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Problem 1

We have V ∼ bin(n, π) and Y = V/n. The pmf of Y is given by

P (Y = y) =

(
n

ny

)
πny(1− π)n−ny (1)

for y = 0, 1
n
, 2
n
. . . . n−1

n
, 1.

a) We may rewrite (1) as

P (Y = y) = exp

{
ny log(π) + (n− ny) log(1− π) + log

(
n

ny

)}

= exp

{
y log

(
π

1−π

)
− [− log(1− π)]

1/n
+ log

(
n

ny

)}
.

This is of the form (2) in the exam problems with θ = log
(

π
1−π

)
. Hence π =

eθ/(1 + eθ), and we have that b(θ) = − log(1 − π) = log(1 + eθ), a(φ) = 1/n and
c(y, φ) = log

(
n
ny

)
.

b) We have that

µ = E(Y ) = b′(θ) =
d

dθ
log(1 + eθ) =

eθ

1 + eθ
= π,

and

Var(Y ) = b′′(θ) · a(φ) =
d

dθ

(
eθ

1 + eθ

)
· 1

n
=

eθ

(1 + eθ)2
· 1

n

=
1

n
· eθ

1 + eθ
· 1

1 + eθ
=

1

n
π(1− π).

(Continued on page 2.)
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We then assume that V1, V2, . . . , VN are independent with Vi ∼ bin(ni, πi), and let
Yi = Vi/ni for i = 1, 2, . . . , N . We consider a generalized linear model (GLM) for
Y1, Y2, . . . , YN with canonical link function logit(πi) = log{πi/(1 − πi)} = ηi and linear
predictor ηi = β0 + β1xi. Here x1, . . . , xN are known covariate values.

c) Let y1, y2, . . . , yN be the observed values of Y1, Y2, . . . , YN . Then the likelihood is
given by

`(β0, β1) =
N∏
i=1

(
ni
niyi

)
πniyi
i (1− πi)ni−niyi = C

N∏
i=1

(
πi

1− πi

)niyi

(1− πi)ni ,

where C =
∏N

i=1

(
ni

niyi

)
. Now πi = eηi/(1 + eηi), so the log-likelihood becomes

L(β0, β1) = logC +
N∑
i=1

{
niyi log

(
πi

1− πi

)
+ ni log(1− πi)

}

= logC +
N∑
i=1

{
niyiηi + ni log

(
1

1 + eηi

)}

= logC +
N∑
i=1

{
niyi(β0 + β1xi)− ni log(1 + eβ0+β1xi)

}
We di�erentiate the log-likelihood function, and �nd

∂L(β0, β1)

∂β0
=

N∑
i=1

(
niyi − ni

eβ0+β1xi

1 + eβ0+β1xi

)
=

N∑
i=1

ni(yi − πi),

∂L(β0, β1)

∂β1
=

N∑
i=1

(
niyixi − ni

xie
β0+β1xi

1 + eβ0+β1xi

)
=

N∑
i=1

nixi(yi − πi).

We obtain the maximum likelihood estimates by solving the equation we obtain by
setting the partial derivatives equal to zero. Expressed in terms of the random Yi's
we therefore have that the maximum likelihood estimators are the solutions of the
equations

N∑
i=1

ni(Yi − πi) = 0 and
N∑
i=1

nixi(Yi − πi) = 0.

d) We �rst note that

∂πi
∂β0

=
∂

∂β0

(
eβ0+β1xi

1 + eβ0+β1xi

)
=

eβ0+β1xi

(1 + eβ0+β1xi)2

=
eβ0+β1xi

1 + eβ0+β1xi
· 1

1 + eβ0+β1xi
= πi(1− πi),

(Continued on page 3.)
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and

∂πi
∂β1

=
∂

∂β1

(
eβ0+β1xi

1 + eβ0+β1xi

)
=

xie
β0+β1xi

(1 + eβ0+β1xi)2

= xi
eβ0+β1xi

1 + eβ0+β1xi
· 1

1 + eβ0+β1xi
= xiπi(1− πi).

By di�erentiating the log-likelihood function one more time, we then �nd that

∂2L(β0, β1)

∂β2
0

=
∂

∂β0

N∑
i=1

ni(yi − πi) = −
N∑
i=1

ni
∂πi
∂β0

= −
N∑
i=1

niπi(1− πi),

∂2L(β0, β1)

∂β2
1

=
∂

∂β1

N∑
i=1

nixi(yi − πi) = −
N∑
i=1

nixi
∂πi
∂β1

= −
N∑
i=1

nix
2
iπi(1− πi),

and

∂2L(β0, β1)

∂β0∂β1
=
∂2L(β0, β1)

∂β1∂β0
=

∂

∂β1

N∑
i=1

ni(yi−πi) = −
N∑
i=1

ni
∂πi
∂β1

= −
N∑
i=1

nixiπi(1−πi).

The second order patrial derivatives do not depend on the yi's. Therefore the observed
and the expected information matrices coincided, and we have that

J =

{
−E

(
∂2L(β0, β1)

∂βh∂βj

)}
h,j=0,1

=

( ∑N
i=1 niπi(1− πi)

∑N
i=1 nixiπi(1− πi)∑N

i=1 nixiπi(1− πi)
∑N

i=1 nix
2
iπi(1− πi)

)
.

Problem 2

a) The analysis reported in question a is based on a logistic regression model. To
describe the model, we let Yi = 1 if passenger i survived the disaster, Yi = 0 if
passenger i died, and we let xi = (1, xi1, xi2, xi3, xi4) denote its covariates (including
xi0 = 1 for the intercept) de�ned as follows:

xi1 = 1 if passenger i is female; xi1 = 0 if passenger i is male,

xi2 = ai − 30, where ai is the age (in years) of passenger i,

xi3 = 1 if passenger i travelled on second class; xi3 = 0 otherwise,

xi4 = 1 if passenger i travelled on third class; xi4 = 0 otherwise.

The model assumes that the Yi's are independent and that πi = P (Yi = 1) is given
as

πi =
exp

(∑4
j=0 βjxij

)
1 + exp

(∑4
j=0 βjxij

) .
(Continued on page 4.)
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To give an interpretation of the estimated intercept, we consider a 30 years old
male passenger who travelled on �rst class. Such a passenger has xij = 0 for
j = 1, 2, 3, 4, so (according to the given model) his probability of surviving the
disaster is πi = eβ0/(1 + eβ0), and this is estimated by

π̂i =
eβ̂0

1 + eβ̂0
=

e−0.007567

1 + e−0.007567
= 0.498.

This gives an interpretation of the estimated intercept.

To interpret the estimate for (centered) age, we consider two passengers, k and i, of
the same sex who travelled on the same class, but where passenger k is one year older
than passenger i. Then the odds ratio for the two passengers is

OR(k, i) =
πk/(1− πk)
πi/(1− πi)

=
exp

(∑4
j=0 βjxkj

)
exp

(∑4
j=0 βjxij

) = eβ2 ,

and this is estimated by

ÔR(k, i) = eβ̂2 = e−0.034393 = 0.966.

Thus the odds of surviving is reduced by 3.4% when the age is increased by one year.

b) The model in question a has (residual) deviance 982.45 with 1041 degrees of
freedom, while the (residual) deviance of the model in question b is 931.99 with
1039 degrees of freedom. The di�erence in (residual) deviance between the two
models is 982.45 − 931.99 = 50.46, while the di�erence in the degrees of freedom
is 1041 − 1039 = 2. The di�erence between the deviances equals minus two times
the likelihood ratio of the model in a to the model in b. So it is approximately chi-
squared distributed with 2 degrees of freedom if the model in a holds. Comparing the
di�erence 50.46 between the deviances with a chi-squared distribution with 2 degrees
of freedom, we see that the model in b gives an improved �t compared to the model
in a.

For the model in question b there is interaction between sex and passenger class. So
in addition to the covariates in question a, we for this model also have the covariates:

xi5 = 1 if passenger i is female who travelled on second class; xi5 = 0 otherwise,

xi6 = 1 if passenger i is female who travelled on third class; xi6 = 0 otherwise.

The expression for πi = P (Yi = 1) now becomes

πi =
exp

(∑6
j=0 βjxij

)
1 + exp

(∑6
j=0 βjxij

) .
In order to describe the e�ects of sex and passenger class, we consider a passenger
that is 30 years old (which makes xi2 = 0).

(Continued on page 5.)
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For a 30 years old male the probability of surviving the disaster is estimated to be:

� For a male at �rst class:

π̂i =
eβ̂0

1 + eβ̂0
=

e−0.234083

1 + e−0.234083
= 0.442.

� For a male at second class:

π̂i =
eβ̂0+β̂3

1 + eβ̂0+β̂3
=

e−0.234083−1.600280

1 + e−0.234083−1.600280
= 0.138.

� For a male at third class:

π̂i =
eβ̂0+β̂4

1 + eβ̂0+β̂4
=

e−0.234083−1.576159

1 + e−0.234083−1.576159
= 0.141

For a 30 years old female the probability of surviving the disaster is estimated to be:

� For a female at �rst class:

π̂i =
eβ̂0+β̂1

1 + eβ̂0+β̂1
=

e−0.234083+3.886388

1 + e−0.234083+3.886388
= 0.975.

� For a female at second class:

π̂i =
eβ̂0+β̂1+β̂3+β̂5

1 + eβ̂0+β̂1+β̂3+β̂5
=

e−0.234083+3.886388−1.600280+0.070407

1 + e−0.234083+3.886388−1.600280+0.070407
= 0.893.

� For a female at third class:

π̂i =
eβ̂0+β̂1+β̂4+β̂6

1 + eβ̂0+β̂1+β̂4+β̂6
=

e−0.234083+3.886388−1.576159−2.488805

1 + e−0.234083+3.886388−1.576159−2.488805 = 0.398.

We see that for all three classes, the probability that a female will survive is higher
than for a male. For males the probability for surviving is highest for a �rst class
passenger (44.2%) and much lower for a second or third class passenger (13.8% and
14.1 %, respectively). For females the probability of surviving is high both for �rst
and second class (97.5% and 89.3%, respectively) and much lower for a third class
passenger (39.8%).

c) The analysis of deviance table with numbers �lled in for the question marks is given
below. The numbers that have been �lled in are underlined.

Model 1: Survived~Sex+Cage+Class+Sex:Class

Model 2: Survived~Sex+Cage+Class+Sex:Class+Cage:Class

Model 3: Survived~Sex+Cage+Class+Sex:Class+Cage:Class+Sex:Cage

Model 4: Survived~Sex+Cage+Class+Sex:Class+Cage:Class+Sex:Cage+Sex:Cage:Class

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 1039 931.99

2 1037 922.17 2 9.82 0.00739

3 1036 917.84 1 4.3308 0.03743

4 1034 915.97 2 1.8661 0.39335

(Continued on page 6.)
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In order to describe how we have arrived at the underlined numbers, we �rst describe
the content of columns two to �ve in the analysis of deviance table:

� Resid.Df is the residual degrees of freedom and equals N − p, where N is the
number of observations (here N = 1046) and p is the number of parameters in
the model.

� Resid.Dev is the deviance for the �tted model. (Note that what is denoted
`deviance' in the text book, is denoted `residual deviance' by R.)

� Df is the di�erence in residual degrees of freedom for the model on the line above
and the actual model. Note that this is the same as the di�erence in the number
of parameters of the actual model and the model on the line above.

� Deviance is the di�erence in deviance for the model on the line above and the
actual model.

Using this, we �nd the underlined numbers as follows:

� Resid.Df for model 3: Model 3 has 1 parameter for the intercept, 1 parameter
for the main e�ect of Sex, 1 parameter for main e�ect of Cage, 2 parameters
for the main e�ect of Class, 2 parameters for the interaction Sex:Class,
2 parameters for the interaction Cage:Class, and 1 parameter for the interaction
Sex:Cage. In total this gives 10 parameters, so Resid.Df equals 1046 − 10 =
1036. [Alternatively (and easier) we may use that Resid.Df for model 2 is 1037
and the di�erence in residual degrees of freedom between models 2 and 3 is 1,
so Resid.Df for model 3 is 1037− 1 = 1036.]

� Resid.Dev for model 4: From the output, the (residual) deviance of model 3
is 917.84 and the di�erence in (residual) deviance between models 3 and 4 is
1.8661. Hence the (residual) deviance for model 4 is 917.84− 1.87 = 915.97.

� Df for model 2: The di�erence in residual degrees of freedom for models 1 and
2 is 1039− 1037 = 2.

� Deviance for model 2: The di�erence in (residual) deviance between models 1
and 2 is 931.99− 922.17 = 9.82.

To compare the models, we may look at the P-values in the last column of the analysis
of deviance table. (The P-value for a line in the table, is the P-value for a likelihood
ratio test that tests the null hypothesis that the model on the previous line of the
table holds, assuming that the model on the given line holds.) From the P-values, we
see that model 2 gives a signi�cantly better �t than model 1, and that model 3 gives
a signi�cantly better �t than model 2. But model 4 does not signi�cantly improve
the �t compared to model 3. Therefore we prefer model 3.

(Continued on page 7.)
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Problem 3

a) The projection matrix is given by P1 = X(XTX)−1XT. To evaluate this, we �rst
note that

XTX =

[
1T
n

(x− x̄1n)T

]
[1n , x− x̄1n]

=

[
1T
n1n 1T

n (x− x̄1n)

(x− x̄1n)T1n (x− x̄1n)T(x− x̄1n)

]

=

[
n

∑n
i=1(xi − x̄)∑n

i=1(xi − x̄)
∑n

i=1(xi − x̄)2

]

=

[
n 0

0 M

]
,

and therefore

(XTX)−1 =

[
n−1 0

0 M−1

]
.

We then �nd that the projection matrix may be given as

P1 = X(XTX)−1XT

= [1n , x− x̄1n]

[
n−1 0

0 M−1

] [
1T
n

(x− x̄1n)T

]

=
[
n−11n , M

−1(x− x̄1n)
] [ 1T

n

(x− x̄1n)T

]
= n−11n1

T
n +M−1(x− x̄1n)(x− x̄1n)T

b) From the result in a, we �nd the vector of �tted values may be given as

µ̂ = P1Y

=
[
n−11n1

T
n +M−1(x− x̄1n)(x− x̄1n)T

]
Y

= n−11n1
T
nY +M−1(x− x̄1n)(x− x̄1n)TY

= 1nn
−1

n∑
i=1

Yi + (x− x̄1n)M−1
n∑
i=1

Yi(xi − x̄)

= Y 1n + β̂1(x− x̄1n).

(Continued on page 8.)
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The projection matrix for the null model µi = E(Yi) = β0 is P0 = n−11n1
T
n . We consider

the orthogonal decomposition

Y = P0Y + (P1 − P0)Y + (I − P1)Y

with corresponding sum of squares decomposition

Y TY = Y TP0Y + Y T(P1 − P0)Y + Y T(I − P1)Y .

c) Using the result in question a, we have that

Y T(P1 − P0)Y = Y T[M−1(x− x̄1n)(x− x̄1n)T]Y

= M−1[Y T(x− x̄1n)] [(x− x̄1n)TY ]

= M−1

[
n∑
i=1

Yi(xi − x̄)

]2
= Mβ̂ 2

1 ,

which shows the �rst result. For the second result, we note that since I − P1 is a
projection matrix, it is idempotent and symmetric. Hence we have that

I − P1 = (I − P1)(I − P1) = (I − P1)
T(I − P1).

Then by the result in question b, we have that

Y T(I − P1)Y = Y T(I − P1)
T(I − P1)Y

= [(I − P1)Y ]T(I − P1)Y

= (Y − P1Y )T(Y − P1Y )

= [Y − Y 1n − β̂1(x− x̄1n)]T[Y − Y 1n − β̂1(x− x̄1n)]

=
n∑
i=1

[
Yi − Y − β̂1(xi − x)

]2
,

which shows the second result.

d) By Cochran's theorem we have that the terms on the right-hand side of (4) in the
exam problems are independent, and when divided by σ2 they are (non-central) chi-
squared distributed. In particular, it follows that

Mβ̂ 2
1 /σ

2 = Y T(P1 − P0)Y /σ
2

and

n∑
i=1

[
Yi − Y − β̂1(xi − x)

]2
/σ2 = Y T(I − P1)Y /σ

2

(Continued on page 9.)
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are independent and (non-cental) chi-squared distributed.

Further, for (5) in the exam problems the degrees of freedom is given by (using that
the rank of a projection matrix equals is trace)

df1 = rank(P1 − P0) = trace(P1 − P0)

= trace(P1)− trace(P0) = rank(P1)− rank(P0)

= 2− 1 = 1,

while the degrees of freedom for (6) equals

df2 = rank(I − P1) = trace(I − P1)

= trace(I)− trace(P1) = trace(I)− rank(P1)

= n− 2.

The mean vector µ = Xβ is in the model space C(X), so P1µ = µ. Therefore, by
Cochran's theorem, the non-centrality parameter of (6) is

λ2 =
µT(I − P1)µ

σ2
=
µT(µ− P1µ)

σ2
=
µT(µ− µ)

σ2
= 0

e) For testing the the null hypothesis H0 : β1 = 0 versus the alternative hypothesis
HA : β1 6= 0, we may use the test statistic

F =
Y T(P1 − P0)Y /1

Y T(I − P1)Y /(n− 2)
=

(n− 2)Mβ̂ 2
1∑n

i=1

[
Yi − Y − β̂1(xi − x)

]2 .
By the results of question d (including the one given in parenthesis), this has a
non-central F-distribution with 1 and n − 2 degrees of freedom and non-centrality
parameter λ1 = Mβ2

1/σ
2. In particular, under H0, we have λ1 = 0 and then F has a

central F-distribution with 1 and n− 2 degrees of freedom.


