UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in:	STK3100 / STK4100 — Introduction to generalized linear models. Wednesday December 2nd 2020				
Day of examination:					
Examination hours:	9.00-13.00.				
This problem set con	sists of 5 pages.				
Appendices:	Formulas in STK3100 / STK4100				
Permitted aids:	All resources				

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

- a) We rewrite $\frac{\lambda^y}{y!} \exp(-\lambda) = \exp(y \log(\lambda) \lambda \log(y!))$ which gives $\theta = \log(\lambda)$, $\lambda = \exp(\theta) = b(\theta)$ and $c(y) = -\log(y!)$. By general results $\mu = \operatorname{E}[Y] = b'(\theta) = \exp(\theta) = \lambda$ and $\operatorname{var}[Y] = b''(\theta) = \exp(\theta) = \lambda = \mu$.
- b) For y = 1, 2, 3, ... we have

$$\mathbf{P}(Y = y | Y > 0) = \frac{\mathbf{P}(Y = y)}{\mathbf{P}(Y > 0)} = \frac{\mathbf{P}(Y = y)}{1 - \mathbf{P}(Y = 0)} = \frac{\lambda^y \exp(-\lambda)/y!}{1 - \exp(-\lambda)}$$

Then rewrite $\frac{\lambda^y}{y!} \exp(-\lambda)/(1 - \exp(-\lambda)) = \exp(y \log(\lambda) - \lambda - \log(y!) - \log(1 - \exp(-\lambda))) = \exp(y\theta - b(\theta) + c(y))$ with $\theta = \log(\lambda)$ (as in a)), $b(\theta) = \lambda + \log(1 - \exp(-\lambda)) = \exp(\theta) - \log(1 - \exp(-\exp(\theta)))$ and $c(y) = -\log(y!)$ (also as in a)).

c) We have (when $f(y; \gamma)$ is a density, otherwise replace integral by sum) $P(Y \in B) = \int_B f(y; \gamma) dy = \exp(-b_0(\gamma)) \int_B \exp(\gamma y - c_0(y)) dy$. Thus $Y|Y \in B$ has a density

$$f_B(y;\theta) = \frac{f(y;\gamma)}{P(Y\in B)} = \frac{\exp(\gamma y - b_0(\gamma) + c_0(y))}{\exp(-b_0(\gamma))\int_B \exp(\gamma y - c_0(y))dy}$$
$$= \exp(\gamma y - \log(\int_B \exp(\gamma y - c_0(y))dy) + c_0(y))$$
so $\theta = \gamma_{e_0}(y) = c_0(y)$ and $b(\theta) = \log(\int_B \exp(\theta y - c(y))dy$

and so $\theta = \gamma$, $c(y) = c_0(y)$ and $b(\theta) = \log(\int_B \exp(\theta y - c(y))dy)$.

(Continued on page 2.)

Problem 2

a) The logistic regression model here is

$$P(Y_i = 1 | x_{i1}, x_{i2}) = \frac{\exp(\beta_0 + \beta_1 x_{1i} + \beta_2 x_{i2})}{1 + \exp(\beta_0 + \beta_1 x_{1i} + \beta_2 x_{i2})}.$$

Thus we get the odds

$$\frac{\mathcal{P}(Y_i = 1 | x_{i1}, x_{i2})}{1 - \mathcal{P}(Y_i = 1 | x_{i1}, x_{i2})} = \exp(\beta_0 + \beta_1 x_{1i} + \beta_2 x_{i2})$$

which lead to the *odds-ratio*

$$\left(\frac{\mathbf{P}(Y_i=1|x_{i1}+1,x_{i2})}{(1-\mathbf{P}(Y_i=1|x_{i1}+1,x_{i2}))}\right) / \left(\frac{\mathbf{P}(Y_i=1|x_{i1},x_{i2})}{(1-\mathbf{P}(Y_i=1|x_{i1},x_{i2}))}\right) = \exp(\beta_1)$$

as general interpretations of $\exp(\beta_1)$ as odds-ratios when changing x_{i1} by one unit keeping x_{i2} constant and similarly for $\exp(\beta_2)$

When all $P(Y_i = 1 | x_{i1}, x_{i2})$ are small we have $1 - P(Y_i = 1 | x_{i1}, x_{i2}) \approx 1$ and so

$$\left(\frac{\mathbf{P}(Y_i=1|x_{i1}+1,x_{i2})}{(1-\mathbf{P}(Y_i=1|x_{i1}+1,x_{i2}))}\right) / \left(\frac{\mathbf{P}(Y_i=1|x_{i1},x_{i2})}{(1-\mathbf{P}(Y_i=1|x_{i1},x_{i2}))}\right) \approx \frac{\mathbf{P}(Y_i=1|x_{i1}+1,x_{i2})}{\mathbf{P}(Y_i=1|x_{i1},x_{i2})},$$

i.e. as a *relative risk*.

Inserting estimates $\hat{\beta}_j$ leads to estimated odds-ratios approximated by estimated relative risks. Here we get $\exp(\hat{\beta}_1) = \exp(2.20) = 9.02$ so as an approximation bad health increases the chance of frequent doctorial visits by a factor 9 (Actually this will be an exaggerated increase since $\exp(2.20) = 9.02$ is a large value). Similarly $\exp(\hat{\beta}_2) = \exp(-0.338) = 0.71$, so after the health reform the proportions of women with frequent doctoral visits were approximately reduced by 30%.

- b) Approximately the MLE $\hat{\beta}_j \sim N(\beta_j, se_j^2)$ (by slight abuse of notation since se_j are statistics/random variables) and so
 - $\begin{array}{ll} 0.95 &\approx {\rm P}(-1.96 < (\hat{\beta}_j \beta_j)/se_j < 1.96) \\ &= {\rm P}(\hat{\beta}_j 1.96se_j < \beta_j < \hat{\beta}_j + 1.96se_j) \\ &= {\rm P}(\exp(\hat{\beta}_j 1.96se_j) < \exp(\beta_j) < \exp(\hat{\beta}_j + 1.96se_j)) \end{array}$

Inserting the estimated regression coefficients and standard errors gives 95% confidence interval

(6.51, 12.51) for $\exp(\beta_1)$ (0.52, 0.98) for $\exp(\beta_2)$,

(Continued on page 3.)

none of which overlaps the value 1. Thus we can reject both null hypotheses H_{0j} at a 5 percent level. In particular the interval for $\exp(\beta_1)$ has a low end far from 1, indicating strong statistical significance. This is confirmed by the $|z_j| = |\hat{\beta}_j/se_j|$ being values larger than 2 and p-values less than 0.05 (in particular for j = 1).

c) Deviances are two times the difference between the log-likelihood with a specific model and the log-likelihood with a saturated model where fitted values \tilde{y}_i are equal to observed values y_i .

Differences in deviances between two nested models, i.e. a smaller model is a special case of a larger, is chi-square distributed with degrees of freedom equal to the difference in number of parameters between the model given that the smaller model is true.

The approximation to the χ^2 distribution stems for the differences in deviances being equal to twice the differences in log-likehoods betweens the models, as the saturated log-likelihood terms cancels out, and so is due to the properties of the likelihood ratio test.

A deviance table gives deviances, changes in deviances and changes in no. of parameters for a series of nested models. This gives the opportunity to test a series of models and evaluate which (often categorical) explanatory variables that are essential or non-essential for the outcome.

In the table below the questions marks have been replaced by the acutal numbers:

	Df	Deviance	Resid. Df	Resid. Dev	Pr(>Chi)
NULL			2226	1303.4	
badh	1	158.613	2225	1144.8	< 2.2e-16
reform	1	4.404	2224	1140.4	0.035849
educat	2	2.339	2222	1138.0	0.310536
inccat	2	8.641	2220	1129.4	0.013292
badh:reform	1	1.458	2219	1127.9	0.227285
badh:inccat	2	0.851	2217	1127.1	0.653313
educat:inccat	4	13.689	2213	1113.4	0.008357

Problem 3

a) We get

$$\mu = \mathbf{E}[Y] = \mathbf{E}[\exp(V)] = M_V(1) = \exp(\gamma * 1 + \frac{1}{2}\sigma^2 * 1^2) = \exp(\gamma + \frac{1}{2}\sigma^2).$$

Thus
$$\operatorname{var}[Y] = \mathbf{E}[Y^2] - (\mathbf{E}[Y])^2 = M_V(2) - M_V(1)^2 = \exp(2\gamma + 2\sigma^2) - \exp(2\gamma + \sigma^2)$$
$$= \mu^2(\exp(\sigma^2) - 1) = \phi\mu^2$$

(Continued on page 4.)

with $\phi = \exp(\sigma^2) - 1$.

b) Since $\mu_i = \exp(\alpha + \beta x_i + \frac{1}{2}\sigma^2) = \exp(\gamma_i + \frac{1}{2}\sigma^2)$ with $\gamma_i = \alpha + \beta x_i$ we get that

 $\mathbf{E}[V_i] = \mathbf{E}[\log(Y_i)] = \gamma_i = \alpha + \beta x_i$

and so (α, β) can be estimated by least squares estimates $(\hat{\alpha}, \hat{\beta})$ of a simple linear regression on $V_i = \log(Y_i)$. Furthermore σ^2 can then be estimated as $\hat{\sigma}^2 = \sum_{i=1}^n (V_i - \hat{\alpha} - \hat{\beta}x_i)^2/(n-2)$ which then leads to estimate $\hat{\phi} = \exp(\hat{\sigma}^2) - 1$ of ϕ .

c) The score equations for generalized linear models can be written as

$$\sum_{i=1}^{n} \frac{\partial \mu_i}{\partial \beta_j} \frac{Y_i - \mu_i}{\operatorname{var}(Y_i)} = \frac{1}{\phi} \sum_{i=1}^{n} \frac{\partial \mu_i}{\partial \beta_j} \frac{Y_i - \mu_i}{\nu^*(\mu_i)} = 0; \quad j = 1, \dots, p$$

for models with $\operatorname{var}(Y_i) = \phi \nu^*(\mu_i)$.

These estimating equations can also be used as so-called quasilikelihood equations under the weaker assumption that Y_i ; i = 1, ..., n, are independent, but not necessarily from an exponential dispersion family, $g(\mu_i) = g(\mathbf{E}[Y_i]) = \beta' x_i$ for a link function g() and variance specification $\operatorname{var}(Y_i) = \phi \nu^*(\mu_i)$. This leads to consistent and asymptotically normal estimates of β with a variance matrix as the inverse of the information matrix (- expected Jacobi) based on the quasi-score function.

In this particular case one obtains the estimates by specifying a gamma family with an identity link in the glm-command (since the variance function for the gamma family equals μ^2) or equivalently by specifying a quasi-family with identity link and μ^2 variance.

Problem 4

a) When $u_i \sim N(0, \sigma^2)$ it has a density $f(u; \sigma_u^2) = \exp(-u^2/(2\sigma_u^2))/\sqrt{2\pi\sigma_u^2}$. Thus the marginal probability is by the rule of double expectation

$$P(Y_{ij} = 1|x_{ij}) = E[P(Y_{ij} = 1|x_{ij}, u_i)] = \int \frac{\exp(\beta_0 + \beta_1 x_{ij} + u)}{1 + \exp(\beta_0 + \beta_1 x_{ij} + u)} f(u; \sigma_u^2) du$$

Similarly, for j = 0, 1 and k = 0, 1,

$$\begin{aligned} \pi_i(j,k;\beta_0,\beta_2,\sigma_u^2) &= \mathbf{P}(Y_{i1}=j,Y_{i2}=k|x_{i1},x_{i2}) \\ &= \mathbf{E}[\mathbf{P}(Y_{i1}=j,Y_{i2}=k|x_{i1},x_{i2},u_i)] \\ &= \mathbf{E}[\mathbf{P}(Y_{i1}=j|x_{i1},x_{i2},u_i)\mathbf{P}(Y_{i2}=k|x_{i1},x_{i2},u_i)] \\ &= \int \frac{\exp(j(\beta_0+\beta_1x_{i1}+u))}{1+\exp(\beta_0+\beta_1x_{i1}+u)} \frac{\exp(k(\beta_0+\beta_1x_{i2}+u))}{1+\exp(\beta_0+\beta_1x_{i2}+u)} f(u;\sigma_u^2) du \end{aligned}$$

(Continued on page 5.)

which can not be written as $P(Y_{i1} = 1 | x_{i1}) P(Y_{i2} = 1 | x_{i2})$. Thus Y_{i1} and Y_{i2} are marginally dependent.

The marginal likelihood can then be written

$$l(\beta_0, \beta_1, \sigma_u^2) = \prod_{i=1}^n \pi_i(Y_{i1}, Y_{i2}; \beta_0, \beta_1, \sigma_u^2).$$

b) If $Y_{i1} + Y_{i2} = 2$ then necessarily both $Y_{i1} = 1$ and $Y_{i2} = 1$, thus $P(Y_{i1} = 1|Y_{i1} + Y_{i2} = 2) = 1$. Similarly, $Y_{i1} + Y_{i2} = 0$ imply that both $Y_{i1} = 0$ and $Y_{i2} = 0$ and so also $P(Y_{i1} = 0|Y_{i1} + Y_{i2} = 0) = 1$. Thus no such pair (Y_{i1}, Y_{i2}) will conditionally on $Y_{i1} + Y_{i2}$ contain any information on β_1 .

But when $Y_{i1} + Y_{i2} = 1$ then either $Y_{i1} = 1$ and $Y_{i2} = 0$ or $Y_{i1} = 0$ and $Y_{i2} = 1$ and so, conditionally on u_i, x_{i1} and x_{2i} ,

$$P(Y_{i1} = 1 | Y_{i1} + Y_{i2} = 1) = \frac{P(Y_{i1} = 1, Y_{i2} = 0)}{P(Y_{i1} = 1, Y_{i2} = 0) + P(Y_{i1} = 0, Y_{i2} = 1)}$$
$$= \frac{\exp(\beta_1(x_{i1} - x_{i2}))}{1 + \exp(\beta_1(x_{i1} - x_{i2}))}$$

since (same conditioning on u_i, x_{i1}, x_{i2})

$$P(Y_{i1} = 1, Y_{i2} = 0) = \frac{\exp(\beta_0 + \beta_1 x_{i1} + u_i)}{1 + \exp(\beta_0 + \beta_1 x_{i1} + u_i)} \frac{1}{1 + \exp(\beta_0 + \beta_1 x_{i2} + u_i)}$$

The expression for $P(Y_{i1} = 0, Y_{i2} = 1)$ has the same denominator which then cancel out in $P(Y_{i1} = 1|Y_{i1} + Y_{i2} = 1)$. One is then left with

$$P(Y_{i1} = 1 | Y_{i1} + Y_{i2} = 1) = \frac{\exp(\beta_0 + \beta_1 x_{i1} + u_i)}{\exp(\beta_0 + \beta_1 x_{i1} + u_i) + \exp(\beta_0 + \beta_1 x_{i2} + u_i)}$$
$$= \frac{\exp(\beta_1 x_{i1})}{\exp(\beta_1 x_{i2}) + \exp(\beta_1 x_{i2})} = \frac{\exp(\beta_1 (x_{i1} - x_{i2}))}{1 + \exp(\beta_1 (x_{i1} - x_{i2}))}$$

This means that it is possible to estimate β_1 by running a logistic regression

- with outcome Y_{i1}
- for pairs with $Y_{i1} + Y_{i2} = 1$
- with explanatory variables $x_{i1} x_{i2}$
- and no intercept