UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in: \quad STK3100 / STK4100 - Introduction to generalized linear models.
Day of examination: Wednesday December 2nd 2020
Examination hours: 9.00-13.00.
This problem set consists of 5 pages.
Appendices:
Permitted aids:
Formulas in STK3100 / STK4100
Permitted aids. All resources

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

a) We rewrite $\frac{\lambda^{y}}{y!} \exp (-\lambda)=\exp (y \log (\lambda)-\lambda-\log (y!))$ which gives $\theta=\log (\lambda)), \lambda=\exp (\theta)=b(\theta)$ and $c(y)=-\log (y!)$.
By general results $\mu=\mathrm{E}[Y]=b^{\prime}(\theta)=\exp (\theta)=\lambda$ and $\operatorname{var}[Y]=b^{\prime \prime}(\theta)=$ $\exp (\theta)=\lambda=\mu$.
b) For $y=1,2,3, \ldots$ we have

$$
\mathrm{P}(Y=y \mid Y>0)=\frac{\mathrm{P}(Y=y)}{\mathrm{P}(Y>0)}=\frac{\mathrm{P}(Y=y)}{1-\mathrm{P}(Y=0)}=\frac{\lambda^{y} \exp (-\lambda) / y!}{1-\exp (-\lambda)}
$$

Then rewrite $\frac{\lambda^{y}}{y!} \exp (-\lambda) /(1-\exp (-\lambda))=\exp (y \log (\lambda)-\lambda-\log (y!)-$ $\log (1-\exp (-\lambda))))=\exp (y \theta-b(\theta)+c(y))$ with $\theta=\log (\lambda)$ (as in a)), $b(\theta)=\lambda+\log (1-\exp (-\lambda))=\exp (\theta)-\log (1-\exp (-\exp (\theta)))$ and $c(y)=-\log (y!)$ (also as in a)).
c) We have (when $f(y ; \gamma)$ is a density, otherwise replace integral by sum) $\mathrm{P}(Y \in B)=\int_{B} f(y ; \gamma) d y=\exp \left(-b_{0}(\gamma)\right) \int_{B} \exp \left(\gamma y-c_{0}(y)\right) d y$. Thus $Y \mid Y \in B$ has a density

$$
\begin{aligned}
f_{B}(y ; \theta) & =\frac{f(y ; \gamma)}{\mathrm{P}(Y \in B)}=\frac{\exp \left(\gamma y-b_{0}(\gamma)+c_{0}(y)\right)}{\exp \left(-b_{0}(\gamma)\right) \int_{B} \exp \left(\gamma y-c_{0}(y)\right) d y} \\
& =\exp \left(\gamma y-\log \left(\int_{B} \exp \left(\gamma y-c_{0}(y)\right) d y\right)+c_{0}(y)\right)
\end{aligned}
$$

and so $\theta=\gamma, c(y)=c_{0}(y)$ and $b(\theta)=\log \left(\int_{B} \exp (\theta y-c(y)) d y\right)$.

Problem 2

a) The logistic regression model here is

$$
\mathrm{P}\left(Y_{i}=1 \mid x_{i 1}, x_{i 2}\right)=\frac{\exp \left(\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{i 2}\right)}{1+\exp \left(\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{i 2}\right.} .
$$

Thus we get the odds

$$
\frac{\mathrm{P}\left(Y_{i}=1 \mid x_{i 1}, x_{i 2}\right)}{1-\mathrm{P}\left(Y_{i}=1 \mid x_{i 1}, x_{i 2}\right)}=\exp \left(\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{i 2}\right)
$$

which lead to the odds-ratio

$$
\left(\frac{\mathrm{P}\left(Y_{i}=1 \mid x_{i 1}+1, x_{i 2}\right)}{\left(1-\mathrm{P}\left(Y_{i}=1 \mid x_{i 1}+1, x_{i 2}\right)\right)}\right) /\left(\frac{\mathrm{P}\left(Y_{i}=1 \mid x_{i 1}, x_{i 2}\right)}{\left(1-\mathrm{P}\left(Y_{i}=1 \mid x_{i 1}, x_{i 2}\right)\right)}\right)=\exp \left(\beta_{1}\right)
$$

as general interpretations of $\exp \left(\beta_{1}\right)$ as odds-ratios when changing $x_{i 1}$ by one unit keeping $x_{i 2}$ constant and similarly for $\exp \left(\beta_{2}\right)$
When all $\mathrm{P}\left(Y_{i}=1 \mid x_{i 1}, x_{i 2}\right)$ are small we have $1-\mathrm{P}\left(Y_{i}=1 \mid x_{i 1}, x_{i 2}\right) \approx 1$ and so

$$
\left(\frac{\mathrm{P}\left(Y_{i}=1 \mid x_{i 1}+1, x_{i 2}\right)}{\left(1-\mathrm{P}\left(Y_{i}=1 \mid x_{i 1}+1, x_{i 2}\right)\right)}\right) /\left(\frac{\mathrm{P}\left(Y_{i}=1 \mid x_{i 1}, x_{i 2}\right)}{\left(1-\mathrm{P}\left(Y_{i}=1 \mid x_{i 1}, x_{i 2}\right)\right)}\right) \approx \frac{\mathrm{P}\left(Y_{i}=1 \mid x_{i 1}+1, x_{i 2}\right)}{\mathrm{P}\left(Y_{i}=1 \mid x_{i 1}, x_{i 2}\right)},
$$

i.e. as a relative risk.

Inserting estimates $\hat{\beta}_{j}$ leads to estimated odds-ratios approximated by estimated relative risks. Here we get $\exp \left(\hat{\beta}_{1}\right)=\exp (2.20)=9.02$ so as an approximation bad health increases the chance of frequent doctorial visits by a factor 9 (Actually this will be an exaggerated increase since $\exp (2.20)=9.02$ is a large value $)$. Similarly $\exp \left(\hat{\beta}_{2}\right)=\exp (-0.338)=$ 0.71 , so after the health reform the proportions of women with frequent doctoral visits were approximately reduced by 30%.
b) Approximately the MLE $\hat{\beta}_{j} \sim \mathrm{~N}\left(\beta_{j}, s e_{j}^{2}\right)$ (by slight abuse of notation since $s e_{j}$ are statistics/random variables) and so

$$
\begin{aligned}
0.95 & \approx \mathrm{P}\left(-1.96<\left(\hat{\beta}_{j}-\beta_{j}\right) / s e_{j}<1.96\right) \\
& =\mathrm{P}\left(\hat{\beta}_{j}-1.96 s e_{j}<\beta_{j}<\hat{\beta}_{j}+1.96 s e_{j}\right) \\
& =\mathrm{P}\left(\exp \left(\hat{\beta}_{j}-1.96 s e_{j}\right)<\exp \left(\beta_{j}\right)<\exp \left(\hat{\beta}_{j}+1.96 s e_{j}\right)\right)
\end{aligned}
$$

Inserting the estimated regression coefficients and standard errors gives 95% confidence interval

$$
\begin{aligned}
& (6.51,12.51) \text { for } \exp \left(\beta_{1}\right) \\
& (0.52,0.98) \text { for } \exp \left(\beta_{2}\right),
\end{aligned}
$$

none of which overlaps the value 1 . Thus we can reject both null hypotheses $\mathrm{H}_{0 j}$ at a 5 percent level. In particular the interval for $\exp \left(\beta_{1}\right)$ has a low end far from 1, indicating strong statistical significance. This is confirmed by the $\left|z_{j}\right|=\left|\hat{\beta}_{j} / s e_{j}\right|$ being values larger than 2 and p -values less than 0.05 (in particular for $j=1$).
c) Deviances are two times the difference between the log-likelihood with a specific model and the log-likelihood with a saturated model where fitted values \tilde{y}_{i} are equal to observed values y_{i}.
Differences in deviances between two nested models, i.e. a smaller model is a special case of a larger, is chi-square distributed with degrees of freedom equal to the diiference in number of parameters between the model given that the smaller model is true.
The approximation to the χ^{2} distribution stems for the differences in deviances being equal to twice the differences in log-likehoods betweens the models, as the saturated log-likelihood terms cancels out, and so is due to the properties of the likelihood ratio test.
A deviance table gives deviances, changes in deviances and changes in no. of parameters for a series of nested models. This gives the opportunity to test a series of models and evaluate which (often categorical) explanatory variables that are essential or non-essential for the outcome.
In the table below the questions marks have been replaced by the acutal numbers:

```
Df Deviance Resid. Df Resid. Dev Pr(>Chi)
```

NULL		2226	1303.4		
badh	1	158.613	2225	$1144.8<2.2 \mathrm{e}-16$	
reform	1	4.404	2224	1140.4	0.035849
educat	2	2.339	2222	1138.0	0.310536
inccat	2	8.641	2220	1129.4	0.013292
badh:reform	1	1.458	2219	1127.9	0.227285
badh:inccat	2	0.851	2217	1127.1	0.653313
educat:inccat	4	13.689	2213	1113.4	0.008357

Problem 3

a) We get

$$
\mu=\mathrm{E}[Y]=\mathrm{E}[\exp (V)]=M_{V}(1)=\exp \left(\gamma * 1+\frac{1}{2} \sigma^{2} * 1^{2}\right)=\exp \left(\gamma+\frac{1}{2} \sigma^{2}\right)
$$

Thus

$$
\begin{aligned}
\operatorname{var}[Y] & =\mathrm{E}\left[Y^{2}\right]-(\mathrm{E}[Y])^{2}=M_{V}(2)-M_{V}(1)^{2}=\exp \left(2 \gamma+2 \sigma^{2}\right)-\exp \left(2 \gamma+\sigma^{2}\right) \\
& =\mu^{2}\left(\exp \left(\sigma^{2}\right)-1\right)=\phi \mu^{2}
\end{aligned}
$$

(Continued on page 4.)
with $\phi=\exp \left(\sigma^{2}\right)-1$.
b) Since $\mu_{i}=\exp \left(\alpha+\beta x_{i}+\frac{1}{2} \sigma^{2}\right)=\exp \left(\gamma_{i}+\frac{1}{2} \sigma^{2}\right)$ with $\gamma_{i}=\alpha+\beta x_{i}$ we get that

$$
\mathrm{E}\left[V_{i}\right]=\mathrm{E}\left[\log \left(Y_{i}\right)\right]=\gamma_{i}=\alpha+\beta x_{i}
$$

and so (α, β) can be estimated by least squares estimates $(\hat{\alpha}, \hat{\beta})$ of a simple linear regression on $V_{i}=\log \left(Y_{i}\right)$. Furthermore σ^{2} can then be estimated as $\hat{\sigma}^{2}=\sum_{i=1}^{n}\left(V_{i}-\hat{\alpha}-\hat{\beta} x_{i}\right)^{2} /(n-2)$ which then leads to estimate $\hat{\phi}=\exp \left(\hat{\sigma}^{2}\right)-1$ of ϕ.
c) The score equations for generalized linear models can be written as

$$
\sum_{i=1}^{n} \frac{\partial \mu_{i}}{\partial \beta_{j}} \frac{Y_{i}-\mu_{i}}{\operatorname{var}\left(Y_{i}\right)}=\frac{1}{\phi} \sum_{i=1}^{n} \frac{\partial \mu_{i}}{\partial \beta_{j}} \frac{Y_{i}-\mu_{i}}{\nu^{*}\left(\mu_{i}\right)}=0 ; \quad j=1, \ldots, p
$$

for models with $\operatorname{var}\left(Y_{i}\right)=\phi \nu^{*}\left(\mu_{i}\right)$.
These estimating equations can also be used as so-called quasilikelihood equations under the weaker assumption that $Y_{i} ; i=1, \ldots, n$, are independent, but not necessarily from an exponential dispersion family, $g\left(\mu_{i}\right)=g\left(\mathrm{E}\left[Y_{i}\right]\right)=\beta^{\prime} x_{i}$ for a link function $g()$ and variance specification $\operatorname{var}\left(Y_{i}\right)=\phi \nu^{*}\left(\mu_{i}\right)$. This leads to consistent and asymptotically normal estimates of β with a variance matrix as the inverse of the information matrix (- expected Jacobi) based on the quasi-score function.

In this particular case one obtains the estimates by specifying a gamma family with an identity link in the glm-command (since the variance function for the gamma family equals μ^{2}) or equivalently by specifying a quasi-family with identity link and μ^{2} variance.

Problem 4

a) When $u_{i} \sim \mathrm{~N}\left(0, \sigma^{2}\right)$ it has a density $f\left(u ; \sigma_{u}^{2}\right)=\exp \left(-u^{2} /\left(2 \sigma_{u}^{2}\right)\right) / \sqrt{2 \pi \sigma_{u}^{2}}$.

Thus the marginal probability is by the rule of double expectation

$$
\mathrm{P}\left(Y_{i j}=1 \mid x_{i j}\right)=\mathrm{E}\left[\mathrm{P}\left(Y_{i j}=1 \mid x_{i j}, u_{i}\right)\right]=\int \frac{\exp \left(\beta_{0}+\beta_{1} x_{i j}+u\right)}{1+\exp \left(\beta_{0}+\beta_{1} x_{i j}+u\right)} f\left(u ; \sigma_{u}^{2}\right) d u
$$

Similarily, for $j=0,1$ and $k=0,1$,

$$
\begin{aligned}
\pi_{i}\left(j, k ; \beta_{0}, \beta_{2}, \sigma_{u}^{2}\right) & =\mathrm{P}\left(Y_{i 1}=j, Y_{i 2}=k \mid x_{i 1}, x_{i 2}\right) \\
& =\mathrm{E}\left[\mathrm{P}\left(Y_{i 1}=j, Y_{i 2}=k \mid x_{i 1}, x_{i 2}, u_{i}\right)\right] \\
& =\mathrm{E}\left[\mathrm{P}\left(Y_{i 1}=j \mid x_{i 1}, x_{i 2}, u_{i}\right) \mathrm{P}\left(Y_{i 2}=k \mid x_{i 1}, x_{i 2}, u_{i}\right)\right] \\
& =\int \frac{\exp \left(j\left(\beta_{0}+\beta_{1} x_{i 1}+u\right)\right)}{1+\exp \left(\beta_{0}+\beta_{1} x_{i 1}+u\right)} \frac{\exp \left(k\left(\beta_{0}+\beta_{1} x_{i 2}+u\right)\right)}{1+\exp \left(\beta_{0}+\beta_{1} x_{i 2}+u\right)} f\left(u ; \sigma_{u}^{2}\right) d u
\end{aligned}
$$

which can not be written as $\mathrm{P}\left(Y_{i 1}=1 \mid x_{i 1}\right) \mathrm{P}\left(Y_{i 2}=1 \mid x_{i 2}\right)$. Thus $Y_{i 1}$ and $Y_{i 2}$ are marginally dependent.
The marginal likelihood can then be written

$$
l\left(\beta_{0}, \beta_{1}, \sigma_{u}^{2}\right)=\prod_{i=1}^{n} \pi_{i}\left(Y_{i 1}, Y_{i 2} ; \beta_{0}, \beta_{1}, \sigma_{u}^{2}\right)
$$

b) If $Y_{i 1}+Y_{i 2}=2$ then necessarily both $Y_{i 1}=1$ and $Y_{i 2}=1$, thus $\mathrm{P}\left(Y_{i 1}=1 \mid Y_{i 1}+Y_{i 2}=2\right)=1$. Similarly, $Y_{i 1}+Y_{i 2}=0$ imply that both $Y_{i 1}=0$ and $Y_{i 2}=0$ and so also $\mathrm{P}\left(Y_{i 1}=0 \mid Y_{i 1}+Y_{i 2}=0\right)=1$. Thus no such pair ($Y_{i 1}, Y_{i 2}$) will conditionallly on $Y_{i 1}+Y_{i 2}$ contain any information on β_{1}.

But when $Y_{i 1}+Y_{i 2}=1$ then either $Y_{i 1}=1$ and $Y_{i 2}=0$ or $Y_{i 1}=0$ and $Y_{i 2}=1$ and so, conditionally on $u_{i}, x_{i 1}$ and $x_{2 i}$,

$$
\begin{aligned}
\mathrm{P}\left(Y_{i 1}=1 \mid Y_{i 1}+Y_{i 2}=1\right) & =\frac{\mathrm{P}\left(Y_{i 1}=1, Y_{i 2}=0\right)}{\mathrm{P}\left(Y_{i 1}=1, Y_{i 2}=0\right)+\mathrm{P}\left(Y_{i 1}=0, Y_{i 2}=1\right)} \\
& =\frac{\exp \left(\beta_{1}\left(x_{i 1}-x_{i 2}\right)\right)}{1+\exp \left(\beta_{1}\left(x_{i 1}-x_{i 2}\right)\right)}
\end{aligned}
$$

since (same conditioning on $u_{i}, x_{i 1}, x_{i 2}$)
$\mathrm{P}\left(Y_{i 1}=1, Y_{i 2}=0\right)=\frac{\exp \left(\beta_{0}+\beta_{1} x_{i 1}+u_{i}\right)}{1+\exp \left(\beta_{0}+\beta_{1} x_{i 1}+u_{i}\right)} \frac{1}{1+\exp \left(\beta_{0}+\beta_{1} x_{i 2}+u_{i}\right)}$.
The expression for $\mathrm{P}\left(Y_{i 1}=0, Y_{i 2}=1\right)$ has the same denominator which then cancel out in $\mathrm{P}\left(Y_{i 1}=1 \mid Y_{i 1}+Y_{i 2}=1\right)$. One is then left with

$$
\begin{aligned}
\mathrm{P}\left(Y_{i 1}=1 \mid Y_{i 1}+Y_{i 2}=1\right) & =\frac{\exp \left(\beta_{0}+\beta_{1} x_{i 1}+u_{i}\right)}{\exp \left(\beta_{0}+\beta_{1} x_{i 1}+u_{i}\right)+\exp \left(\beta_{0}+\beta_{1} x_{i 2}+u_{i}\right)} \\
& =\frac{\exp \left(\beta_{1} x_{i 1}\right)}{\exp \left(\beta_{1} x_{i 2}\right)+\exp \left(\beta_{1} x_{i 2}\right)}=\frac{\exp \left(\beta_{1}\left(x_{i 1}-x_{i 2}\right)\right)}{1+\exp \left(\beta_{1}\left(x_{i 1}-x_{i 2}\right)\right)}
\end{aligned}
$$

This means that it is possible to estimate β_{1} by running a logistic regression

- with outcome $Y_{i 1}$
- for pairs with $Y_{i 1}+Y_{i 2}=1$
- with explanatory variables $x_{i 1}-x_{i 2}$
- and no intercept

