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Chapter 6

Association and bounds for the system reliability
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Section 6.2

Upper and lower bounds for the reliability of monotone
systems
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Associated random variables

Definition (Associated random variables)

Let T1, . . . ,Tn be random variables, and let T = (T1, . . . ,Tn). We say
that T1, . . . ,Tn are associated if

Cov(Γ(T ),∆(T )) ≥ 0,

for all binary non-decreasing functions Γ and ∆.

NOTE: We only require Cov(Γ(T ),∆(T )) ≥ 0 for all binary
non-decreasing functions.
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Associated random variables (cont.)

Theorem (Generalized covariance property)
Let T1, . . . ,Tn be associated random variables, and f and g functions
which are non-decreasing in each argument such that Cov(f (T ),g(T ))
exists, i.e.,

E [|f (T )|] <∞,E [|g(T )|] <∞,E [|f (T )g(T )|] <∞.

Then we have:
Cov(f (T ),g(T )) ≥ 0.
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Bounds for the system reliability

Theorem (6.2.1)
Let T1, . . . ,Tn be associated random variables such that 0 ≤ Ti ≤ 1,
i = 1, . . . ,n. Then, we have:

E [
n∏

i=1

Ti ] ≥
n∏

i=1

E [Ti ]

E [
n∐

i=1

Ti ] ≤
n∐

i=1

E [Ti ]
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Bounds for the system reliability (cont.)

PROOF: Note that since 0 ≤ Ti ≤ 1, both Ti and Si = 1− Ti are non-negative
random variables, i = 1, . . . ,n. Hence, the product functions

∏n
i=j Ti and∏n

i=j Si are non-decreasing in each argument, j = 1, . . . ,n.

By using the generalized covariance property, we find:

E [
n∏

i=1

Ti ]− E [T1]E [
n∏

i=2

Ti ] = Cov(T1,

n∏
i=2

Ti ) ≥ 0,

since the product function is non-decreasing in each argument.

This implies that:

E [
n∏

i=1

Ti ] ≥ E [T1]E [
n∏

i=2

Ti ].

By repeated use of this inequality, we get the first inequality.
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Bounds for the system reliability (cont.)

From the extension of property (iii), S1, . . . ,Sn are associated random
variables. Moreover, 0 ≤ Si ≤ 1, i = 1, . . . ,n, so we can apply the first
inequality to these variables.

From this it follows that:

E [
n∐

i=1

Ti ] = 1− E [
n∏

i=1

(1− Ti)] = 1− E [
n∏

i=1

Si ]

≤ 1−
n∏

i=1

E(Si) = 1−
n∏

i=1

(1− E [Ti ])

=
n∐

i=1

E [Ti ],

so the second inequality is proved as well.
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Bounds for the system reliability (cont.)

We apply the theorem to the component state variables X1, . . . ,Xn:

The first inequality says that for a series structure of associated
components, an incorrect assumption of independence will lead to
an underestimation of the system reliability.
The second inequality says that for a parallel structure, an
incorrect assumption of independence between the components
will lead to an overestimation of the system reliability.

Since most systems are not purely series or purely parallel, we
conclude that for an arbitrary structure, we cannot say for certain what
the consequences of an incorrect assumption of independence will be.

Fortunately, it is still possible to obtain bounds on the system reliability.
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Bounds for the system reliability (cont.)

We skip the following results:

Theorem 6.2.2 (Bounds on intersections of survival and failure
events)

Corlollary 6.2.3 (Bounds on lifetime distributions of series and
parallel systems)

Theorem 6.2.4 (Very crude upper and lower bounds)

Theorem 6.2.5 (We incorporate this result in Corollary 6.2.6)

Theorem 6.2.7 (We incorporate this result in Corollary 6.2.8)

A. B. Huseby & K. R. Dahl (Univ. of Oslo) STK3405 – Week 43 10 / 26



uiobmcrop

Bounds for the system reliability (cont.)

Corollary (6.2.6)

Consider a monotone system (C, φ), where C = {1, . . . ,n} and with
minimal path sets P1, . . . ,Pp and minimal cut sets K1, . . . ,Kk .

Moreover, assume that the component state variables, X1, . . . ,Xn are
associated with component reliabilities p1, . . . ,pn. Then we have:

max
1≤j≤p

∏
i∈Pj

pi ≤ h ≤ min
1≤j≤k

∐
i∈Kj

pi .
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Bounds for the system reliability (cont.)

PROOF: We have that:

min
i∈Pr

Xi ≤ max
1≤r≤p

min
i∈Pr

Xi = φ(X ) = min
1≤s≤k

max
i∈Ks

Xi ≤ max
i∈Ks

Xi ,

for all r = 1, . . . ,p and all s = 1, . . . , k .

This implies that:

P(min
i∈Pr

Xi = 1) ≤ h ≤ P(max
i∈Ks

Xi = 1)

for all r = 1, . . . ,p and all s = 1, . . . , k .

Hence, we must have:

max
1≤j≤p

P[min
i∈Pj

Xi = 1] ≤ h ≤ min
1≤j≤k

P[max
i∈Kj

Xi = 1].
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Bounds for the system reliability (cont.)

Furthermore, since X1, . . . ,Xn are associated, we may use Theorem
6.2.1 and get:

P[min
i∈Pj

Xi = 1] = E [
∏
i∈Pj

Xi ] ≥
∏
i∈Pj

E [Xi ] =
∏
i∈Pj

pi

P[max
i∈Kj

Xi = 1] = E [
∐
i∈Kj

Xi ] ≤
∐
i∈Kj

E [Xi ] =
∐
i∈Kj

pi

Inserting these inequalities into the bounds on the previous slide we
get:

max
1≤j≤p

∏
i∈Pj

pi ≤ h ≤ min
1≤j≤k

∐
i∈Kj

pi .
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Bounds for the system reliability (cont.)

Corollary (6.2.8)

Let (C, φ) be a binary monotone system where C = {1, . . . ,n}, and
assume that the component state variables, X1, . . . ,Xn are
independent with component reliabilities p1, . . . ,pn.

Moreover, let P1, . . . ,Pp and K1, . . . ,Kk be respectively the minimal
path and cut sets of the system.

Then we have:
k∏

j=1

∐
i∈Kj

pi ≤ h(p) ≤
p∐

j=1

∏
i∈Pj

pi .
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Bounds for the system reliability (cont.)
PROOF: We introduce:

ρj (X ) =
∏
i∈Pj

Xi , j = 1, . . . ,p,

κj (X ) =
∐
i∈Kj

Xi , j = 1, . . . , k .

Since ρ1, . . . , ρp and κ1, . . . , κk are non-decreasing functions of X , they are
associated. Hence, by Theorem 6.2.1 we have:

h(p) = E [

p∐
j=1

∏
i∈Pj

Xi ] = E [

p∐
j=1

ρj (X )] ≤
p∐

j=1

E [ρj (X )]

h(p) = E [
k∏

j=1

∐
i∈Kj

Xi ] = E [
k∏

j=1

κj (X )] ≥
k∏

j=1

E [κj (X )]
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Bounds for the system reliability (cont.)
Moreover, since the component state variables, X1, . . . ,Xn, are independent,
we have:

E [ρj (X )] = E [
∏
i∈Pj

Xi ] =
∏
i∈Pj

pi ,

E [κj (X )] = E [
∐
i∈Kj

Xi ] =
∐
i∈Kj

pi .

Inserting this into the bounds on the previous slide, i.e.:
k∏

j=1

E [κj (X )] ≤ h(p) ≤
p∐

j=1

E [ρj (X )],

we get:
k∏

j=1

∐
i∈Kj

pi ≤ h(p) ≤
p∐

j=1

∏
i∈Pj

pi .
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Bounds for the system reliability (cont.)

In the coming examples we shall compare the bounds from Corollary
6.2.6 to those from Corollary 6.2.8.

Let hn(p) denote the reliability of a parallel system of n components
where all components have the same reliability p. We then have:

h2(p) = p q p = 1− (1− p)(1− p)

= 1− (1− 2p + p2) = 2p − p2,

h3(p) = p q p q p = 1− (1− p)(1− p)(1− p)

= 1− (1− 3p + 3p2 − p3) = 3p − 3p2 + p3.
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Bounds for the system reliability (cont.)

EXAMPLE 1: A 3-out-of-4 system with pi = p, i = 1,2,3,4 where all the
component state variables are independent.

The minimal path sets for the 3-out-of-4 system are:

P1 = {1,2,3}, P2 = {1,2,4}, P3 = {1,3,4}, P4 = {2,3,4},

and the minimal cut sets are:

K1 = {1,2}, K2 = {1,3}, K3 = {1,4}, K4 = {2,3}, K5 = {2,4}, K6 = {3,4}.

A. B. Huseby & K. R. Dahl (Univ. of Oslo) STK3405 – Week 43 18 / 26



uiobmcrop

Bounds for the system reliability (cont.)
The lower and upper bounds in Corollary 6.2.6 are denoted by l1(p) and
u1(p) respectively, and are given by:

l1(p) = max
1≤j≤4

∏
i∈Pj

p = max
1≤j≤4

p3 = p3,

u1(p) = min
1≤j≤6

∐
i∈Kj

p = min
1≤j≤6

h2(p) = 2p − p2.

The lower and upper bounds in Corollary 6.2.8 are denoted by l2(p) and
u2(p) respectively, and are given by:

l2(p) =
6∏

j=1

∐
i∈Kj

p =
6∏

j=1

h2(p) = (2p − p2)6,

u2(p) =
4∐

j=1

∏
i∈Pj

p = h2(p3)q h2(p3) = 2(2p3 − p6)− (2p3 − p6)2.
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Bounds for the system reliability (cont.)

The true reliability of the 3-out-of-4 system is given by:

h(p) =
4∑

i=3

(
4
i

)
pi(1− p)n−i = 4p3(1− p) + p4.
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Bounds for the system reliability (cont.)
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Figure: The true reliability function h as well as the bounds l1, u1, l2, u2.
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Bounds for the system reliability (cont.)

EXAMPLE 2: A bridge system with pi = p, i = 1,2,3,4,5 where all the
component state variables are independent.

The minimal path sets for the bridge system are:

P1 = {1,4}, P2 = {1,3,5}, P3 = {2,3,4}, P4 = {2,5},

and the minimal cut sets are:

K1 = {1,2}, K2 = {1,3,5}, K3 = {2,3,4}, K4 = {4,5}.
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Bounds for the system reliability (cont.)
The lower and upper bounds in Corollary 6.2.6 are denoted by l1(p) and
u1(p) respectively, and are given by:

l1(p) = max
1≤j≤4

∏
i∈Pj

p = max(p2,p3,p3,p2) = p2,

u1(p) = min
1≤j≤4

∐
i∈Kj

p = min(h2(p),h3(p),h3(p),h2(p)) = 2p − p2.

The lower and upper bounds in Corollary 6.2.8 are denoted by l2(p) and
u2(p) respectively, and are given by:

l2(p) =
4∏

j=1

∐
i∈Kj

p = h2(p)2 · h3(p)2,

u2(p) =
4∐

j=1

∏
i∈Pj

p = h2(p2)q h2(p3).
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Bounds for the system reliability (cont.)

The true reliability of the bridge system is given by:

h(p) = p · h2(p)2 + (1− p) · h2(p2).
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Bounds for the system reliability (cont.)
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Figure: The true reliability function h as well as the bounds l1, u1, l2, u2.
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Bounds for the system reliability (cont.)

We see that in both examples the bounds from Corollary 6.2.8 are
better than those from Corollary 6.2.6 for most of the p-values.

NOTE:
The lower bound l1 from Corollary 6.2.6 is better than l2 from
Corollary 6.2.6 for small values of p.

The upper bound u1 from Corollary 6.2.6 is better than u2 from
Corollary 6.2.6 for large p-values.

In order to always get the best bounds, we may introduce l∗ and u∗

defined as follows:

l∗ = max(l1, l2),

u∗ = min(u1,u2)
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