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Appendices:

Permitted aids:

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Problem 1

a

We can write (1) as

P (Y = y) = exp {logP (Y = y)} = exp {y logµ− log y!− µ},

which is identical to (2) with θ = log µ, b(θ) = µ = exp (θ), a(φ) = 1 and
c(y, φ) = − log y!.

b

The definition of a generalized linear model (GLM) for Yi ∼ Poisson(µi)
and covariates xij , i = 1, . . . n, j = 1, . . . , p, with xi1 = 1 to represent the
intercept, using the canonical link function

• Y1, . . . , YN are independent with Yi ∼ Poisson(µi) (i.e. pmf of the
form (??))

• For each Yi with covariates xij , i = 1, . . . n, j = 1, . . . , p, we have the
linear predictor ηi =

∑p
j=1 βjxij = xiβ, for xi = (xi1, . . . , xip) and

β = (β1, . . . , βp)
T

• For each Yi, the mean µi = E(Yi) is linked to the linear predictor by
the link function g(µi) = ηi. Here we are using the canonical link
function g(µi) = θi = logµ.

c

The log-likelihood function is

L(µ;y) = log

{
n∏
i=1

exp {yi logµi − µi − log yi!}

}
=

n∑
i=1

{yi logµi − µi − log yi!}

(1)

(Continued on page 2.)
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The saturated model is the most general model a separate parameter µi for
each subject i, hence without any restrictions on µi. For this model the
maximum likelihood fit µ̃i = yi, because

∂L(µ;y)
∂µi

= yi
µi
− 1 is = 0 for µ̃i = yi.

It is useful as a baseline for assessing the quality of fit for other models, as it
is the model out of all possible models that achieves the maximum achievable
value of the log likelihood L(y;y). It is however not a very useful model for
estimation of the underlying truth nor for prediction of new observations,
e.g. it overfits the data and does not smooth. The maximum log likelihood
for the saturated model is

L(y;y) =

n∑
i=1

{yi log yi − yi − log yi!}

d

The deviance D(y; µ̂) for a Poisson GLM is (because aφ = φ = 1)

D(y; µ̂) = −2 [L(µ̂;y)− L(y;y)] = −2

[
n∑
i=1

{yi log µ̂i − µ̂i − log yi!} −
n∑
i=1

{yi log yi − yi − log yi!}

]

= 2
n∑
i=1

{
yi log

yi
µ̂i
− yi + µ̂i

}
This deviance may be used as a test statistic to compare nested Poisson
GLMs by considering the difference in the deviance for the smaller model
and the bigger model. To explain this, assume that the Poisson GLM model
M1 with p1 parameters holds, and thatM0 with p0 < p1 parameters is nested
in model M1 (i.e. has the same distribution and link function as M1, here
Poisson with log-link, and the same linear predictor as M1, but with p1− p0
of the βj ’s of M1 set to zero). Let µ̂0 and µ̂1 be the maximum likelihood
estimates of µ underM0 andM1 respectively. For testing the null hypothesis
that M0 holds, we have the likelihood ratio statistics

G2(M0 |M1) = −2 (L(µ̂0;y)− L(µ̂1;y)) = −2 (L(µ̂0;y)− L(y;y))− (−2 (L(µ̂1;y)− L(y;y)))

= D(y; µ̂0)−D(y; µ̂1)

which is approximately X 2
p1−p0 distributed if M0 holds.

Problem 2

In this problem we assume that Y comes from a negative binomial
distribution. Here we let the pmf of the negative binomial distribution take
the form

p(y;µ, k) =
Γ(y + k)

Γ(k)Γ(y + 1)

(
µ

µ+ k

)y ( k

µ+ k

)k
; y = 0, 1, 2, . . .

We will assume that k > 0 is a given constant, and consider the random
variable Y ∗ = Y/k. Then P (Y ∗ = y∗) = P (Y = ky∗) for y∗ = 0, 1k ,

2
k , . . ., so

Y ∗ has pmf

p∗(y∗;µ, k) =
Γ(ky∗ + k)

Γ(k)Γ(ky∗ + 1)

(
µ

µ+ k

)ky∗ ( k

µ+ k

)k
; y∗ = 0,

1

k
,

2

k
. . .

(2)

(Continued on page 3.)
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a

We can write (2) as

p∗(y∗;µ, k) = exp log p∗(y∗;µ, k)

= exp

{
log Γ(y + k)− log Γ(k)− log Γ(ky∗ + 1) + ky∗ log

(
µ

µ+ k

)
+ k log

(
k

µ+ k

)}

= exp

y
∗ log

(
µ

µ+k

)
+ log

(
k

µ+k

)
1
k

+ c(y, φ)

 = exp {(θy∗ − b(θ)) /a(φ) + c(y∗, φ)}

where θ = log
(

µ
µ+k

)
, b(θ) = − log

(
k

µ+k

)
= − log

(
1− µ

µ+k

)
=

− log
(
1− eθ

)
and a(φ) = 1/k (and c(y∗, φ) = log Γ(y + k) − log Γ(k) −

log Γ(ky∗ + 1)).

b

Mean of Y ∗

E[Y ∗] = b′(θ) =
eθ

1− eθ
=

µ
µ+k

1− µ
µ+k

=
µ

µ+ k − µ
=
µ

k

Variance of Y ∗

Var[Y ∗] = b′′(θ)·a(φ) =
eθ(1− eθ)− eθ(−eθ)

(1− eθ)2
·1
k

=
eθ

k(1− eθ)2
=

µ
µ+k

k(1− µ
µ+k )2

=
µ(µ+ k)

k3

which gives us
E[Y ] = E[kY ∗] = kE[Y ∗] = k

µ

k
= µ

and

Var[Y ] = Var[kY ∗] = k2Var[Y ∗] = k2
µ(µ+ k)

k3
= µ+

µ2

k

c

If Y is negative-binomially distributed we have Var[Y ]/E[Y ] = 1 +µ/k, and
if Y is Poisson distributed we have Var[Y ]/E[Y ] = 1. Hence if k < ∞, or
γ = 1/k > 0, the variance is larger than the mean for the negative binomial
distribution, while they are equal for the Poisson distribution. When you
have count data for which it is reasonable to assume equal mean and variance,
the Poisson is a good model, while if the variance is assumed to be larger
than the mean, there is overdispersion and the negative binomial is a better
model than the Poisson.

Problem 3

a

The model behind the analysis is a Poisson GLM with log link. Hence

• The response variables Y1, . . . , YN are assumed to be independent with
Yi ∼ Poisson(µi) (i.e. pmf of the form (??))

(Continued on page 4.)
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• For each Yi with covariates xij , i = 1, . . . n, j = 1, . . . , 5, we have the
linear predictor ηi =

∑5
j=1 βjxij = xiβ, for xi = (xi1, . . . , xi5) and

β = (β1, . . . , β5)
T . We have here

– xi1 = 1, ∀i to represent the intercept

– xi2 = 1 if procedure of patient i is CABG, and xi2 = 0 if PTCA

– xi3 = 1 if patient i is male, and xi3 = 0 if female

– xi4 = 1 if patient i was admitted as an emergency, and xi4 = 0 if
the procedure was pre-planned

– xi5 = 1 if the age of patient i is over 75, and xi5 = 0 if it is less
than or equal to 75

• For each Yi, the mean µi = E(Yi) is linked to the linear predictor by the
link function g(µi) = ηi. Here we are using the canonical link function
g(µi) = θi = logµ, and hence µi = E(Yi) = exp

{∑5
j=1 βjxij

}
b

The p-value of the likelihood ratio test described in Problem 1d for comparing
the model with interaction (M1) to the model without interactions (M0) is
reported to be < 2.2e − 16, which is very small, which means that there is
reason to reject M0 and conclude that model M1 with interactions is to be
preferred. It can be commented that this is supported by the fact that the
AIC is lower for M1 than M0.

To describe the effects of procedure and admit on the estimated mean
length of stay, we consider a female patient (xi3 = 0) of age less than or
equal to 75 (xi5 = 0). The estimated mean length of stay for the different
combinations of procedure and admit are then

• procedure of patient i is PTCA (xi2 = 0) and the procedure was
pre-planned (xi4 = 0):

exp


5∑
j=1

β̂jxij

 = exp
{
β̂1

}
= exp {1.23851} ≈ 3.5

• procedure of patient i is CABG (xi2 = 1) and the procedure was
pre-planned (xi4 = 0):

exp


5∑
j=1

β̂jxij

 = exp
{
β̂1 + β̂2

}
= exp {1.23851 + 1.24765} ≈ 12

• procedure of patient i is PTCA (xi2 = 0) and the procedure was an
emergency (xi4 = 1):

exp


5∑
j=1

β̂jxij

 = exp
{
β̂1 + β̂4

}
= exp {1.23851 + 0.61606} ≈ 6.4

(Continued on page 5.)
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• procedure of patient i is CABG (xi2 = 1 ) and the procedure was an
emergency ( xi4 = 1):

exp


5∑
j=1

β̂jxij

 = exp
{
β̂1 + β̂2 + β̂4 + β̂6

}
= exp {1.23851 + 1.24765 + 0.61606− 0.39658}

≈ 15

c

The p-value of the test is (close to) 0 and hence the null hypothesis of γ = 0
should be rejected. This implies that there is overdispersion and the negative
binomial is to be preferred over the Poisson. This is supported by the fact
that the AIC value for the fit with the negative binomial (19857) is lower
than the one for the Poisson (22184).

Problem 4

a

The estimated βj ’s are the same, which is not surprising, since they are
estimated by the exact same equations. Their estimated standard errors are
however different, smaller for the Poisson GLM. This is because the ones for
the Poisson are based on an inadequate assumption for the variance function
(that it is equal to the mean), while the quasi-likelihood allows for this to be
multiplied by φ. Hence the estimated standard errors of the estimated βj ’s
of the quasi-likelihood approach are more robust and reliable.

b

The likelihood equations for a GLM with variance function var(Yi) = v∗(µi)
are

n∑
i=1

(yi − µi)xij
v∗(µi)

∂µi
∂ηi

= 0, j = 1, . . . , p

The only dependence on the assumed distributon is here through how the
variance function v∗(µi) depends on the mean µi.

We can allow for over-dispersion and instead assume var(Yi) = v(µi) =
φv∗(µi). Then we have the quasi-likelihood equations

n∑
i=1

(yi − µi)xij
φv∗(µi)

∂µi
∂ηi

= 0, j = 1, . . . , p

that are not dependent on any particular distribution, only that var(Yi) =
v(µi) = φv∗(µi) and g(µi) = g(E[Yi]) = ηi = xiβ for a link function g. φ
can be estimated

These equations give estimates of β that are (as mentioned in a)) the
same as obtained fro the ML estimates for the original GLM (because φ
cancels from the quasi-likelihood equations), and they are approximately
normally distributed with mean β and covariance matrix equal to the
covariance matrix obtained fro the ML estimates for the original GLM
multiplied by φ, which can be estimated.


