µi).

Hence the log-likelihood function becomes

L(µ;y) = log{ℓ(µ;y)} =
n∑

i=1

{yi log(µi)− µi − log(yi!)}.

d) For a saturated model there are no restrictions on the expected values, so there is a
separate parameter µi for each observation yi.

The log-likelihood obtains its maximum value when

∂

∂µi

L(µ;y) = 0 for all i = 1, . . . , n.

Now we have

∂

∂µi

L(µ;y) =
yi
µi

− 1 ,

so the log-likelihood takes its maximal value when yi/µi − 1 = 0. Thus the ML
estimates for the saturated model are µ̃i = yi, and the maximal value of the log-
likelihood becomes

L(y;y) =
n∑

i=1

{yi log(yi)− yi − log(yi!)}.

e) For a Poisson GLM we have a(ϕ) = 1; cf. question a. Then the deviance D(y; µ̂) for
a model with �tted values µ̂ = (µ̂1, . . . , µ̂n)

T is given as

D(y; µ̂) = −2 log

(
max likelihood for actual model

max likelihood for saturated model

)
.

The deviance measures how far the log-likelihood of the model is from the maximum
value of of the log-likelihood. For a Poisson GLM the deviance is given by

D(y; µ̂) = −2 log

(∏n
i=1(µ̂

yi
i /yi!) exp(−µ̂i)∏n

i=1(y
yi
i /yi!) exp(−yi)

)
= 2

n∑
i=1

{
yi log

(
yi
µ̂i

)
− yi + µ̂i

}
.

(Continued on page 3.)
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The deviances may be used for comparing nested models. In order to explain how this
may be done, we consider two Poisson GLM models with the same link function g.
For model M1 we have the linear predictors ηi = xiβ =

∑p
j=1 βjxij; i = 1, . . . , n,

while the linear predictors for model M0 are obtained by setting p−q of the βj's equal
to zero (or by imposing p − q linear restrictions on the βj's). Thus model M0 has q
parameters. The �tted values under model M0 and M1 are denoted, respectively, µ̂0

and µ̂1

We now assume that model M1 holds and want to test the null hypothesis that also
model M0 holds. The likelihood ratio test for this hypothesis problem rejects the null
hypothesis for large values of

G2(M0 |M1) = −2 log

(
max likelihood for model M0

max likelihood for model M1

)
= −2 log

(
max likelihood for actual model

max likelihood for saturated model

)
+2 log

(
max likelihood for actual model

max likelihood for saturated model

)
= D(y; µ̂0)−D(y; µ̂1)

Thus the di�erence between the deviances of the two nested models M0 and M1

can be used for testing the null hypothesis that model M0 holds. When model M0

holds, we have that the di�erence between the deviances is approximately chi-squared
distributed with p− q degrees of freedom.

Problem 2

We assume that the random variable Λ is gamma distributed with pdf

f(λ; k, µ) =
(k/µ)k

Γ(k)
λk−1e−kλ/µ ; λ > 0,

and further that given Λ = λ, the conditional pmf of the random variable Y , given Λ = λ,
takes the form (1).

a) For y = 0, 1, . . ., the marginal pmf of Y is given by

p(y;µ, k) = P (Y = y |µ, k)

=

∫ ∞

0

P (Y = y |λ) f(λ; k, µ) dλ

=

∫ ∞

0

λy

y!
exp(−λ)

(k/µ)k

Γ(k)
λk−1e−kλ/µ dλ

=
(k/µ)k

Γ(k)y!

∫ ∞

0

λy+k−1e−(µ+k)λ/µ dλ

=
(k/µ)k

Γ(k)Γ(y + 1)

∫ ∞

0

(
µ

µ+ k
u

)y+k−1

e−u µ

µ+ k
du [substitute u = (µ+ k)λ/µ]

(Continued on page 4.)
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=
(k/µ)k

Γ(k)Γ(y + 1)

(
µ

µ+ k

)y+k ∫ ∞

0

uy+k−1e−u du

=
(k/µ)k

Γ(k)Γ(y + 1)

(
µ

µ+ k

)y+k

Γ(y + k)

=
Γ(y + k)

Γ(k)Γ(y + 1)

(
µ

µ+ k

)y (
k

µ+ k

)k

.

We now assume that the parameter k is �xed, and consider the random variable Y ∗ = Y/k.
We have that P (Y ∗ = y∗) = P (Y = ky∗), so Y ∗ has pmf

p∗(y∗;µ, k) =
Γ(ky∗ + k)

Γ(k)Γ(ky∗ + 1)

(
µ

µ+ k

)ky∗ (
k

µ+ k

)k

; y∗ = 0,
1

k
,
2

k
, . . . (3)

b) If we introduce

c(y∗, k) = log

(
Γ(ky∗ + k)

Γ(k)Γ(ky∗ + 1)

)
,

we may rewrite the pmf (3) as follows

p∗(y∗;µ, k) = exp

{
(ky∗) log

(
µ

µ+ k

)
+ k log

(
k

µ+ k

)
+ c(y∗, k)

}
= exp

{[
y∗ log

(
µ

µ+ k

)
+ log

(
k

µ+ k

)]/
1

k
+ c(y∗, k)

}
= exp

{[
y∗ log

(
µ

µ+ k

)
+ log

(
1− µ

µ+ k

)]/
1

k
+ c(y∗, k)

}
.

This is of the form (2), with

θ = log

(
µ

µ+ k

)
,

b(θ) = − log

(
1− µ

µ+ k

)
= − log(1− eθ),

a(ϕ) =
1

k
.

c) From general results for the exponential dispersion family, we have that E(Y ∗) = b′(θ)
and var(Y ∗) = a(ϕ)b′′(θ). Hence we have that

E(Y ∗) =
d

dθ

[
− log(1− eθ)

]
=

eθ

1− eθ
=

µ/(µ+ k)

1− µ/(µ+ k)
=

µ

k
.

(Continued on page 5.)
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and

var(Y ∗) =
1

k

d2

dθ2
[
− log(1− eθ)

]
=

1

k

eθ

(1− eθ)2

=
1

k

µ/(µ+ k)

[1− µ/(µ+ k)]2
=

1

k

µ/(µ+ k)

[k/(µ+ k)]2

=
1

k3
µ(µ+ k).

Now Y = kY ∗, so we have

E(Y ) = kE(Y ) = k
µ

k
= µ,

and

var(Y ) = k2 var(Y ∗) =
1

k
µ(µ+ k) = µ+

µ2

k
.

Problem 3

a) The analysis reported in question a is based on a Poisson GLM with log link. To
describe the model we let Yi denote the number of days absent from school for child
number i, and we let xi = (1, xi1, xi2, . . . , xi6) denote its covatiates (including xi0 = 1
for the intercept):

xi1 = 1 if child i is non-aboriginal; xi1 = 0 if child i is aboriginal,

xi2 = 1 if child i is a boy; xi2 = 0 if child i is a girl,

xi3 = 1 if child i is in �rst form in secondary school; xi3 = 0 otherwise,

xi4 = 1 if child i is in second form in secondary school; xi4 = 0 otherwise,

xi5 = 1 if child i is in third form in secondary school; xi5 = 0 otherwise,

xi6 = 1 if child i is a slow learner; xi6 = 0 if child i is an average learner.

The model assumes that the Yi's are independent and Poisson distributed with means
µi = E(Yi) given as

µi = exp(xiβ) = exp

(
6∑

j=0

βjxij

)
.

An implication of the Poisson assumption is that var(Yi) is also given by the
expression above, and this may be a restrictive assumption. The large residual
deviance seen in the output for the Poisson GLM indicate that there is overdispersion
in these data, i.e. a dispersion that is larger than predicted by the Poisson model.

(Continued on page 6.)
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b) The analysis reported in question b is based on a negative binomial GLM with log
link. For this model we still assume that E(Yi) = µi = exp(xiβ), i.e. as in question a.
But here var(Yi) = µi + µ2

i /k is allowed to be larger than the mean (so the model
allows for overdispersion).

The AIC for the Poisson model in question a is 2299.2, while the AIC for the negative
binomial model is 1109.2. This is a very large reduction in the AIC, so the negative
binomial model �ts the data much better than the Poisson model.

c) We here consider a negative binomial GLM with interaction between ethnic group and
age. So in addition to the covariates in question a, we here also have the covariates

xi7 = 1 if child i is non-aboriginal and is in �rst form in secondary school;
xi7 = 0 otherwise,

xi8 = 1 if child i is non-aboriginal and is in second form in secondary school;
xi8 = 0 otherwise,

xi9 = 1 if child i is non-aboriginal and is in third form in secondary school;
xi9 = 0 otherwise,

and the expression for µi = E(Yi) now takes the form

µi = exp

(
9∑

j=0

βjxij

)
.

The AIC for the model in question b is 1109.2, while it is 1104.7 for the model in
question c. So according to AIC, the model in question c should be preferred.

Alternatively, we may use the likelihood ratio test and check if the interaction is
signi�cant. From the output we have that

−2(likelihood rato)

= −2 log (max likelihood model in b)+ 2 log (max likelihood model in c)

= 1093.151− 1082.688 = 10.463

This should be compared to a chi-squared distribution with three degrees of freedom,
which give a P-value of 1.5%. (As tables were not provided, the students could not
compute the P-value at the exam.) Thus the interaction is signi�cant, so we should
prefer the model in question c.

d) Sex and learner status do not enter in any interactions, so they will have a
proportional e�ect on the estimates for the expected number days a child is absent
from school. So when studying the e�ects ethnic group and age, we may consider the
reference levels of sex (which is girl) and learner status (which is average learner).

With sex and learning status at their reference levels, the expected number of days
absent for an aboriginal child is estimated to be

Final grade in primary school: exp(2.534) = 12.6

(Continued on page 7.)
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First form in secondary school: exp(2.534 + 0.087) = 13.7

Second form in secondary school: exp(2.534 + 0.706) = 25.5

Third form in secondary school: exp(2.534 + 0.401) = 18.8

while for a non-aboriginal child we obtain the estimates

Final grade in primary school: exp(2.534 + 0.057) = 13.3

First form in secondary school: exp(2.534 + 0.057 + 0.087− 0.898) = 5.9

Second form in secondary school: exp(2.534 + 0.057 + 0.706− 1.181) = 8.3

Third form in secondary school: exp(2.534 + 0.057 + 0.401− 0.101) = 18.0

We see that the expected number of days absent are about the same for the ethnic
groups for the children in �nal grade in primary school and for third form in secondary
school. But for �rst and second form in secondary school, an an aboriginal child may
expect more than two times as many days of absence as a non-aboriginal child.

Problem 4

We assume that Ui is N(0, σ2)-distributed and that given Ui = ui, the binary random
variables Yi1, . . . , Yid are independent with

P (Yij = 1 |Ui = ui) = 1− P (Yij = 0 |Ui = ui) = Φ(β0 + β1xij + ui). (4)

a) The model (4) is a generalized linear mixed model (GLMM). More speci�cally, it
is a probit-normal model for binary data with random intercept. The model may
be used to study clustered binary data, e.g. the occurrence of a disease in litters of
test animals (each litter is a cluster) or the responses to a number of related yes/no
questions for a number of people (the answers for one person constitute a cluster).
The e�ect of the random intercept ui is to make the observations for the units in a
cluster correlated.

A marginal model for the Yij's is given by

P (Yij = 1) = 1− P (Yij = 0) = Φ(γ0 + γ1xij). (5)

b) In order to study the relation between the GLMM model and the marginal model,
we will derive the marginal probability corresponding to (4). To this end we let Z
be a standard normal random variable that is independent of Ui, and note that since
Φ(z) = P (Z ≤ z), we may write

P (Yij = 1 |Ui = ui) = Φ(β0 + β1xij + ui)

= P (Z ≤ β0 + β1xij + ui)

= P (Z − ui ≤ β0 + β1xij).

(Continued on page 8.)
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If we let fUi
(ui) denote the density of Ui, we have that

P (Yij = 1) =

∫ ∞

−∞
P (Yij = 1 |Ui = ui) fUi

(ui) dui

=

∫ ∞

−∞
P (Z − ui ≤ β0 + β1xij) fUi

(ui) dui

=

∫ ∞

−∞
P (Z − Ui ≤ β0 + β1xij |Ui = ui) fUi

(ui) dui

= P (Z − Ui ≤ β0 + β1xij).

Now Z − Ui ∼ N(0, 1 + σ2), and therefore

Z − Ui√
1 + σ2

∼ N(0, 1).

If follows that

P (Yij = 1) = P

(
Z − Ui√
1 + σ2

≤ β0 + β1xij√
1 + σ2

)
= Φ

(
β0 + β1xij√

1 + σ2

)
.

If we compare the last equation with (5), we see that the relation between the
parameters of the marginal model and the GLMM is given by

γj =
βj√
1 + σ2

for j = 0, 1.

c) The interpretation of the regression coe�cient γ1 for the marginal model and the
regression coe�cient β1 for the GLMM are not the same. γ1 is the population e�ect
(on the probit scale, i.e. the scale of the linear predictor) of one unit's increase in
the covariate x1 without consideration of clusters, while β1 is the e�ect of one unit's
increase of the covariate when considering two units from the same cluster (or with
the same value of the random intercept).

From the result in question b, we see that the regression coe�cient γ1 of the marginal
model is closer to zero than the regression coe�cient β1 of the GLMM. The ratio of
the regression coe�cients for the GLMM and the marginal model is γ1/β1 =

√
1 + σ2.

So the larger the variation of the random intercept in the GLMM, the more the two
regression coe�cients will di�er.


