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Examination in: STK3100 / STK4100 — Introduction to generalized
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Day of examination: Wednesday December 2nd 2020

Examination hours: 9.00 – 13.00.

This problem set consists of 5 pages.

Appendices: Formulas in STK3100 / STK4100

Permitted aids: All resources

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Problem 1

a) We rewrite λy

y!
exp(−λ) = exp(y log(λ) − λ − log(y!)) which gives

θ = log(λ)), λ = exp(θ) = b(θ) and c(y) = − log(y!).

By general results µ = E[Y ] = b′(θ) = exp(θ) = λ and var[Y ] = b′′(θ) =
exp(θ) = λ = µ.

b) For y = 1, 2, 3, . . . we have

P(Y = y|Y > 0) =
P(Y = y)

P(Y > 0)
=

P(Y = y)

1− P(Y = 0)
=
λy exp(−λ)/y!

1− exp(−λ)

Then rewrite λy

y!
exp(−λ)/(1− exp(−λ)) = exp(y log(λ)−λ− log(y!)−

log(1− exp(−λ)))) = exp(yθ − b(θ) + c(y)) with θ = log(λ) (as in a)),
b(θ) = λ + log(1 − exp(−λ)) = exp(θ) − log(1 − exp(− exp(θ))) and
c(y) = − log(y!) (also as in a)).

c) We have (when f(y; γ) is a density, otherwise replace integral by sum)
P(Y ∈ B) =

∫
B
f(y; γ)dy = exp(−b0(γ))

∫
B

exp(γy − c0(y))dy. Thus
Y |Y ∈ B has a density

fB(y; θ) = f(y;γ)

P(Y ∈B)
= exp(γy−b0(γ)+c0(y))

exp(−b0(γ))
∫
B exp(γy−c0(y))dy

= exp(γy − log(
∫
B

exp(γy − c0(y))dy) + c0(y))

and so θ = γ, c(y) = c0(y) and b(θ) = log(
∫
B

exp(θy − c(y))dy).

(Continued on page 2.)
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Problem 2

a) The logistic regression model here is

P(Yi = 1|xi1, xi2) =
exp(β0 + β1x1i + β2xi2)

1 + exp(β0 + β1x1i + β2xi2
.

Thus we get the odds

P(Yi = 1|xi1, xi2)
1− P(Yi = 1|xi1, xi2)

= exp(β0 + β1x1i + β2xi2)

which lead to the odds-ratio

(
P(Yi = 1|xi1 + 1, xi2)

(1− P(Yi = 1|xi1 + 1, xi2))
)/(

P(Yi = 1|xi1, xi2)
(1− P(Yi = 1|xi1, xi2))

) = exp(β1)

as general interpretations of exp(β1) as odds-ratios when changing xi1
by one unit keeping xi2 constant and similarly for exp(β2)

When all P(Yi = 1|xi1, xi2) are small we have 1−P(Yi = 1|xi1, xi2) ≈ 1
and so

(
P(Yi = 1|xi1 + 1, xi2)

(1− P(Yi = 1|xi1 + 1, xi2))
)/(

P(Yi = 1|xi1, xi2)
(1− P(Yi = 1|xi1, xi2))

) ≈ P(Yi = 1|xi1 + 1, xi2)

P(Yi = 1|xi1, xi2)
,

i.e. as a relative risk.

Inserting estimates β̂j leads to estimated odds-ratios approximated by

estimated relative risks. Here we get exp(β̂1) = exp(2.20) = 9.02 so as
an approximation bad health increases the chance of frequent doctorial
visits by a factor 9 (Actually this will be an exaggerated increase since
exp(2.20) = 9.02 is a large value). Similarly exp(β̂2) = exp(−0.338) =
0.71, so after the health reform the proportions of women with frequent
doctoral visits were approximately reduced by 30%.

b) Approximately the MLE β̂j ∼ N(βj, se
2
j) (by slight abuse of notation

since sej are statistics/random variables) and so

0.95 ≈ P(−1.96 < (β̂j − βj)/sej < 1.96)

= P(β̂j − 1.96sej < βj < β̂j + 1.96sej)

= P(exp(β̂j − 1.96sej) < exp(βj) < exp(β̂j + 1.96sej))

Inserting the estimated regression coefficients and standard errors gives
95% confidence interval

(6.51, 12.51) for exp(β1)

(0.52, 0.98) for exp(β2),

(Continued on page 3.)
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none of which overlaps the value 1. Thus we can reject both null
hypotheses H0j at a 5 percent level. In particular the interval
for exp(β1) has a low end far from 1, indicating strong statistical
significance. This is confirmed by the |zj| = |β̂j/sej| being values larger
than 2 and p-values less than 0.05 (in particular for j = 1).

c) Deviances are two times the difference between the log-likelihood with
a specific model and the log-likelihood with a saturated model where
fitted values ỹi are equal to observed values yi.

Differences in deviances between two nested models, i.e. a smaller
model is a special case of a larger, is chi-square distributed with degrees
of freedom equal to the diiference in number of parameters between the
model given that the smaller model is true.

The approximation to the χ2 distribution stems for the differences in
deviances being equal to twice the differences in log-likehoods betweens
the models, as the saturated log-likelihood terms cancels out, and so is
due to the properties of the likelihood ratio test.

A deviance table gives deviances, changes in deviances and changes
in no. of parameters for a series of nested models. This gives the
opportunity to test a series of models and evaluate which (often
categorical) explanatory variables that are essential or non-essential
for the outcome.

In the table below the questions marks have been replaced by the acutal
numbers:

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 2226 1303.4

badh 1 158.613 2225 1144.8 < 2.2e-16

reform 1 4.404 2224 1140.4 0.035849

educat 2 2.339 2222 1138.0 0.310536

inccat 2 8.641 2220 1129.4 0.013292

badh:reform 1 1.458 2219 1127.9 0.227285

badh:inccat 2 0.851 2217 1127.1 0.653313

educat:inccat 4 13.689 2213 1113.4 0.008357

Problem 3

a) We get

µ = E[Y ] = E[exp(V )] = MV (1) = exp(γ∗1+
1

2
σ2∗12) = exp(γ+

1

2
σ2).

Thus

var[Y ] = E[Y 2]− (E[Y ])2 = MV (2)−MV (1)2 = exp(2γ + 2σ2)− exp(2γ + σ2)

= µ2(exp(σ2)− 1) = φµ2

(Continued on page 4.)
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with φ = exp(σ2)− 1.

b) Since µi = exp(α + βxi + 1
2
σ2) = exp(γi + 1

2
σ2) with γi = α + βxi we

get that
E[Vi] = E[log(Yi)] = γi = α + βxi

and so (α, β) can be estimated by least squares estimates (α̂, β̂) of a
simple linear regression on Vi = log(Yi). Furthermore σ2 can then be
estimated as σ̂2 =

∑n
i=1(Vi − α̂ − β̂xi)

2/(n − 2) which then leads to

estimate φ̂ = exp(σ̂2)− 1 of φ.

c) The score equations for generalized linear models can be written as

n∑
i=1

∂µi
∂βj

Yi − µi
var(Yi)

=
1

φ

n∑
i=1

∂µi
∂βj

Yi − µi
ν∗(µi)

= 0; j = 1, . . . , p

for models with var(Yi) = φν∗(µi).

These estimating equations can also be used as so-called quasi-
likelihood equations under the weaker assumption that Yi; i = 1, . . . , n,
are independent, but not necessarily from an exponential dispersion
family, g(µi) = g(E[Yi]) = β′xi for a link function g() and variance
specification var(Yi) = φν∗(µi). This leads to consistent and
asymptotically normal estimates of β with a variance matrix as the
inverse of the information matrix (- expected Jacobi) based on the
quasi-score function.

In this particular case one obtains the estimates by specifying a gamma
family with an identity link in the glm-command (since the variance
function for the gamma family equals µ2) or equivalently by specifying
a quasi-family with identity link and µ2 variance.

Problem 4

a) When ui ∼ N(0, σ2) it has a density f(u;σ2
u) = exp(−u2/(2σ2

u))/
√

2πσ2
u.

Thus the marginal probability is by the rule of double expectation

P(Yij = 1|xij) = E[P(Yij = 1|xij, ui)] =

∫
exp(β0 + β1xij + u)

1 + exp(β0 + β1xij + u)
f(u;σ2

u)du

Similarily, for j = 0, 1 and k = 0, 1,

πi(j, k; β0, β2, σ
2
u) = P(Yi1 = j, Yi2 = k|xi1, xi2)

= E[P(Yi1 = j, Yi2 = k|xi1, xi2, ui)]

= E[P(Yi1 = j|xi1, xi2, ui)P(Yi2 = k|xi1, xi2, ui)]

=
∫ exp(j(β0+β1xi1+u))

1+exp(β0+β1xi1+u)
exp(k(β0+β1xi2+u))
1+exp(β0+β1xi2+u)

f(u;σ2
u)du

(Continued on page 5.)
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which can not be written as P(Yi1 = 1|xi1)P(Yi2 = 1|xi2). Thus Yi1 and
Yi2 are marginally dependent.

The marginal likelihood can then be written

l(β0, β1, σ
2
u) =

n∏
i=1

πi(Yi1, Yi2; β0, β1, σ
2
u).

b) If Yi1 + Yi2 = 2 then necessarily both Yi1 = 1 and Yi2 = 1, thus
P(Yi1 = 1|Yi1 + Yi2 = 2) = 1. Similarly, Yi1 + Yi2 = 0 imply that
both Yi1 = 0 and Yi2 = 0 and so also P(Yi1 = 0|Yi1 + Yi2 = 0) = 1.
Thus no such pair (Yi1, Yi2) will conditionallly on Yi1 + Yi2 contain any
information on β1.

But when Yi1 + Yi2 = 1 then either Yi1 = 1 and Yi2 = 0 or Yi1 = 0 and
Yi2 = 1 and so, conditionally on ui, xi1 and x2i,

P(Yi1 = 1|Yi1 + Yi2 = 1) = P(Yi1=1,Yi2=0)

P(Yi1=1,Yi2=0)+P(Yi1=0,Yi2=1)

= exp(β1(xi1−xi2))
1+exp(β1(xi1−xi2))

since (same conditioning on ui, xi1, xi2)

P(Yi1 = 1, Yi2 = 0) =
exp(β0 + β1xi1 + ui)

1 + exp(β0 + β1xi1 + ui)

1

1 + exp(β0 + β1xi2 + ui)
.

The expression for P(Yi1 = 0, Yi2 = 1) has the same denominator which
then cancel out in P(Yi1 = 1|Yi1 + Yi2 = 1). One is then left with

P(Yi1 = 1|Yi1 + Yi2 = 1) = exp(β0+β1xi1+ui)
exp(β0+β1xi1+ui)+exp(β0+β1xi2+ui)

= exp(β1xi1)
exp(β1xi2)+exp(β1xi2)

= exp(β1(xi1−xi2))
1+exp(β1(xi1−xi2))

This means that it is possible to estimate β1 by running a logistic
regression

– with outcome Yi1

– for pairs with Yi1 + Yi2 = 1

– with explanatory variables xi1 − xi2
– and no intercept

END


