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Problem 1

a

We can write (1) as

P (Y = y) = exp {logP (Y = y)} = exp

{
log

(
n

ny

)
+ ny log π + (n− ny) log(1− π)

}

= exp

{
log

(
n

ny

)
+ ny log

π

1− π + n log(1− π)
}

which is identical to f(y; θ, φ) with θ = log π
1−π , which means that π = eθ

1+eθ
.

Furthermore, a(φ) = 1/n, b(θ) = − log(1 − π) = log
(
1 + eθ

)
and c(y, φ) =

log
(
n
ny

)
.

b

(i)

E(Y ) = b′(θ) =
eθ

1 + eθ
= π

(ii)

Var(Y ) = a(φ)b′′(θ) =
1

n

eθ(1 + eθ)− eθeθ
(1 + eθ)

2 =
1

n

eθ

(1 + eθ)
2 =

1

n
π(1− π)

c

(i) The canonical link function is defined to be the natural parameter in the
exponential dispersion distribution formulation., i.e. g(πi) = θi = log πi

1−πi .

(ii) This GLM is called a logistic regression model.

(Continued on page 2.)
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(iii) The likelihood equations for this GLM are (using the formula given in
the appendix)

N∑

i=1

(yi − µi)xij
var(Yi)

∂µi
∂ηi

= 0, j = 0, 1

with xi0 = 1 and xi1 = xi. Using µi = b′(θi) = πi = eθ

1+eθ
, and hence

∂µi
∂ηi

= b′′(θi) =
eθi

(1+eθi )
2 = πi(1 − πi), and var(Yi) = 1

ni
πi(1 − πi), we get the

following two equations

For j = 0 :
N∑

i=1

(yi − πi)
1
ni
πi(1− πi)

πi(1− πi) =
N∑

i=1

ni(yi − πi) = 0

For j = 1 :
N∑

i=1

(yi − πi)xi
1
ni
πi(1− πi)

πi(1− πi) =
N∑

i=1

ni(yi − πi)xi = 0

d

We have (using the formula given in the appendix)

wi =

(
∂µi
∂ηi

)2

var(Yi)
=

(πi(1− πi))2
1
ni
πi(1− πi)

= niπi(1− πi)

e

(i) The deviance for this GLM is (using the formula given in the appendix)

D(y; µ̂) = 2

N∑

i=1

ωi

[
yi

(
θ̃i − θ̂i

)
− b(θ̃i) + b(θ̂i)

]

where ωi = ni, θ̃i is the ML estimate of θ under the saturated model and θ̂i
is the ML estimate of θ under the actual model. Using that θi = log πi

1−πi ,
b(θi) = − log(1− πi) and π̃i = yi, we get

D(y; µ̂) = 2
N∑

i=1

ni

[
yi

(
log

π̃i
1− π̃i

− log
π̂i

1− π̂i

)
+ log(1− π̃i)− log(1− π̂i)

]

= 2

N∑

i=1

[
niyi log

(
niyi
niπ̂i

)
+ (ni − niyi) log

(
ni − niyi
ni − niπ̂i

)]

(ii) For ungrouped data, the deviance can be used to compare two nested
models. Consider two models M0 (with p0 parameters) and M1 (with p1
parameters), with M0 nested in M1. If the null hypothesis is that M0

holds, then the likelihood ratio statistics becomes (for GLMs with a(φ) =
1/ωi, which is the case for binomial GLMs) D(y; µ̂0) − D(y; µ̂1), which is
approximately chi-squared distributed with p0 − p1 degrees of freedom.

(Continued on page 3.)
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Problem 2

a

(i) The model used is a logistic regression model, which assumes that the
binary response variable Yi is bin(1, πi) distributed, i = 1, . . . , and that the
Yi’s are independent. Furthermore, it is assumed that there is a linear pre-
dictor ηi =

∑8
j=1 βjxij , that is linked to the mean µi = E(Yi) = πi through

the canonical link function ηi = g(πi) = log πi
1−πi . Here, for i = 1, . . . N ,

xi1 = 1 represents the intercept, xi2 represents gender, xi3 represents age,
xi4 represents indicator of smoking status, xi5 represents average number of
cigarettes, xi6 represents cholesterol level, xi7 represents systolic blood pres-
sure and xi8 represents glucose level.

(ii) The estimate β̂2 belonging to the explanatory variable male can be
interpreted by considering exp(β̂2) = exp(0.55) = 1.73, which is the relative
effect on the odds for a male versus a female, when they have identical values
for all other explanatory variables. That is, given this model, a male has an
estimated 73% higher odds of experiencing CHD during a 10 year period
than a female, when the values for all other explanatory variables are the
same.

b

(i) This output indicates that currentSmoker should be dropped from the
model because the p-value of the likelihood ratiod-test for a null-model with-
out this vs the original model is very high (0.76), and the highest of all the
corresponding tests for dropping each of the other explanatory variables.
Also the AIC for a model without this explanatory variable is lower than for
the original model, and lower than all other models where one of the current
explanatory variables is dropped.

(ii) A possible reason why smoking status currentSmoker does not seem to
be significant in this model is that we also have the cigsPerDay variable in
the model, which is 0 for non-smokers, and > 0 for smokers, and hence is
correlated with currentSmoker, making currentSmoker redundant.

(Continued on page 4.)
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c

(i) The numbers are filled in below

Analysis of Deviance Table

Model 1: TenYearCHD ~ male + age + cigsPerDay + totChol + sysBP + glucose
Model 2: TenYearCHD ~ male + age + cigsPerDay + totChol + sysBP + glucose +

totChol:glucose
Model 3: TenYearCHD ~ male + age + cigsPerDay + totChol + sysBP + glucose +

totChol:glucose + totChol:sysBP
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 3808 2908.3
2 3807 2904.8 1 3.5580 0.05926 .
3 3806 2903.8 1 0.9741 0.32366

(ii) The p-value comparing models 1 and 2 is quite low, but above 5%,
and it seems best to choose the model with the fewest parameters.The test
comparing models 2 and 3 favours model 2 over model 3, but since model
1 is favoured over model 2, we conclude that model 1 seems from the given
output to have the best fit of the three models.

Problem 3

a

(i) We have

E(Yij) = E[E(Yij |ui)] = E[exp (β0 + β1xij + ui)] = exp (β0 + β1xij)E (exp (ui))

(ii) We have ui ∼ N(0, σ2u. Using the hint that for this distribution
M(t) = exp(σ2ut

2/2), and that by definition the moment generating function
is M(t) = E (exp (uit)) , we have that

E (exp (ui)) = exp(σ2u/2)

(iii) Since for the log-link Poisson GLMM we marginally get E(Yij) =
exp

(
β0 + β1xij + σ2u/2

)
, while for the marginal model E(Yij) =

exp (β0 + β1xij), the effect of the explanatory variable on the mean of Yij is
the same for the log-link Poisson GLMM and the marginal model, while the
intercept differs by σ2u/2.

b

(i) Since we know from a) that the effect of the explanatory variable on the
mean of Yij is the same for the log-link Poisson GLMM and the marginal
model, we can get the number behind the question mark from the output
for fitting the GLMM, that is 0.3632.

(ii) The ”Naive S.E.” results from the assuming that the ”working covariance
matrix” is correctly specified, while the "Robust S.E." allows for the ”work-
ing covariance matrix” to be misspecified.

(Continued on page 5.)
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(iii) The sandwich estimator.

(Continued on page 6.)



APPENDIX: Formulas in STK3100/4100

1) Linear models and least squares

a) Let Y = (Y1, . . . , Yn)T be a vector of random variables with mean vector µ = (µ1, . . . , µn)T

and covariance matrix V = E{(Y − µ)(Y − µ)T}. We consider the linear model µ = Xβ,
where the model matrix X is a n × p matrix, and assume that V = σ2I. If we observe
Y = y = (y1, . . . , yn)T, then the least squares estimate β̂ and the fitted values µ̂ = Xβ̂ are
obtained by minimizing ‖y − µ‖2 = (y − µ)T(y − µ).

b) Let C(X) denote the model space, i.e. the subspace of Rn that is spanned by the columns
of X, and let PX denote the projection matrix onto C(X). Then µ̂ = PXy. The projection
matrix is symmetric and idempotent (i.e. P 2

X = PX), and rank(PX) = trace(PX).

c) The projection matrix PX is unique, i.e. it depends only on the subspace C(X) and not on
the choice of basis vectors for the subspace. If X has full rank, we have PX = X(XTX)−1XT.

d) For a random vector Y with mean vector µ and covariance matrix V and a fixed matrix A,
we have E(Y TAY ) = trace(AV ) + µTAµ.

2) Multivariate normal distribution and normal linear models

a) Y = (Y1, . . . , Yn)T has a multivariate normal distribution with mean vector µ and covariance
matrix V , written Y ∼ N(µ,V ), if its joint pdf is given by

f(y;µ,V ) = (2π)−n/2|V |−1/2 exp{−(1/2)(y − µ)TV −1(y − µ)}

b) Suppose Y ∼ N(µ,V ) is partitioned as

Y =

(
Y1

Y2

)
with µ =

(
µ1

µ2

)
and V =

(
V11 V12

V21 V22

)

then

Y1|Y2 = y2 ∼ N
(
µ1 + V12V

−1
22 (y2 − µ2),V11 − V12V

−1
22 V21

)

c) [Cochran’s theorem] Assume that Y ∼ N(µ, σ2I) and that P1, . . . ,Pk are projection matrices
with

∑k
i=1Pi = I. Then Y TPiY are independent for i = 1, . . . k, and Y TPiY /σ

2 has a non-
central chi-squared distribution with non-centrality parameter λi = µTPiµ/σ

2 and degrees of
freedom equal to the rank of Pi.

3) Generalized linear models (GLMs)

a) A random variable Yi has a distribution in the exponential dispersion family if its pmf/pdf
may be written

f(yi; θi, φ) = exp{[yiθi − b(θi)]/a(φ) + c(yi, φ)},

where θi is the natural parameter and φ is the dispersion parameter. We have E(Yi) = b′(θi)
and var(Yi) = b′′(θi)a(φ).

b) For a GLM we have that Y1, . . . Yn are independent with pmf/pdf from the exponential
dispersion family. The linear predictors η1, . . . , ηn are given by ηi =

∑p
j=1 xijβj = xiβ, and



the expected values µi = E(Yi) satisfy g(µi) = ηi for a strictly increasing and differentiable link
function g. For the canonical link function g(µi) = (b′)−1(µi) we have θi = ηi.

c) The likelihood equations for a GLM are given by

n∑

i=1

(yi − µi)xij
var(Yi)

∂µi
∂ηi

= 0 for j = 1, . . . , p.

d) Let β̂ be the maximum likelihood (ML) estimator for a GLM. Then

β̂ ∼ N
(
β, (XTWX)−1

)
, approximately

whereX is the model matrix andW is the diagonal matrix with elements wi = (∂µi/∂ηi)
2/var(Yi).

e) Consider a GLM with a(φ) = φ/ωi. Let µ̂i = b′(θ̂i) be the ML estimate of µi under the actual
model, and let yi = b′(θ̃i) be the ML estimate of µi under the saturated model. Then

−2 log

(
max likelihood for actual model

max likelihood for saturated model

)
= D(y; µ̂)/φ

where

D(y; µ̂) = 2
n∑

i=1

ωi

[
yi

(
θ̃i − θ̂i

)
− b(θ̃i) + b(θ̂i)

]

is the deviance.

4) Normal and generalized linear mixed models

a) We assume that Yi = (Yi1, . . . , Yid)T for i = 1, . . . n are independent vectors that correspond
to d observations from each of n clusters. A normal linear mixed effects model is given by

Yij = xijβ + zijui + εij ,

where β is a p× 1 vector of fixed effects, ui ∼ N(0,Σu) is a q× 1 vector of random effects, and
εi = (εi1, . . . εid)T ∼ N(0,R) is independent of ui. Often one will have R = σ2I.

b) For a generalized linear mixed model we assume that the conditional pmf/pdf of Yij given
ui ∼ N(0,Σu) is in the exponential dispersion family, and that for a link function g we have

g [E(Yij |ui)] = xijβ + zijui.


