STK3405 - Week 39

A. B. Huseby \& K. R. Dahl

Department of Mathematics
University of Oslo, Norway

Chapter 5

Structural and reliability importance for components in binary monotone systems

Importance measures

- A measure of importance can be used to identify components that should be improved in order to increase the system reliability.
- A measure of importance can be used to identify components that most likely have failed, given that the system has failed.

Section 5.1

Structural importance of a component

Criticality

Definition (Criticality)

Let (C, ϕ) be a binary monotone system, and let $i \in C$. We say that component i is critical for the system if:

$$
\phi\left(1_{i}, \boldsymbol{x}\right)=1 \text { and } \phi\left(0_{i}, \boldsymbol{x}\right)=0
$$

If this is the case, we also say that $(\cdot i, \boldsymbol{x})$ is a critical vector for component i.

NOTE: Criticality is strongly related to the notion of relevance: A component i in a binary monotone system (C, ϕ) is relevant if and only if there exists at least one critical vector for i.

Criticality (cont.)

Figure: A binary monotone system (C, ϕ)

The structure function of the system (\boldsymbol{C}, ϕ) is given by:

$$
\phi(\boldsymbol{x})=x_{1} \amalg\left(x_{2} \cdot x_{3} \cdot x_{4}\right)
$$

Criticality (cont.)

Component 1 is critical if $\left({ }_{1}, \boldsymbol{x}\right)$ is:

$$
\begin{aligned}
& (\cdot, 0,0,0),(\cdot, 1,0,0),(\cdot, 0,1,0),(\cdot, 0,0,1), \\
& (\cdot, 1,1,0),(\cdot, 1,0,1),(\cdot, 0,1,1)
\end{aligned}
$$

Component 2 is critical if $\left({ }_{2}, \boldsymbol{x}\right)=(0, \cdot, 1,1)$,
Component 3 is critical if $(\cdot 3, \boldsymbol{x})=(0,1, \cdot, 1)$,
Component 4 is critical if $(\cdot 4, \boldsymbol{x})=(0,1,1, \cdot)$.

Structural importance

Based on this Birnbaum suggested the following measure of structural importance of a component in a binary monotone system:

Definition (Structural importance)

Let (C, ϕ) be a binary monotone system of order n, and let $i \in C$. The
Birnbaum measure for the structural importance of component i, denoted $J_{B}^{(i)}$, is defined as:

$$
J_{B}^{(i)}:=\frac{1}{2^{n-1}} \sum_{(\cdot i, \boldsymbol{X})}\left[\phi\left(1_{i}, \boldsymbol{X}\right)-\phi\left(0_{i}, \boldsymbol{x}\right)\right] .
$$

Note that the denominator, 2^{n-1} is the total number of states for the $n-1$ other components. Thus, $J_{B}^{(i)}$ can be interpreted as the fraction of all states for the $n-1$ other components where component i is critical.

Structural importance

Figure: A binary monotone system (C, ϕ)

For this system we have the following structural importance measures:

$$
J_{B}^{(1)}=\frac{7}{2^{4-1}}=\frac{7}{8}, \quad J_{B}^{(2)}=J_{B}^{(3)}=J_{B}^{(4)}=\frac{1}{2^{4-1}}=\frac{1}{8} .
$$

Structural importance

Let ϕ be a 2-out-of-3 system. To compute the structural importance of component 1, we note that the critical vectors for this component are $(\cdot, 1,0)$ and $(\cdot, 0,1)$. Hence, we have:

$$
J_{B}^{(1)}=\frac{2}{2^{3-1}}=\frac{1}{2}
$$

By similar arguments, we find that:

$$
J_{B}^{(2)}=J_{B}^{(3)}=\frac{1}{2}
$$

So in a 2-out-of-3 system, all of the components have the same structural importance. This is intuitively obvious since the structure function is symmetrical with respect to the components.

Section 5.2

Reliability importance of a component

Reliability importance of a component

Definition (Reliability importance of a component)
Let (C, ϕ) be a binary monotone system, and let $i \in C$. Moreover, let \boldsymbol{X} be the vector of component state variables.

The Birnbaum measure for the reliability importance of component i, denoted $l_{B}^{(i)}$ is defined as:
$I_{B}^{(i)}:=P($ Component i is critical for the system $)$

$$
=P\left(\phi\left(1_{i}, \boldsymbol{X}\right)-\phi\left(0_{i}, \boldsymbol{X}\right)=1\right)
$$

Reliability importance of a component (cont.)

Since the difference $\phi\left(1_{i}, \boldsymbol{X}\right)-\phi\left(0_{i}, \boldsymbol{X}\right)$ is a binary variable, it follows that:

$$
l_{B}^{(i)}=E\left[\phi\left(1_{i}, \boldsymbol{X}\right)-\phi\left(0_{i}, \boldsymbol{X}\right)\right]=E\left[\phi\left(1_{i}, \boldsymbol{X}\right)\right]-E\left[\phi\left(0_{i}, \boldsymbol{X}\right)\right]
$$

In particular, if the component state variables of the system are independent, and $P\left(X_{i}=1\right)=p_{i}$ for $i \in C$, we get that:

$$
I_{B}^{(i)}=h\left(1_{i}, \boldsymbol{p}\right)-h\left(0_{i}, \boldsymbol{p}\right)
$$

Reliability importance of a component (cont.)

Theorem (Partial derivative formula)
Let (C, ϕ) be a binary monotone system where the component state variables are independent, and $P\left(X_{i}=1\right)=p_{i}$ for $i \in C$.

Then:

$$
I_{B}^{(i)}=\frac{\partial h(\boldsymbol{p})}{\partial p_{i}}, \quad \text { for all } i \in C .
$$

PROOF: By pivotal decomposition we have:

$$
h(\boldsymbol{p})=p_{i} h\left(1_{i}, \boldsymbol{p}\right)+\left(1-p_{i}\right) h\left(0_{i}, \boldsymbol{p}\right)
$$

By differentiating this identity with respect to p_{i} we get:

$$
\frac{\partial h(\boldsymbol{p})}{\partial p_{i}}=h\left(1_{i}, \boldsymbol{p}\right)-h\left(0_{i}, \boldsymbol{p}\right) .
$$

Hence, the result follows.

Reliability importance inequalities

Theorem (Reliability importance inequalities)
For a binary monotone system, (C, ϕ), we always have

$$
0 \leq I_{B}^{(i)} \leq 1 .
$$

Assume that the component state variables are independent, and $P\left(X_{j}=1\right)=p_{j}$, where $0<p_{j}<1$ for all $j \in C$.

If component i is relevant, we have:

$$
0<I_{B}^{(i)}
$$

Furthermore, if there exists at least one other relevant component, we also have:

$$
I_{B}^{(i)}<1 .
$$

Reliability importance inequalities (cont.)

PROOF: We note that the first inequality follows directly from the definition since the reliability importance is a probability.

We then assume that the component state variables are independent, and that $P\left(X_{j}=1\right)=p_{j}$, where $0<p_{j}<1$ for all $j \in C$.
If component i is relevant, we know that h is strictly increasing in p_{i}.
That is, we must have:

$$
\frac{\partial h(\boldsymbol{p})}{\partial p_{i}}>0
$$

Combining this with the partial derivative formula, we get that $0<l_{B}^{(i)}$.

Reliability importance inequalities (cont.)

Finally, we assume that there exists at least one other relevant component $k \in C$.
To show that this implies that $l_{B}^{(i)}<1$, we assume instead that $l_{B}^{(i)}=1$, and show that this leads to a contradiction.

By this assumption, it follows that :

$$
P\left(\phi\left(1_{i}, \boldsymbol{X}\right)-\phi\left(0_{i}, \boldsymbol{X}\right)=1\right)=1
$$

Since $0<p_{j}<1$, for all $j \in C$, it follows that $P\left(\left(\cdot{ }_{i}, \boldsymbol{X}\right)=\left(\cdot{ }_{i}, \boldsymbol{X}\right)\right)>0$ for all ($\cdot i, \boldsymbol{x}$).
Hence, we must have that:

$$
\phi\left(1_{i}, \boldsymbol{x}\right)=1 \text { and } \phi\left(0_{i}, \boldsymbol{x}\right)=0 \text { for all }\left(\cdot_{i}, \boldsymbol{x}\right) .
$$

Reliability importance inequalities (cont.)

At the same time, since component k is relevant, there exists a vector $\left(\cdot{ }_{k}, \boldsymbol{y}\right)$ such that:

$$
\phi\left(1_{k}, \boldsymbol{y}\right)=1 \text { and } \phi\left(0_{k}, \boldsymbol{y}\right)=0
$$

If $y_{i}=1$, it follows that $\phi\left(1_{i}, 0_{k}, \boldsymbol{y}\right)=0$, contradicting that $\phi\left(1_{i}, \boldsymbol{x}\right)=1$ for all $(\cdot i, \boldsymbol{x})$.

If $y_{i}=0$, it follows that $\phi\left(0_{i}, 1_{k}, \boldsymbol{y}\right)=1$, contradicting that $\phi\left(0_{i}, \boldsymbol{x}\right)=0$ for all $(\cdot i, \boldsymbol{x})$.

Hence, we conclude that for both possible values of y_{i} we end up with contradictions.
Thus, the only possibility is that $I_{B}^{(i)}<1$.

Reliability importance and structural importance

Theorem (Reliability importance and structural importance)
Consider a binary monotone system (C, ϕ) where the component state variables are independent, and where $P\left(X_{i}=1\right)=\frac{1}{2}$ for all $i \in C$.
Then we have:

$$
I_{B}^{(i)}=J_{B}^{(i)}
$$

PROOF: If the component state variables are independent, and $P\left(X_{i}=1\right)=\frac{1}{2}$ for all $i \in C$, we have:

$$
P((\cdot i, \boldsymbol{X})=(\cdot i, \boldsymbol{x}))=\prod_{j \neq i} P\left(X_{j}=x_{j}\right)=\prod_{j \neq i}\left(\frac{1}{2}\right)=\frac{1}{2^{n-1}} .
$$

From this the result follows.

Reliability importance examples

In the following examples we consider binary monotone systems (C, ϕ) where $C=\{1, \ldots, n\}$.

We also assume that the component state variables are independent, and that:

$$
P\left(X_{i}=1\right)=p_{i}, \quad i \in C
$$

Without loss of generality we assume that the components are ordered so that:

$$
\begin{equation*}
p_{1} \leq p_{2} \leq \ldots \leq p_{n} \tag{1}
\end{equation*}
$$

Reliability importance examples (cont.)

Let (C, ϕ) be a series system. Then for all $i \in C$ we have:

$$
I_{B}^{(i)}=\frac{\partial \prod_{j=1}^{n} p_{j}}{\partial p_{i}}=\prod_{j \neq i} p_{j}
$$

Hence, by the ordering (1), we get that:

$$
I_{B}^{(1)} \geq I_{B}^{(2)} \geq \cdots \geq I_{B}^{(n)}
$$

Thus, in a series system the worst component, i.e., the one with the smallest reliability, has the greatest reliability importance.

Reliability importance examples (cont.)

Let (C, ϕ) be a parallel system. Then for all $i \in C$ we have:

$$
l_{B}^{(i)}=\frac{\partial \coprod_{j=1}^{n} p_{j}}{\partial p_{i}}=\frac{\partial\left[1-\prod_{j=1}^{n}\left(1-p_{j}\right)\right]}{\partial p_{i}}=\prod_{j \neq i}\left(1-p_{j}\right) .
$$

Hence, from the ordering (1)

$$
I_{B}^{(1)} \leq I_{B}^{(2)} \leq \cdots \leq I_{B}^{(n)} .
$$

Thus, in a parallel system the best component, i.e., the one with the greatest reliability, has the greatest reliability importance.

Reliability importance examples (cont.)

Let (C, ϕ) be a 2-out-of-3 system. It is then easy to show that:

$$
\phi(\boldsymbol{X})=X_{1} X_{2}+X_{1} X_{3}+X_{2} X_{3}-2 X_{1} X_{2} X_{3} .
$$

Hence, we have:

$$
h(\boldsymbol{p})=p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}-2 p_{1} p_{2} p_{3}
$$

This implies that:

$$
\begin{aligned}
& I_{B}^{(1)}=\frac{\partial h(\boldsymbol{p})}{\partial p_{1}}=p_{2}+p_{3}-2 p_{2} p_{3} \\
& I_{B}^{(2)}=\frac{\partial h(\boldsymbol{p})}{\partial p_{2}}=p_{1}+p_{3}-2 p_{1} p_{3} \\
& I_{B}^{(3)}=\frac{\partial h(\boldsymbol{p})}{\partial p_{3}}=p_{1}+p_{2}-2 p_{1} p_{2}
\end{aligned}
$$

Reliability importance examples (cont.)

We then consider the function $f(p, q)=p+q-2 p q$ and note that:

$$
l_{B}^{(1)}=f\left(p_{2}, p_{3}\right), \quad l_{B}^{(2)}=f\left(p_{1}, p_{3}\right), \quad l_{B}^{(3)}=f\left(p_{1}, p_{2}\right)
$$

Moreover, the partial derivatives of f are respectively:

$$
\frac{\partial f}{\partial p}=1-2 q, \quad \frac{\partial f}{\partial q}=1-2 p
$$

If $p, q \leq \frac{1}{2}, f$ is non-decreasing in p and q. Thus, if $p_{1} \leq p_{2} \leq p_{3} \leq \frac{1}{2}$, we have:

$$
f\left(p_{1}, p_{2}\right) \leq f\left(p_{1}, p_{3}\right) \leq f\left(p_{2}, p_{3}\right)
$$

Hence, in this case we have:

$$
\begin{equation*}
l_{B}^{(3)} \leq I_{B}^{(2)} \leq I_{B}^{(1)} \tag{2}
\end{equation*}
$$

Reliability importance examples (cont.)

If $p, q \geq \frac{1}{2}, f$ is non-increasing in p and q. Thus, if $\frac{1}{2} \leq p_{1} \leq p_{2} \leq p_{3}$, we have:

$$
f\left(p_{2}, p_{3}\right) \leq f\left(p_{1}, p_{3}\right) \leq f\left(p_{1}, p_{2}\right)
$$

Hence, in this case we have:

$$
\begin{equation*}
l_{B}^{(1)} \leq I_{B}^{(2)} \leq I_{B}^{(3)} . \tag{3}
\end{equation*}
$$

Reliability importance examples (cont.)

If $p_{1}=\frac{1}{2}-z, p_{2}=\frac{1}{2}$ and $p_{3}=\frac{1}{2}+z$, where $z \in\left(0, \frac{1}{2}\right)$, we get:

$$
\begin{aligned}
& I_{B}^{(1)}=\left(\frac{1}{2}\right)+\left(\frac{1}{2}+z\right)-2 \cdot\left(\frac{1}{2}\right)\left(\frac{1}{2}+z\right)=\frac{1}{2}, \\
& I_{B}^{(2)}=\left(\frac{1}{2}-z\right)+\left(\frac{1}{2}+z\right)-2 \cdot\left(\frac{1}{2}-z\right)\left(\frac{1}{2}+z\right)=\frac{1}{2}+2 z^{2}, \\
& I_{B}^{(3)}=\left(\frac{1}{2}-z\right)+\left(\frac{1}{2}\right)-2 \cdot\left(\frac{1}{2}-z\right)\left(\frac{1}{2}\right)=\frac{1}{2},
\end{aligned}
$$

Hence in this case we have:

$$
\begin{equation*}
l_{B}^{(1)}=l_{B}^{(3)} \leq I_{B}^{(2)} . \tag{4}
\end{equation*}
$$

Note that this result holds also if $z \in\left(-\frac{1}{2}, 0\right)$ in which case $p_{1}>p_{2}>p_{3}$.

Reliability importance examples (cont.)

Figure: A binary monotone system (C, ϕ)
The structure function of this system is:

$$
\phi(\boldsymbol{X})=X_{1} \amalg\left(X_{2} \cdot X_{3} \cdot X_{4}\right)=X_{1}+X_{2} \cdot X_{3} \cdot X_{4}-X_{1} \cdot X_{2} \cdot X_{3} \cdot X_{4}
$$

Thus, the reliability function is given by:

$$
h(\boldsymbol{p})=p_{1}+p_{2} \cdot p_{3} \cdot p_{4}-p_{1} \cdot p_{2} \cdot p_{3} \cdot p_{4}
$$

Reliability importance examples (cont.)

Hence we have:

$$
\begin{aligned}
& I_{B}^{(1)}=1-p_{2} \cdot p_{3} \cdot p_{4} \\
& I_{B}^{(2)}=p_{3} \cdot p_{4}-p_{1} \cdot p_{3} \cdot p_{4}=\left(1-p_{1}\right) \cdot p_{3} \cdot p_{4} \\
& I_{B}^{(3)}=p_{2} \cdot p_{4}-p_{1} \cdot p_{2} \cdot p_{4}=\left(1-p_{1}\right) \cdot p_{2} \cdot p_{4} \\
& I_{B}^{(4)}=p_{2} \cdot p_{3}-p_{1} \cdot p_{2} \cdot p_{3}=\left(1-p_{1}\right) \cdot p_{2} \cdot p_{3}
\end{aligned}
$$

If $p_{1}=p_{2}=p_{3}=p_{4}=p \in(0,1)$, we have:

$$
\begin{aligned}
& I_{B}^{(1)}=1-p^{3} \\
& I_{B}^{(i)}=p^{2}-p^{3}<I_{B}^{(1)}, \quad i=2,3,4 .
\end{aligned}
$$

Reliability importance examples (cont.)

Assume instead that $p_{1}=0.1$ and that $p_{2}=p_{3}=p_{4}=0.9$. Then we get:

$$
\begin{aligned}
& I_{B}^{(1)}=1-p_{2} \cdot p_{3} \cdot p_{4}=1-0.9^{3}=0.271 \\
& I_{B}^{(2)}=p_{3} \cdot p_{4}-p_{1} \cdot p_{3} \cdot p_{4}=\left(1-p_{1}\right) \cdot p_{3} \cdot p_{4}=0.9^{3}=0.729 \\
& I_{B}^{(3)}=p_{2} \cdot p_{4}-p_{1} \cdot p_{2} \cdot p_{4}=\left(1-p_{1}\right) \cdot p_{2} \cdot p_{4}=0.9^{3}=0.729 \\
& I_{B}^{(4)}=p_{2} \cdot p_{3}-p_{1} \cdot p_{2} \cdot p_{3}=\left(1-p_{1}\right) \cdot p_{2} \cdot p_{3}=0.9^{3}=0.729
\end{aligned}
$$

Thus, in this case we have:

$$
I_{B}^{(1)}<l_{B}^{(2)}=I_{B}^{(3)}=I_{B}^{(4)} .
$$

Section 5.3

The Barlow-Proschan measure of reliability importance

The Barlow-Proschan measure of reliability importance

Definition (Barlow-Proschan measure)

Consider a binary monotone system (C, ϕ), where the components are never repaired.

Moreover, let T_{i} denote the lifetime of component $i, i \in C$, and let S denote the lifetime of the system.

The Barlow-Proschan measure of the reliability importance of component $i \in C$ is defined as:
$I_{B-P}^{(i)}:=P($ Component i fails at the same time as the system $)$ $=P\left(T_{i}=S\right)$.

Absolute continuity

A real-valued stochastic variable, T has an absolutely continuous distribution if $P(T \in A)=0$ for all measurable sets $A \subseteq \mathbb{R}$ such that $m_{1}(A)=0$, where m_{1} denotes the Lebesgue measure in \mathbb{R}.

If T_{1}, \ldots, T_{n} are independent and absolutely continuously distributed, then $\boldsymbol{T}=\left(T_{1}, \ldots, T_{n}\right)$ is absolutely continuously distributed in \mathbb{R}^{n}. That is, $P(\boldsymbol{T} \in A)=0$ for all (measurable) sets $A \subseteq \mathbb{R}^{n}$ such that $m_{n}(A)=0$, where m_{n} denotes the Lebesgue measure in \mathbb{R}^{n}.

In particular, if $A=\left\{t: t_{i}=t_{j}\right\}$, where $i \neq j$, then $m_{n}(A)=0$. Hence, $P\left(T_{i}=T_{j}\right)=0$ when $i \neq j$.

The Barlow-Proschan measure of reliability importance (cont.)

Theorem (Probability of system failure) Let (C, ϕ) be a non-trivial binary monotone system where the components are never repaired and $C=\{1, \ldots, n\}$.
Let T_{i} denote the lifetime of component $i, i=1, \ldots, n$, and let S denote the lifetime of the system.

Moreover, assume that T_{1}, \ldots, T_{n} are independent, absolutely continuously distributed.

Then S is absolutely continuously distributed as well, and we have:

$$
\sum_{i=1}^{n} I_{B-P}^{(i)}=1
$$

The Barlow-Proschan measure of reliability importance (cont.)

PROOF: Since we have assumed that the system is non-trivial, the lifetime of the system, S can be expressed as:

$$
\begin{equation*}
S=\max _{1 \leq j \leq P} \min _{i \in P_{j}} T_{i}, \tag{5}
\end{equation*}
$$

where P_{1}, \ldots, P_{p} are the minimal path sets of the system. This implies that:

$$
\begin{equation*}
P\left(\bigcup_{i=1}^{n}\left\{T_{i}=S\right\}\right)=1 . \tag{6}
\end{equation*}
$$

Let $A \subseteq \mathbb{R}$ be an arbitrary measurable set such that $m_{1}(A)=0$. Since we have assumed that T_{1}, \ldots, T_{n} are absolutely coninuously distributed, we get that:

$$
0 \leq P(S \in A) \leq P\left(\bigcup_{i=1}^{n}\left\{T_{i} \in A\right\}\right) \leq \sum_{i=1}^{n} P\left(T_{i} \in A\right)=0
$$

The Barlow-Proschan measure of reliability importance (cont.)

Since T_{1}, \ldots, T_{n} are absolutely continuously distributed, the probability of having two or more components failing at the same time is zero.

This implies e.g., that $P\left(\left\{T_{i}=S\right\} \cap\left\{T_{j}=S\right\}\right)=0$ for $i \neq j$. Thus, when calculating the probability of the union of the events $\left\{T_{i}=S\right\}, i=1, \ldots, n$, all intersections can be ignored as they have zero probability of occurring. Hence, by (6) we get:

$$
1=P\left(\bigcup_{i=1}^{n}\left\{T_{i}=S\right\}\right)=\sum_{i=1}^{n} P\left(T_{i}=S\right)=\sum_{i=1}^{n} I_{B-P}^{(i)},
$$

where the second equality follows by ignoring all intersections of events $\left\{T_{i}=S\right\}, i=1, \ldots, n$.

The last equality follows by the definition of $I_{B-P}^{(i)}$, and hence, the proof is complete.

The Barlow-Proschan measure of reliability importance (cont.)

Theorem (Integral formula for the Barlow-Proschan measure)
Let (C, ϕ) be a non-trivial binary monotone system where the components are never repaired, and where $C=\{1, \ldots, n\}$
Let T_{i} denote the lifetime of component $i, i=1, \ldots, n$.
Moreover, assume that T_{1}, \ldots, T_{n} are independent, absolutely continuously distributed with densities f_{1}, \ldots, f_{n} respectively.

Then, we have:

$$
l_{B-P}^{(i)}=\int_{0}^{\infty} l_{B}^{(i)}(t) f_{i}(t) d t
$$

where $l_{B}^{(i)}(t)$ denotes the Birnbaum measure of the reliability importance of component 1 at time t, i.e., the probability that component i is critical at time t.

The Barlow-Proschan measure of reliability importance (cont.)

PROOF: From the definitions of the Barlow-Proschan measure and the Birnbaum measure, it follows that:
$l_{B-P}^{(i)}=P($ Component i fails at the same time as the system $)$

$$
=\int_{0}^{\infty} P(\text { Component } i \text { is critical at time } t) \cdot f_{i}(t) d t
$$

$$
=\int_{0}^{\infty} l_{B}^{(i)}(t) f_{i}(t) d t .
$$

