STK3405 - Week 44

A. B. Huseby & K. R. Dahl

Department of Mathematics University of Oslo, Norway

A. B. Huseby & K. R. Dahl (Univ. of Oslo)

STK3405 - Week 44

э

Pure jump processes

Let $\{S(t)\}$ be a stochastic process where S(t) denotes the state of the process at time $t \ge 0$. $\{S(t)\}$ is said to be a *pure jump process* if S(t) can be written as:

$$\mathcal{S}(t) = \mathcal{S}(0) + \sum_{j=1}^{\infty} I(T_j \leq t) J_j, \qquad t \geq 0,$$

where $0 = T_0 < T_1 < T_2 < \cdots$ is a sequence of random points of time, and J_1, J_2, \ldots is a sequence of random *jumps*.

This representation implies that the state function S(t) is *piecewise constant* and *right-continuous* in *t*, with jumps at $T_1 < T_2 < \cdots$.

In particular, for $k = 0, 1, \ldots$, we have:

$$S(t) = S(0) + \sum_{j=1}^k J_j = S(T_k),$$
 for all $t \in [T_k, T_{k+1}).$

In order to keep track of how the process evolves only the *event points* need to be considered.

A. B. Huseby & K. R. Dahl (Univ. of Oslo)

STK3405 - Week 44

Regular pure jump processes

Let $\{S(t)\}$ be pure jump process, and let:

$$egin{aligned} \mathcal{N}(t) &= \sum_{j=1}^\infty I(T_j \leq t) \ &= ext{The number of jumps in [0, t]}. \end{aligned}$$

We say that $\{S(t)\}$ is *regular* if $P(N(t) < \infty) = 1$ for all t > 0.

NOTE

$$P(N(t) < \infty) = P(\lim_{k \to \infty} T_k = \infty)$$

= $P(\lim_{k \to \infty} \sum_{j=1}^k \Delta_j = \infty),$

where $\Delta_j = T_j - T_{j-1}, j = 1, 2, ...$

Proposition (8.1.1)

Let $\{S(t)\}$ be a pure jump process with jumps at:

 $T_1 < T_2 < \cdots$

Moreover, we let $T_0 = 0$ and introduce the non-negative random variables $\Delta_j = T_j - T_{j-1}$, j = 1, 2, ...

If the sequence $\{\Delta_j\}$ contains an infinite subsequence $\{\Delta_{k_j}\}$ of independent, identically distributed random variables such that $E[\Delta_{k_j}] = d > 0$, then S is regular.

・ロト ・ 四ト ・ ヨト ・ ヨト …

PROOF: By the strong law of large numbers it follows that:

$$P(\lim_{n\to\infty}n^{-1}\sum_{j=1}^n\Delta_{k_j}=d)=1.$$

This implies that the series $\sum_{j=1}^{\infty} \Delta_{k_j}$ is divergent with probability one. Hence, since obviously $\sum_{j=1}^{\infty} \Delta_{k_j} \leq \sum_{j=1}^{\infty} \Delta_j$, the result follows.

Proposition (8.1.2)

Let $\{S(t)\}$ be a regular pure jump process with jumps at $T_1 < T_2 < \cdots$. Then $\lim_{t\to s^-} S(t)$ exists for every s > 0 with probability one.

PROOF: Let $0 \le t < s < \infty$, and consider the set:

 $\mathcal{T} = \{T_j : t \leq T_j < \boldsymbol{s}\} \cup \{t\}.$

Since *S* is regular, the set \mathcal{T} is finite with probability one. Moreover, \mathcal{T} is non-empty since $t \in \mathcal{T}$. Thus, this set contains a maximal element, which we denote by *t*'. Moreover, since every element in \mathcal{T} is less than *s*, then so is *t*'.

From this it follows that the interval (t', s) is nonempty.

At the same time (t', s) does not contain any jumps, so S(t) is constant throughout this interval. Hence, $\lim_{t\to s^-} S(t)$ exists. Since *s* was arbitrary chosen, this holds for any s > 0.

(a) < (a) < (b) < (b)

Proposition (8.1.3)

Let $\{S(t)\}$ be a regular pure jump process with jumps at $T_1 < T_2 < \cdots$, and let $0 \le u < v < \infty$.

Assume that $\{T_j : u < T_j < v\} = \{T^{(1)}, \dots, T^{(k)}\}$, where $T^{(1)} < \dots < T^{(k)}$.

Moreover, we define $T^{(0)} = u$ and $T^{(k+1)} = v$.

Then we have:

$$\int_{u}^{v} S(t) dt = \sum_{j=0}^{k} S(T^{(j)}) (T^{(j+1)} - T^{(j)}).$$

イロト イ理ト イヨト イヨト

NOTE: Since *S* is regular, the number of elements in the set $\{T_j : u < T_j < v\}$ is finite with probability one.

Thus, this set can almost surely be written in the form $\{T^{(1)}, \ldots, T^{(k)}\}$, for some suitable $k < \infty$.

Since *S* is right-continuous and piecewise constant, it follows that $S(t) = S(T^{(j)})$ for all $t \in [T^{(j)}, T^{(j+1)}), j = 0, 1, ..., k$.

Thus, we have:

$$\int_{T^{(j)}}^{T^{(j+1)}} S(t) dt = S(T^{(j)})(T^{(j+1)} - T^{(j)}), \quad j = 0, 1, \dots, k.$$

The result then follows by adding up the contributions to the integral from each of the k + 1 intervals $[T^{(0)}, T^{(1)}), \dots, [T^{(k)}, T^{(k+1)})$

Proposition (8.1.4)

Let $\{S_1(t)\}, \ldots, \{S_n(t)\}\$ be n regular pure jump processes, and let $H(t) = H(\mathbf{S}(t))$, where $\mathbf{S}(t) = (S_1(t) \ldots, S_n(t))$, $t \ge 0$.

Then $\{H(t)\}$ is a regular pure jump process as well.

That is, H(t) = H(S(t)) *is:*

- Piecewise constant
- Right-continuous in t,
- The number of jumps in [0, t] is finite with probability one for all t > 0

PROOF: Let T_i be the set of jump points of S_i , i = 1, ..., n, and let T be the set of jump points of the process $\{H(t)\}$.

Since the state value of *H* cannot change unless there is a change in the state value of at least one of the elementary processes, it follows that $T \subseteq (T_1 \cup \cdots \cup T_n)$.

Thus, H(t) is piecewise constant and right-continuous in *t*. Moreover, for any finite interval [0, t] we also have:

 $\mathcal{T} \cap [0, t] \subseteq [(\mathcal{T}_1 \cap [0, t]) \cup \cdots \cup (\mathcal{T}_n \cap [0, t])].$

By regularity $(\mathcal{T}_i \cap [0, t])$ is finite almost surely for i = 1, ..., n. Hence, $\mathcal{T} \cap [0, t]$ is finite almost surely as well, implying that $\{H(t)\}$ is regular.

イロト イポト イヨト イヨト 二日

Application to reliability

Consider (C, ϕ) , a binary monotone system of *n* repairable components.

Component state processes: $\{X_1(t)\}, \ldots, \{X_n(t)\},$ where:

 $X_i(t)$ = the state of component *i* at time $t \ge 0$, $i \in C$.

Component state vector: $\boldsymbol{X}(t) = (X_1(t), \dots, X_n(t))$

System state process: $\{\phi(t)\}$, where:

 $\phi(t) = \phi(\mathbf{X}(t))$ = the state of the system at time $t \ge 0$

Repairable components

We introduce the following random variables:

- U_{ij} = The *j*th lifetime of the *i*th component
- D_{ij} = The *j*th repair time of the *i*th component

For i = 1, ..., n, j = 1, 2, ...:

- U_{ij} has an abs. continuous distribution with mean value $0 < \mu_i < \infty$
- D_{ij} has an abs. continuous distribution with mean value $0 < \nu_i < \infty$

All lifetimes and repair times are assumed to be *independent*. Thus, the component processes $\{X_1(t)\}, \ldots, \{X_n(t)\}$ are independent of each other.

э.

Repairable components

Now we let for $i = 1, \ldots, n$:

$$T_{i,1} = U_{i1},$$

$$T_{i,2} = U_{i1} + D_{i1}$$

$$T_{i,3} = U_{i1} + D_{i1} + U_{i2},$$

$$T_{i,4} = U_{i1} + D_{i1} + U_{i2} + D_{i2}$$

Moreover, let $J_j = (-1)^j$. We may then write:

. . .

$$X_i(t) = X(0) + \sum_{j=1}^{\infty} I(T_{ij} \leq t) J_j, \quad i = 1, ..., n.$$

By Proposition 8.1.1 $\{X_1(t)\}, \ldots, \{X_n(t)\}\$ are regular pure jump processes. By Proposition 8.1.4 $\{\phi(t)\}\$ is a regular pure jump process as well.

Availability

Let $A_i(t)$ be the availability of the *i*th component at time *t*. That is, for i = 1, ..., n we have:

$$A_i(t) = \Pr(X_i(t) = 1) = E[X_i(t)].$$

By renewal theory the corresponding stationary availabilities are given by:

$$A_i = \lim_{t\to\infty} A_i(t) = \frac{\mu_i}{\mu_i + \nu_i}, \qquad i = 1,\ldots,n.$$

Introduce $\mathbf{A}(t) = (A_1(t), \dots, A_n(t))$ and $\mathbf{A} = (A_1, \dots, A_n)$. The system availability at time *t* is given by:

$$\boldsymbol{A}_{\phi}(t) = \mathsf{Pr}(\phi(\boldsymbol{X}(t)) = 1) = \boldsymbol{E}[\phi(\boldsymbol{X}(t))] = \boldsymbol{h}(\boldsymbol{A}(t)),$$

where h is the system's reliability function. The corresponding stationary availability is given by:

$$A_{\phi} = \lim_{t \to \infty} A_{\phi}(t) = h(\mathbf{A})$$

イロト イポト イヨト イヨト 二日

Criticality

The component *i* is said to be *critical* at time *t* if

$$\psi_i(\boldsymbol{X}(t)) = \phi(\mathbf{1}_i, \boldsymbol{X}(t)) - \phi(\mathbf{0}_i, \boldsymbol{X}(t)) = 1.$$

 $\psi_i(\mathbf{X}(t))$ is the *criticality state* of component *i* at time *t*.

The Birnbaum measure of importance of component *i* at time *t*, $I_B^{(i)}(t)$, is the probability that *i* is critical at time *t*:

$$I_B^{(i)}(t) = \Pr(\psi_i(\boldsymbol{X}(t)) = 1) = E[\psi_i(\boldsymbol{X}(t))]$$

= $h(1_i, \boldsymbol{A}(t)) - h(0_i, \boldsymbol{A}(t)).$

The corresponding stationary measure is given by:

$$I_B^{(i)} = \lim_{t \to \infty} I_B^{(i)}(t) = h(1_i, \mathbf{A}) - h(0_i, \mathbf{A}).$$

<ロ> <問> <問> < 同> < 同> - < 同> - <