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Examination in: STK3100/STK4100 — Introduction to generalized
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Examination hours: 9.00 – 13.00.

This problem set consists of 0 pages.

Appendices: Formulas for STK3100 and STK4100

Permitted aids: Approved calculator

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Problem 1

a) The odds is defined as

Odds(xi) =
πi

1− πi
=

exp(α+βxi)
1+exp(α+βxi)

1
1+exp(α+βxi)

= exp(α + βxi)

Then we can write an odds-ratio between observations with explanatory
variables x′i = xi + 1 and xi as

OR =
Odds(xi + 1)

Odds(xi)
=

exp(α + β(xi + 1))

exp(α + βxi)
= exp(β)

When both πi and πi′ are small then 1− πi ≈ 1 and 1− πi′ ≈ 1. Thus
Odds(xi) ≈ πi and exp(β) = OR ≈ πi′/πi = RR, i.e. a relative risk

b) We have

P(Yi = 1|Zi = 1) =
P(Yi = 1 ∩ Zi = 1)

P(Zi = 1)

where P(Yi = 1 ∩ Zi = 1) = P(Zi = 1|Yi = 1)P(Yi = 1) = ρ1πi.

Similarily P(Yi = 0∩Zi = 1) = P(Zi = 1|Yi = 0)P(Yi = 0) = ρ0(1−πi).
Thus P(Zi = 1) = ρ1πi + ρ0(1− πi) and

P(Yi = 1|Zi = 1) =
ρ1πi

ρ1πi + ρ0(1− πi)
=

ρ1
exp(α+βxi)

1+exp(α+βxi)

ρ1
exp(α+βxi)

1+exp(α+βxi)
+ ρ0

1
1+exp(α+βxi)

(Continued on page 2.)
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which simplifies to

P(Yi = 1|Zi = 1) =
ρ1 exp(α + βxi)

ρ1 exp(α + βxi) + ρ0
=

exp(α∗ + βxi)

1 + exp(α∗ + βxi)

with α∗ = α + log(ρ1/ρ0).

The implication of the result is that the same odds-ratio exp(β) can be
estimated both on cohort (population) and on case-control data.

Problem 2

a) The gamma density can be rewritten as

f(y;µ, k) = exp(− k
µ
y − k log(µ) + k log(k) + (k − 1) log(y)− log(Γ(k)))

= exp( (−1/µ)y−log(µ)
1/k

− k log(k) + (k − 1) log(y)− log(Γ(k)))

= exp((θy − b(θ))/φ+ c(y, φ))

with θ = −1/µ, b(θ) = log(µ) = − log(1/µ) = − log(−θ), φ = 1/k and
c(y, φ) = − log(1/φ)/φ+ (1/φ− 1) log(y)− log(Γ(1/φ)).

We have E[Y ] = b′(θ) = − 1
−θ (−1) = −1

θ
= µ and var[Y ] = φb′′(θ) =

φ 1
θ2

= φµ2.

b) A GLM consists of three components

(i) Independent Yi from a distribution exp((θiy − b(θi))/φ + c(y, φ))
with µi = b′(θi)

(ii) A linear predictor ηi =
∑p

j=1 βjxij

(iii) A link function g(µi) = ηi.

We saw in a) that (i) was satisfied, so a GLM for gamma distributed
Yi thus requires specification of (ii) the linear predictor ηi and (iii) the
link function g().

The log-likelihood can be written as L(β) =
∑n

i=1(yiθi − b(θi))/φ +
c(yi, φ). By the chain rule the derivatives of L(β) then becomes

∂L(β)

∂βj
=

n∑
i=1

∂ηi
∂βj

∂µi
∂ηi

∂θi
∂µi

∂(yiθi − b(θi))
∂θi

1

φ
=

n∑
i=1

xij
∂µi
∂ηi

(yi − µi)
φ

∂θi
∂µi

and since ∂θi
∂µi

= 1/∂µi
∂θi

= 1/b′′(θi) and var[Yi] = φb′′(θ) = φµ2
i for the

gamma family we obtain

n∑
i=1

yi − µi
φµ2

i

xij
∂µi
∂ηi

= 0 for j = 1, . . . , p

(Continued on page 3.)
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c) Since E[Yi] − µi = 0 as long as the µi are correctly specified the
score equations are still unbiased. The construction is called the
(score equations) for quasi-likelihood which only require the structure of
expectation and variance to be correctly specified to give asymptotically
normal estimators with expected information matrix equal to the
covariance matrix of the scores.

The dispersion parameter φ can be estimated using the Pearson X2

with the particular variance structure, thus we can use

φ̂ =
X2

n− p
=

1

n− p

n∑
i=1

(yi − µ̂i)2

µ̂2
i

as a consistent estimator of φ when var[Yi] = φµ2
i .

d) We see that the price depends significantly on x1 size, x4 rent, x5
distance to the east (x) and also to whether the appartement has a
balcony (x3), but that the number of rooms (x2) does not a significantly
effect (when adjusting for size). Increase of x1 and x3 increases the
price, whereas increase in x4 and x5 decreases the price.

The natural estimate for µ = η = β0 +
∑5

j=1 βjxj = βtx equals µ̂ =

β̂0+
∑5

j=1 β̂jxj = 526.64+18.4∗70+25.77∗2−0.12745∗1000−93.29∗2 =
1552 x 1000 NOK.

With µ̂ = β̂′x we can estimate var(µ̂) by xtΣ̂x where Σ̂ is the estimated
covariance matrix for β̂.

e) The linear regression model used here can be expressed as

Yi = β0 +
5∑
j=1

βjxij + εi

where the εi ∼ N(0, σ2) and independent.

Roughly the β̂j and p-values correspond well between the gamma-
regression and the usual linear regression model. The residual plots
of (deviance) residuals vs. fitted values reveal no clear non-linearities
for either model. However, it seems that the residuals for the linear
regression model tend to increase as the fitted values increases. It
appears that for the gamma model the deviance residuals does not
display such a tendency. It may thus be that the gamma model
with variance structure φµ2 captures heteroscedasticity better than the
constant variance in the linear regression.

(Although the homoscedastic model did not affect estimates or p-values
much it will certainly be an important issue if we want prediction
intervals for predicted prizes with a given new vector of explanatory
variables x. But this perspective was not discussed seriously in
STK3100/4100 this semester).

(Continued on page 4.)
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Problem 3

a) We have E[Yij] = E[E(Yij|ui)] = E[exp(β0 + β1xij + ui)] = exp(β0 +
β1xij)E[eui ] since β0 + β1xij is a constant, not a random variable.

Also, E[eui ] = M(1) = exp(σ2
u/2), thus marginally E[Yij] = exp(β0 +

β1xij + σ2
u/2) and only the intercept β0 is changed relative to the

generalized linear mixed effects model.

b) We have that var[Yij] = E[var(Yij|ui)] + var[E(Yij|ui)]. Here
var(Yij|ui)] = exp(β0 + β1xij + ui) = E(Yij|ui)] and so E[var(Yij|ui)] =
exp(β0 + β1xij + σ2

u/2).

Furthermore, var[E(Yij|ui)] = var(exp(β0 + β1xij + ui)) = exp(2(β0 +
β1xij))var(exp(ui)) = exp(2(β0 + β1xij) [M(2) −M(1)2] and M(2) −
M(1)2 = exp(2σ2

u)− exp(σ2
u) = exp(σ2

u)(exp(σ2
u)− 1). Thus

var[Yij] = exp(β0+β1xij+σ
2
u/2)+exp(2(β0+β1xij)) exp(σ2

u)(exp(σ2
u)−1).

c) Also when Yij given ui is gamma distributed we get E[Yij] = exp(β0 +
β1xij + σ2

u/2) by the same derivation as in a). The result that only the
intercept changes from the mixed to the marginal model depends only
on the log-link structure.

For the marginal variances of the Yij we again have var[Yij] =
E[var(Yij|ui)] + var[E(Yij|ui)] and

var[E(Yij|ui)] = var(exp(β0 + β1xij + ui))
= exp(2(β0 + β1xij))var(exp(ui))
= exp(2(β0 + β1xij)) exp(σ2

u)(exp(σ2
u)− 1)

as in question b).

Furthermore, var(Yij|ui) = φµ2
ij = φ exp(2(β0 + β1xij + ui)), so

E[var(Yij|ui)] = E[φ exp(2(β0 + β1xij + ui))]
= φ exp(2(β0 + β1xij))E[exp(2ui)]
= φ exp(2(β0 + β1xij))M(2) = φ exp(2(β0 + β1xij) + 2σ2

u)

As in b) the answer is then obtained adding these two terms.

END

(Continued on page 5.)


