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Problem 1

a

We have

∂ log f(Y ; θ, φ)

∂θ
=
(
Y − b′(θ)

)
/a(φ),

and hence combined with the hint

E
[(
Y − b′(θ)

)
/a(φ)

]
= 0 ⇒ E[Y ] = b′(θ).

Furthermore we have

∂2 log f(Y ; θ, φ)

∂θ2
= −b′′(θ)/a(φ),

which combined with the result E[Y ] = b′(θ) shown above and the hint gives

−E
[
−b′′(θ)/a(φ)

]
= E

[((
Y − b′(θ)

)
/a(φ)

)2]
⇓

b′′(θ)/a(φ) = E
[(
Y − b′(θ)

)2]
/a(φ)2

⇓

E
[
(Y − E[Y ])2

]
= Var[Y ] = b′′(θ)a(φ)

b

We can write

P (Y = y) = exp {logP (Y = y)} = exp {y logµ− log y!− µ}

which is identical to (1) with θ = log µ, b(θ) = µ = exp (θ), a(φ) = 1 and
c(y, φ) = − log y!.

(Continued on page 2.)



Exam in STK3100/STK4100, Monday 6th December 2021 Page 2

c

From the results proven in a we get

E[Y ] = b′(θ) = exp (θ) = µ

Var[Y ] = b′′(θ)a(φ) = exp (θ) = µ

d

The log-likelihood function is

L(β0, β1) = log

{
n∏
i=1

exp {Yi logµi − log Yi!− µi}

}
=

n∑
i=1

{Yi logµi − log Yi!− µi}

=

n∑
i=1

{Yiηi − eηi − log Yi!} (1)

From (1) we get for j = 0, 1, with xi0 = 1 and xi1 = xi,

∂L(β0, β1)

∂βj
=

n∑
i=1

∂ {Yiηi − eηi − log Yi!}
∂ηi

∂ηi
∂βj

=

n∑
i=1

(Yi − eηi)
∂ηi
∂βj

=

n∑
i=1

(Yi − µi)xij = 0

which implies
∑n

i=1(Yi − µi) = 0 and
∑n

i=1(Yi − µi)xi = 0.
It is also ok to find β̂0 and β̂1 from the likelihood equations for a GLM

given in the appendix.

Problem 2

a

The model behind the fit reported in a is a logistic regression model. For
i = 1, . . . , n (n = 2702), let Yi denote the response variable, where Yi = 1
if there was objection against patent i, and Yi = o if there was no objection
against patent i, and xi = (xi1, xi2, xi3, xi4, xi5, xi6, xi7) denote the vector of
explanatory variables, where xi1 = 1 for the intercept and

• xi2 = grant year

• xi3 = number of citations for the patent

• xi4 = 1 if US twin patent exists, otherwise xi4 = 0

• xi5 = 1 if patent holder is from the US, otherwise xi5 = 0

• xi6 = 1 if patent holder is from Germany, Switzerland or Great Britain,
otherwise xi6 = 0

• xi7 = number of designated countries for the patent

(Continued on page 3.)
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Let πi = P (Yi = 1). The model assumes that Y1, . . . , Yn are independent
and, with β = (β1, . . . , β7)

T , that

logit(πi) =
πi

1− πi
= ηi = xiβ =

7∑
j=1

βjxij ,

which is equivalent to

πi =
exp

(∑7
j=1 βjxij

)
1 + exp

(∑7
j=1 βjxij

)
The estimate β̂5 for patus can be interpreted by considering two different

patents i and k, that have the same values of all the explanatory variables
except patus, i.e. xij = xkj for j = 1, 2, 3, 4, 6, 7 and xi5 6= xk5. In words
they share grant year, number of citations for the patent, either both patent
holders have a US twin patent or not, neither of the patent holders are from
Germany, Switzerland or Great Britain, and they have the same number of
designated countries, but the holder of patent i is from the US, while the
holder of patent k is not. Then the odds ratio for the two patents is is

P (Yi = 1)/ [1− P (Yi = 1)]

P (Yk = 1)/ [1− P (Yk = 1)]
=

πi/ [1− πi]
πk/ [1− πk]

=

exp (
∑7

j=1 βjxij)
1+exp (

∑7
j=1 βjxij)

/

[
1− exp (

∑7
j=1 βjxij)

1+exp (
∑7

j=1 βjxij)

]
exp (

∑7
j=1 βjxkj)

1+exp (
∑7

j=1 βjxkj)
/

[
1− exp (

∑7
j=1 βjxkj)

1+exp (
∑7

j=1 βjxkj)

] =
exp

(∑7
j=1 βjxij

)
exp

(∑7
j=1 βjxkj

) = eβ5

Hence the estimated odds ratio for the two patents is eβ̂5 = e−0.43685 = 0.646,
which means that β̂5 tells us that we estimate that the odds of experiencing
opposition against a patent is reduced by 35.4% when the patent holder is
from the US.

b

The missing numbers are filled in in the table below. They are found in the
following way

• Df for Model 2: The difference in residual degrees of freedom between
Model 1 and Model 2, hence 2695− 2694 = 1

• Deviance for Model 2: The difference between the deviance of Model
1 and Model 2, hence 2996.8− 2981.7 = 15.1

• Resid. Df for Model 3: The residual degrees of freedom, which is
the difference between the number of observations (2702) and the
number of parameters in Model 3. The number of parameters is 1
(intercept)+ 6 (1 for each of the main effects) + 1 (year:patus) + 1
(patus:ncountry)= 9, hence Resid. Df for Model 3 is 2702− 9 = 2693

• Resid. Dev for Model 4: The deviance for the fit of Model 4, which
can be found by subtracting the difference between the deviance of
Model 3 and Model 4 (2.5899) from the deviance for the fot of Model
3 (2979.2), hence 2979.2− 2.5899 = 2976.61

(Continued on page 4.)
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> anova(fit1,fit2,fit3,fit4,test="LRT")
Analysis of Deviance Table

Model 1: opp ~ year + ncit + ustwin + patus + patgsgr + ncountry
Model 2: opp ~ year + ncit + ustwin + patus + patgsgr + ncountry + year:patus
Model 3: opp ~ year + ncit + ustwin + patus + patgsgr + ncountry + year:patus +

patus:ncountry
Model 4: opp ~ year + ncit + ustwin + patus + patgsgr + ncountry + year:patus +

patus:ncountry + patgsgr:ncountry
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 2695 2996.8
2 2694 2981.7 1 15.1 0.0001011 ***
3 2693 2979.2 1 2.5449 0.1106478
4 2692 2976.61 1 2.5899 0.1075493

c

The AIC for a model with p parameters and maximum likelihood estimate β̂
is defined as −2

(
L(β̂)− p

)
. Minimising this over a set of models identifies

which of these models that has a distribution closest to the true distribution.
The likelihood ratio test can only be used for nested models, while

comparing AIC values does not have this restriction. In this example the
probit model achieves the smallest AIC value, which is indicates that it is
the best choice of link function here. However, the differences are very small,
in particular between probit and logit.

Problem 3

a

The log-likelihood function is

L(β) = −n
2
log(2π)− 1

2
log | V | −1

2
(y −Xβ)TV−1(y −Xβ)

Hence, using the hint and that both a scalar and V−1 are symmetric,

∂L(β)

∂β
= −1

2

∂(y −Xβ)TV−1(y −Xβ)

∂β

= −1

2

∂(yTV−1y − yTV−1Xβ − βTXTV−1y + βTXTV−1Xβ)
∂β

= −1

2

∂(yTV−1y − 2yTV−1Xβ + βTXTV−1Xβ)
∂β

= (yTV−1X)T − 1

2

(
XTV−1X +

(
XTV−1X

)T)
β

= XTV−1y −XTV−1Xβ

which is = 0 for
β =

(
XTV−1X

)−1
XTV−1y

(Continued on page 5.)
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b

Since both Y|u and u are normally distributed, the joint distribution of Y
and u is also normal. We have E[Y] = Xβ, E[u] = 0, Var[Y] = V and
Var[u] = Σu . Furthermore

Cov(Y,u) = Cov(Xβ + Zu + ε,u) = Cov(Zu + ε,u) = ZCov(u,u) = ZVar(u) = ZΣu

which means that Cov(Y,u) = (ZΣu)
T = ΣuZT . Hence(

Y
u

)
∼ N

[(
Xβ
0

)
,

(
V ZΣu

ΣuZT Σu

)]
Using the formula for conditional expectation for the multivariate normal
distribution given in the appendix, we get

E[u|Y = y] = 0 + (ZΣu)
TV−1 (y −Xβ) = ΣuZTV−1(y −Xβ) (2)

Since V and Σu, are assumed known, a prediction of the random effects can
be achieved by replacing β by β̃ in (2)

û = ΣuZTV−1(y −Xβ̃)

c

The marginal expected value of Yij is

µij = E[Yij ] = E[E[Yij |ui]] =
∫
E[Yij |ui]f(ui)dui =

∫
(xijβ + zijui)f(ui)dui

= xijβ

∫
f(ui)dui + zij

∫
uif(ui)dui = xijβ

since
∫
f(ui)dui = 1 and

∫
uif(ui)dui = E[ui] = 0. Hence, as for the

GLMM, the link function for the implied marginal model is also the identity
link. This is not a general result for all lunk functions.

END


