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Abstract

This is a compendium indended for use in the course STK3405 and
STK4405 at the Department of Mathematics, University of Oslo,
from fall 2017. The compendium provides the foundation of prob-
ability theory needed to compute the reliability of a system, i.e.,
the probability that a system is functioning, when the reliabilities
of the components which the system is composed of are known. Ex-
amples of systems are energy systems and networks. In addition,
various examples of the use of risk analysis for industrial applica-
tions are studied. The material is illustrated by different simulation
techniques. This material can serve as an introduction to more ad-
vanced studies, but is also suitable as support literature to studies
in other fields and as further education for realists and engeneers.
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Chapter 1
Introduction

The purpose of these notes is to provide the reader with a basic knowledge on
the theoretical foundations of risk- and reliability analysis. In addition, the
compendium covers a wide array of current applications of these fields as well
as simulation techniques and an introduction to software suitable for applying
the theory to practical problems.

Today, various aspects of risk- and reliability theory are used in many dif-
ferent sectors. Examples include transport, project planning, time scheduling,
energy networks and aerospace. At the core of all these applications is a need
to quantify and control risk, determine how reliable a system is and how to
monitor and maintain systems is the best way possible. Clever use of the risk-
and reliability theory can provide safer and more efficient systems which are
supervised in an optimal way. This leads to financial savings, well-functioning
systems and prevention of accidents.

These notes are suitable for a bachelor or master level course in modern risk-
and reliability theory, but also as further education for practitioners (engineers,
risk analysts etc.).

The structure of the notes is as follows: In Chapter 2 we introduce the the-
oretical foundation of system analysis. We define a system of components and
study various kinds of systems. The structure/reliability function of the system
is defined based on component reliabilities. The chapter also includes impor-
tant defining properties of systems such as monotonicity, coherency and duality.
In Chapter 3 we introduce the basic tools for calculating reliability, including
pivotal decompositions, path and cut sets as well as modular decompositions.
Then, in Chapter 4, we consider different methods for exact computation of the
reliability of systems. In Chapter 5 we introduce various measures for computing
the structural and the reliability importance of the system components. In some
cases, computing the exact reliability is too time-consuming, so in Chapter 6
we give upper and lower bounds for the system reliabilities. In this chapter, we
also define a specific kind of dependence between the components of a system
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2 CHAPTER 1. INTRODUCTION

called association, and study how this property can be used to derive bounds
for the system reliability without requiring independence of components.

In Chapter 8 we introduce discrete event simulation and show how this is
connected to the system analysis of Chapter 2.

Finally, in Chapter 9 we present various applications and examples of prac-
tical use of risk- and reliability theory. Some examples include project manage-
ment and time scheduling, analyzing a network for the transmission of electronic
pulses and a conditional Monte Carlo approach to system reliability evaluation.
The simulation software Riscue1 is used to analyze these systems.

Throughout the notes, there are various exercises intended to provide the
reader with a deeper understanding of the material. Some of the exercises are
more theoretical, some are oriented towards analyzing smaller systems by hand
and other rely on simulation techniques and use of Riscue.

The notation used in the compendium is summarized in Chapter 10.

Parts of these notes are based on the compendium by Natvig [35] (in Nor-
wegian). In particular, this is the case for Chapter 2. However, compared to
Natvig [35] there are several new examples, exercises, some new topics are in-
cluded and some others are excluded. The presentation has also been reorganized
and reworked.

1A free version of Riscue can be downloaded from www.riscue.org



Chapter 2
System analysis

In this chapter, we will introduce the basic concepts of system analysis and relia-
bility theory. In contrast to several other books on this topic, for instance Barlow
and Proschan [6] and Natvig [35], we will begin by introducing stochastic systems
(i.e., when the component states are random). The more classical approach is
to first consider deterministic system analysis (i.e., where the component states
are deterministic), and then move on to the stochastic case. However, as the
two are very similar, we go straight to the general stochastic case, and highlight
important aspects of the deterministic case whenever necessary. This hopefully
saves the reader some work and also makes the presentation more unified. At
first, we analyse systems at a particular time. We then move on to dynamic
system analysis where we consider the development of the systems over time.

2.1 Binary monotone systems

When we use the term system, we think of some technological unit consisting of a
finite set of components which are operating together. A binary system has only
two possible states: functioning or failed. Moreover, each component is either
functioning or failed as well1. We consider a binary system of n components,
1, . . . , n, and introduce the component state variable Xi denoting the state of
component i, i = 1, . . . , n, defined as:

Xi :=

{
1 if the ith component is functioning
0 otherwise.

(2.1)

1In so-called multistate reliability theory, models where the system and its components
have more than two potential states are considered. Much of the theory for binary systems
can be extended to multistate systems. Still such systems typically are more computationally
challenging. See Natvig [36].

3



4 CHAPTER 2. SYSTEM ANALYSIS

Furtermore, we introduce the variable φ representing the state of the system,
defined as:

φ :=

{
1 if the system is functioning
0 otherwise.

(2.2)

The variables Xi, i = 1, . . . , n and φ are said to be binary, since they only
have two possible values, 0 and 1. We use upper case letters for the component
state variables indicating that these variables are stochastic. Specific values of
random variables will be denoted by lower case letters.

The state of the system is assumed to be uniquely determined by the state of
the components. Thus, if X := (X1, X2, . . . , Xn) is the component state vector,
we may express the system state φ as:

φ = φ(X).

The function φ : {0, 1}n → {0, 1} is called the structure function of the system.

Intuitively, repairing a component should not make the system worse, and
breaking a component should not make system better. Mathematically this
property implies that the structure function should be non-decreasing in each
argument. This property is an essential part of the definition of a binary mono-
tone system which can be stated as follows:

Definition 2.1.1 A binary monotone system is an ordered pair (C, φ), where
C = {1, . . . , n} is the component set and φ is the structure function. The
function φ is assumed to be non-decreasing in each argument. The number
of components, n, is referred to as the order of the system.

Note that according to this definition the class of binary monotone systems
includes systems where the structure function is constant, i.e., systems where
either φ(x) = 1 for all x ∈ {0, 1}n or φ(x) = 0 for all x ∈ {0, 1}n. We will refer
to such systems as trivial systems2.

We let 0 denote the vector where all entries are 0, and similarly, let 1 be the
vector where all entries are 1. The following result provides a useful property
of non-trivial systems.

Theorem 2.1.2 Let (C, φ) be a non-trivial binary monotone system. Then
φ(0) = 0 and φ(1) = 1.

Proof: Since (C, φ) is assumed to be non-trivial, there exists at least one vector
x0 such that φ(x0) = 0 and another vector x1 such that φ(x1) = 1. Since
(C, φ) is assumed to be monotone it follows that 0 ≤ φ(0) ≤ φ(x0) = 0 and
1 = φ(x1) ≤ φ(1) ≤ 1. Hence, we conclude that φ(0) = 0 and φ(1) = 1 �

In order to describe the logical relation between the components and the
system, we often use a reliability block diagram. In such diagrams components

2Some textbooks exclude trivial systems from the class of monotone systems. We have
chosen not to do so in order to have a class which is closed with respect to conditioning.



2.1. BINARY MONOTONE SYSTEMS 5

are represented as circles and connected by lines. The system is functioning
if and only it is possible to find a way from the left-hand side to the right-
hand side of the diagram passing only functioning components. Note that in
order to represent arbitrarily complex binary monotone systems, it is sometimes
necessary to allow components to occur multiple places in the block diagram. In
such cases the reliability block diagram should not be interpreted as a picture
of a physical system.

1 4 52 3

Figure 2.1: A reliability block diagram of a series system of order 5 with com-
ponent set C = {1, . . . , 5}

Example 2.1.3 Figure 2.1 shows a reliability block diagram of a series system
of order 5. From the diagram we see that the series system is functioning if
and only if all of its components are functioning, i.e., if and only if X1 = · · · =
X5 = 1. Hence, the state of the system can be expressed as a function of the
component state variables as follows:

φ = X1 ·X2 ·X3 ·X4 ·X5 =

5∏
i=1

Xi.

Alternatively, the structure function of the series system can be written as:

φ(X) = min{X1, . . . , X5}

since the minimum of X1, . . . , X5 is 1 if and only if X1 = · · · = X5 = 1.

It may be useful to think of the product operator (·) of binary variables as
representing the logical and -operation. Thus, for the series system to function,
components 1 and 2 and · · · and 5 all need to function.

Both the product-expression and the minimum-expression can be extended
to series systems of arbitrary orders. Thus, the structure function of a series
system of order n can be written as:

φ(X) =

n∏
i=1

Xi = min
1≤i≤n

Xi.

In order to derive convenient representations of structure functions of other
types of binary monotone system, we also need another operator, called the
coproduct operator. This operator is denoted by the symbol q and defined as
follows:
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Notation 2.1.4 For any a1, a2, . . . , an where ai ∈ [0, 1], i = 1, 2, . . . , n, we
define:

a1 q a2 := 1− (1− a1)(1− a2),
n∐
i=1

ai := 1−
n∏
i=1

(1− ai).

It is easy to verify that 1 q 1 = 1 q 0 = 0 q 1 = 1, while 0 q 0 = 0. More
generally, if a1, . . . , an are binary numbers (i.e., either 0 or 1), their coproduct
is 1 if ai = 1 for at least one i, and 0 if ai = 0 for all i.

1

2

Figure 2.2: A parallel system of order 2

Example 2.1.5 Figure 2.2 shows a reliability block diagram of a parallel sys-
tem of order 2. We see that the parallel system functions if and only if at least
one of its components is functioning. The structure function of this system can
be written as:

φ(X) = X1 qX2 = 1− (1−X1) · (1−X2). (2.3)

To see this, note that the only way the system is not functioning is that X1 and
X2 are both zero. In this case, the right hand side of (2.3) is clearly 0. For any
other combination of values for X1 and X2, the right hand side of (2.3) is 1.

Alternatively, the structure function of the parallel system can be written as:

φ(X) = max{X1, X2}

since the maximum of X1 and X2 is 0 if and only if X1 = X2 = 0.

From Example 2.1.5 we see that the coproduct-operator, q, may be though
of as representing the logical or -operation. Thus, for the above parallel system
to function components 1 or 2 must function.

Both the coproduct-expression and themaximum-expression can be extended
to parallel systems of arbitrary orders. Thus, the structure function of a parallel
system of order n can be written as:

φ(X) =

n∐
i=1

Xi = max
1≤i≤n

Xi.
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2.2 Coherent systems
Every component of a binary monotone system should have some impact on
the system state. More precisely, if i is a component in a system, there should
ideally exist at least some state of the rest of the system where the state of
component i is crucial for the system state. Before we formalize this concept
further, we introduce some notation:

(1i,x) := (x1, . . . , xi−1, 1, xi+1, . . . , xn),

(0i,x) := (x1, . . . , xi−1, 0, xi+1, . . . , xn),

(·i,x) := (x1, . . . , xi−1, ·, xi+1, . . . , xn),

Definition 2.2.1 Let (C, φ) be a binary monotone system, and let i ∈ C. The
component i is said to be relevant for the system (C, φ) if:

0 = φ(0i,x) < φ(1i,x) = 1 for some (·i,x).

If this is not the case, component i is said to be irrelevant for the system.

Relevance of components plays a very important role in reliability theory.
Based on this concept we also introduce the following crucial concept.

Definition 2.2.2 A binary monotone system (C, φ) is coherent if all its com-
ponents are relevant.

Note that a coherent system is obviously non-trivial as well, since in a trivial
system all components are irrelevant.

One might think that all binary monotone systems we encounter should be
coherent. However, coherency should be viewed a dynamic property. As parts
of a system breaks, some of the remaining components may become irrelevant.
Similarly, if we, e.g., as part of a reliability calculation, condition on the state
of a component, the resulting system may not be coherent.

Finally, depending on how we model a system, we may encounter components
which improve the performance of the system even though they are not relevant
according to our definition.

Example 2.2.3 Figure 2.3 shows a part of a large machine consisting of an
electrical unit and a condensator. The condensator’s job is to prevent the elec-
trical unit from being broken due to high voltage. Viewed as a component, the
condensator is irrelevant. However, this does not mean that it is not important!
The condensator can prolong the lifetime of the electrical unit, and hence also
the lifetime of the whole machine.

Note that for this example, the problem can be avoided by considering the
electrical unit and the condensator as one component instead of two.

We now prove the intuitively reasonable result that within the class of non-
trivial monotone systems, the parallel structure is "the best" while the series
system is "the worst".



8 CHAPTER 2. SYSTEM ANALYSIS

Electrical unit

Condensator

Figure 2.3: A system with an irrelevant component.

Theorem 2.2.4 Let (C, φ) be a non-trivial binary monotone system of order
n. Then for all x ∈ {0, 1}n we have:

n∏
i=1

xi ≤ φ(x) ≤
n∐
i=1

xi. (2.4)

Proof: We focus on the left-hand inequality. If
∏n
i=1 xi = 0, this inequality is

trivial since φ(x) ∈ {0, 1} for all x ∈ {0, 1}n. If on the other hand
∏n
i=1 xi = 1,

we must have x = 1. Since (C, φ) is assumed to be non-trivial, it follows by
Theorem 2.1.2 that φ(1) = 1. Thus, the inequality is valid in this case as well.
This completes the proof of the left-hand inequality. The right-hand inequality
is proved in a similar fashion and is left as an exercise. �

By introducing redundancy into a system one could improve the reliability.
However, there are many different ways of doing this. In particular, we may
introduce redundancy at the component level or at the system level. The next
result shows that redundancy at the component level is better than redundancy
at the system level. Moreover, the opposite is true for series connections. In
order to prove this result, we introduce the product and coproduct operators
for vectors:

x · y := (x1 · y1, x2 · y2, . . . , xn · yn),

xq y := (x1 q y1, x2 q y2, . . . , xn q yn).

Theorem 2.2.5 Let (C, φ) be a binary monotone system of order n. Then for
all x,y ∈ {0, 1}n we have:

(i) φ(xq y) ≥ φ(x)q φ(y),

(ii) φ(x · y) ≤ φ(x) · φ(y).

Moreover, assume that (C, φ) is coherent. Then equality holds in (i) for all
x,y ∈ {0, 1}n if and only if (C, φ) is a parallel structure. Similarly, equality
holds in (ii) for all x,y ∈ {0, 1}n if and only if (C, φ) is a series structure.
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Proof: Since φ is non-decreasing and xi q yi ≥ xi for i = 1, . . . , n, it follows
that:

φ(xq y) ≥ φ(x).

Similarly, we see that
φ(xq y) ≥ φ(y).

Hence,
φ(xq y) ≥ max{φ(x), φ(y)} = φ(x)q φ(y).

This proves (i). The proof of (ii) is similar and is left as an exercise.

We then assume that (C, φ) is coherent. We shall prove the first equivalence,
i.e., that equality holds in (i) for all x,y ∈ {0, 1}n if and only if (C, φ) is a parallel
structure.

If (C, φ) is a parallel system, it follows that:

φ(xq y) = qni=1(xi q yi) = max
1≤i≤n

{
max{xi, yi}

}
= max

{
max

1≤i≤n
xi, max

1≤i≤n
yi
}

= φ(x)q φ(y),

which proves the "if"-part of the equivalence.
Assume conversely that φ(xq y) = φ(x)q φ(y) for all x,y ∈ {0, 1}n. Since

(C, φ) is coherent it follows that for any i ∈ C there exists a vector (·i,x) such
that:

φ(1i,x) = 1 and φ(0i,x) = 0.

For this particular vector (·i,x) we have:

1 = φ(1i,x) = φ
(
(1i,0)q (0i,x)

)
= φ(1i,0)q φ(0i,x) = φ(1i,0)q 0

= φ(1i,0).

Since φ(0) = 0, it follows that:

φ((xi)i,0) = xi xi = 0, 1; i = 1, . . . , n.

Hence, for any x, we have:

φ(x) = φ
(
((x1)1,0)q ((x2)2,0)q . . .q ((xn)n,0)

)
= φ((x1)1,0)q φ((x2)2,0)q . . .q φ((xn)n,0)

= x1 q x2 q . . .q xn =

n∐
i=1

xi.

Thus, we have shown that (C, φ) is a parallel system which proves the "only
if"-part of the equivalence. The other equivalence is proved similarly and is left
as an exercise. �
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Figure 2.4: A componentwise parallel structure: “better” than systemwise par-
allel.

Figure 2.5: A systemwise parallel structure: “worse” than componentwise par-
allel.

Example 2.2.6 To illustrate Theorem 2.2.5, let φ be a series system of order
2. Then the statement of the theorem is that componentwise connection of the
nodes provides a better result than systemwise connection, i.e.,

(x1 q y1) · (x2 q y2) ≥ (x1 · x2)q (y1 · y2).

See Figures 2.4 and 2.5 for an illustration of this result. Here x1 and x2 repre-
sent the states of the circular nodes, while y1 and y2 represent the states of the
square nodes.

Assume e.g., that x1 = y2 = 1 while x2 = y1 = 0. Then the componentwise
parallel structure is functioning, while the systemwise parallel structure is failed.
By Theorem 2.2.5 the converse will never hold true. If the systemwise parallel
structure is functioning, the componentwise parallel structure must be function-
ing as well. Similarly, if the componentwise parallel structure is failed, then the
systemwise parallel structure must be failed as well.
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2.3 Dual systems
In this section we will introduce a concept of duality :

Definition 2.3.1 Let φ be a structure function of a binary monotone system
of order n. We then define the dual structure function, φD for all y ∈ {0, 1}n
as3:

φD(y) := 1− φ(1− y).

Furthermore, if X is the component state vector of a binary monotone sys-
tem, we define the dual component state vector XD as:

XD := (XD
1 , . . . , X

D
n ) = (1−X1, . . . , 1−Xn) = 1−X

Note that the relation between φ and φD should be interpreted as a relation
between two functions, while the relation between X and XD is a relation
between two stochastic vectors. Corresponding to the dual component state
vector XD we introduce the dual component set CD = {1D, . . . , nD}, where it
is understood that the dual component iD is functioning if the component i is
failed, while iD is failed if the component i is functioning.

By combining duality on the component level and on the system level, we see
that we have the following relation between the two stochastic variables φ(X)
and φD(XD):

φD(XD) = 1− φ(1−XD) = 1− φ(X).

Hence, the dual system is functioning if and only if the original system is failed
and vice versa.

Example 2.3.2 Let φ be the structure function of a system of order 3 where:

φ(y) = y1 q (y2 · y3),

The dual structure function is then given by:

φD(y) = 1− φ(1− y)

= 1− (1− y1)q ((1− y2) · (1− y3))

= 1− [1− (1− (1− y1))(1− (1− y2) · (1− y3))]

= 1− [1− y1 · (1− (1− y2) · (1− y3))]

= y1 · (y2 q y3)

Example 2.3.3 Let φ be the structure of a series system of order n. That is,
φ is given by:

φ(y) =

n∏
i=1

yi.

3Note that we use y as argument instead of X here to emphasize that we are describing a
relation between the two binary functions φ and φD. This should not be confused with the
relation between the two random variables φ(X) and φD(XD).
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The dual structure function is then given by:

φD(y) = 1− φ(1− y)

= 1−
n∏
i=1

(1− yi)

=

n∐
i=1

yi.

Thus, (CD, φD) is a parallel system of order n.

Example 2.3.4 Let φ be the structure of a parallel system of order n. That is,
φ is given by:

φ(y) =

n∐
i=1

yi.

The dual structure function is then given by:

φD(y) = 1− φ(1− y)

= 1−
n∐
i=1

(1− yi)

= 1− (1−
n∏
i=1

(1− (1− yi))

=

n∏
i=1

yi.

Thus, (CD, φD) is a series system of order n.

We close this section by a result showing that if we take the dual of the dual
system, we get the original system back.

Theorem 2.3.5 Let φ be the structure function of a binary monotone system,
and let φD be the corresponding dual structure function. Then we have:

(φD)D = φ.

That is, the dual of the dual system is equal to the original system.

Proof: For all y ∈ {0, 1}n we have:

(φD)D(y) = 1− φD(1− y)

= 1− [1− φ(1− (1− y))]

= φ(y).

�
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2.4 Reliability of binary monotone systems
If (C, φ) is a binary monotone system, the reliability of a component i ∈ C,
denoted by pi, is defined as the probability that component i is functioning.
That is, pi := P (Xi = 1), for all i ∈ C. Obviously, a component with high
reliability is likely to be functioning, while a component with low reliability is
more likely to fail. Note that since Xi is binary, we have:

E[Xi] = 0 · P (Xi = 0) + 1 · P (Xi = 1) = P (Xi = 1) = pi, for all i ∈ C. (2.5)

Thus, the reliability of component i is equal to the expected value of its com-
ponent state variable, Xi.

Similarly, the reliability of the system, denoted by h, is defined as the prob-
ability that the system is functioning. That is, h := P (φ = 1). Again, since φ
is binary, we have:

E[φ(X)] = 0 · P (φ(X) = 0) + 1 · P (φ(X) = 1) = P (φ(X) = 1) = h. (2.6)

Thus, the reliability of the system is equal to the expected value of the structure
function, φ(X). From this it immediately follows that the reliability of a system,
at least in principle, can be calculated as:

h = E[φ(X)] =
∑

x∈{0,1}n
φ(x)P (X = x) (2.7)

In the case where the component state variables are dependent, the system
reliability h will depend on the full joint distribution of the component state
vector. Hence, if we only know the component reliabilities, the best we can do
is to establish upper and lower bounds for h. See Section 6.2 for more on this.
In the remaining part of this section we instead consider the case where the
component state variables can be assumed to be independent. In order to do
so we introduce the vector of component reliabilities, p := (p1, p2, . . . , pn), and
note that:

P (Xi = xi) =

{
pi if xi = 1,

1− pi if xi = 0.

Since xi is either 0 or 1, this probability can be written in the following more
compact form:

P (Xi = xi) = pxi
i (1− pi)1−xi .

If the component state variables X1, X2, . . . , Xn are independent, we can use
this in order to write the joint distribution of X in terms of p as follows:

P (X = x) =

n∏
i=1

P (Xi = xi) =

n∏
i=1

pxi
i (1− pi)1−xi . (2.8)

Thus, when the component state variables are independent, we may insert (2.8)
into (2.7) and get the following expression for the system reliability:

h = E[φ(X)] =
∑

x∈{0,1}n
φ(x)

n∏
i=1

pxi
i (1− pi)1−xi (2.9)
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Note that in this case the reliability of the system is a function of the component
reliabilities, so we may write

h = h(p). (2.10)

The function h(p) is called the reliability function of the system.

Example 2.4.1 Consider a series system of order n. Assuming that the com-
ponent state variables are independent, the reliability of this system is given
by:

h(p) = E[φ(X)] = E[

n∏
i=1

Xi] =

n∏
i=1

E[Xi] =

n∏
i=1

pi,

where the third equality follows by using that X1, X2, . . . , Xn are assumed to be
independent.

Example 2.4.2 Consider a parallel system of order n. Assuming that the com-
ponent state variables are independent, the reliability of this system is given by:

h(p) = E[φ(X)] = E[

n∐
i=1

Xi] = E[1−
n∏
i=1

(1−Xi)]

= 1−
n∏
i=1

(1− E[Xi]) =

n∐
i=1

E[Xi] =

n∐
i=1

pi,

where the fourth equality follows by using that X1, X2, . . . , Xn are assumed to
be independent.

1 2

4

3

Figure 2.6: A mixed parallel and series system

Example 2.4.3 The structure function for the system in Figure 2.6 is

φ(X) =
(

(X1 ·X2)qX3

)
·X4, (2.11)

because for the system to function ((components 1 and 2 must function) or
(component 3 must function)) and component 4 must function.

Alternatively, we see that components 1 and 2 are in series implying that the
structure function depends on components 1 and 2 through X1·X2. Furthermore,
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the part of the system containing components 1, 2 is in parallel with component
3 implying that the structure function depends on components 1, 2 and 3 through
(X1 ·X2)qX3. Finally, the part of the system containing components 1, 2 and
3 is in series with component 4, implying that the structure function is as in
equation (2.11).

Assuming that the component state variables are independent it is easy to
verify, using a similar argument as we used for the structure function, that the
reliability of the system is given by:

h(p) =
(

(p1 · p2)q p3

)
· p4.

Theorem 2.2.5 can be extended to reliability functions as well. That is, we
have the following result:

Theorem 2.4.4 Let h(p) be the reliability function of a monotone system (C, φ)
of order n. Then for all p,p′ ∈ [0, 1]n we have:

(i) h(pq p′) ≥ h(p)q h(p′),

(ii) h(p · p′) ≤ h(p) · h(p′)

If in addition (C, φ) is coherent, equality holds in (i) for all p,p′ ∈ [0, 1]n if
and only if (C, φ) is a parallel structure. Similarly, equality holds in (ii) for all
p,p′ ∈ [0, 1]n if and only if (C, φ) is a series structure.

Proof: Note that the theorem implicitly assumes independence, since we can
write h(p). Then, for independent X,Y (corresponding to p,p′), we have:

h(pq p′)− h(p)q h(p′)
= E[φ(XqY)]− E[φ(X)]q E[φ(Y)]

= E[φ(XqY)− φ(X)q φ(Y)],

where the last expectation must be non-negative since by Theorem 2.2.5 we
know that:

φ(xq y)− φ(x)q φ(y) ≥ 0,

for all x,y ∈ {0, 1}n. This completes the proof of (i). The proof of (ii) is similar
and is left as an exercise.

We now show that equality in (i) holds for all p,p′ ∈ [0, 1]n if and only if
(C, φ) is a parallel system. In order to do so, we may choose p and p′ arbitrary
such that 0 < pi < 1, 0 < p′i < 1 for i = 1, . . . , n. This implies that:

P (X = x,Y = y) > 0, for all x ∈ {0, 1}n and y ∈ {0, 1}n.

Hence, E[φ(XqY)−φ(X)qφ(Y)] = 0 if and only if φ(xqy)−φ(x)qφ(y) = 0
for all x ∈ {0, 1}n and y ∈ {0, 1}n. By Theorem 2.2.5 this holds if and only if
(C, φ) is a parallel system. The other equivalence is proved similarly, and left
as an exercise. �
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Example 2.4.5 Consider the system (C, φ) of order 3 where:

φ(x) = x1 · (x2 q x3),

and where the component state variables are independent and P (Xi = 1) = p
for all i ∈ C. Then it is easy to verify that h(p) = p · (pq p) = 2p2 − p3. From
Theorem 2.4.4, it follows that for all 0 ≤ p ≤ 1, we have:

h(pq p) = 2(pq p)2 − (pq p)3

≥ h(p)q h(p) = (2p2 − p3)q (2p2 − p3)

In Figure 2.7 we have plotted the reliabilities of the two systems as functions of
p. We see that indeed h(p q p) is greater than or equal to h(p) q h(p) for all
0 ≤ p ≤ 1. In fact the inequality is strict when 0 < p < 1.

0.00 0.20 0.40 0.60 0.80 1.00

1.00

0.80

0.60

0.40

0.20

0.00

Figure 2.7: h(pq p) (red curve) versus h(p)q h(p) (green curve).

Example 2.4.6 Consider the system (C, φ) of order 3 where:

φ(x) = x1 q (x2 · x3),

and where the component state variables are independent and P (Xi = 1) = p
for all i ∈ C. In this case h(p) = pq p2 = p+ p2 − p3. From Theorem 2.4.4, it
follows that for all 0 ≤ p ≤ 1, we have:

h(p · p) = p2 + p4 − p6

≤ h(p) · h(p) = (p+ p2 − p3)2

In Figure 2.8 we have plotted the reliabilities of the two systems as functions of
p. We see that indeed h(p ·p) is less than or equal to h(p) ·h(p) for all 0 ≤ p ≤ 1,
and that the inequality is strict when 0 < p < 1.
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Figure 2.8: h(p · p) (red curve) versus h(p) · h(p) (green curve).

2.5 k-out-of-n systems
A k-out-of-n system is a binary monotone system (C, φ) where C = {1, . . . , n}
which functions if and only if at least k out of the n components are functioning.
Note that an n-out-of-n system is a series structure, while a 1-out-of-n system
is a parallel structure.

We observe that in order to evaluate the structure function of a k-out-of-n
system, we need to count the number of functioning components and check if this
number is greater than or equal to k. The number of functioning components is
simply the sum of the component state variables. Hence, the structure function
can be written as:

φ(X) =

{
1 if

∑n
i=1Xi ≥ k

0 otherwise.
(2.12)

In order to evaluate the reliability of a k-out-of-n system it is convenient to
introduce the following random variable:

S =

n∑
i=1

Xi.

Thus, S is the number of functioning components. This implies that:

h = P (φ(X) = 1) = P (S ≥ k), i = 0, 1, . . . , n.

If the component state variables are independent, it is easy to derive the distri-
bution of S. In particular, if p1 = · · · = pn = p, S is a binomially distributed
random variable. Thus, we have:

P (S = i) =

(
n

i

)
pi(1− p)n−i.
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Hence, the reliability of the system is given by:

h(p) = h(p) = P (S ≥ k) =

n∑
i=k

(
n

i

)
pi(1− p)n−i

In the general case with unequal component reliabilities, an explicit ana-
lytical expression for the distribution of S is not so easy to derive. Still this
distribution can be calculated efficiently using generating functions. See Exer-
cise 2.3.3.

1

2

2

3

31

Figure 2.9: A reliability block diagram of a 2-out-of-3 system.
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Figure 2.10: An alternative reliability block diagram of a 2-out-of-3 system.

A k-out-of-n system can represented by a reliability block diagram in several
ways. The first type of diagram is shown for a 2-out-of-3 system in Figure 2.9.
Here, we consider a parallel connection of several series structures. Each of
the series structures corresponds to a minimal way in which a signal can pass
through the system, i.e. any way two out of three components are functioning.
The second type of diagram is shown for the same 2-out-of-3 system in Fig-
ure 2.10. In this case, we draw a series connection of several parallel structures.
Each of the parallel structures corresponds to a minimal way to make the sys-
tem fail. Again, this happens if any two out of the three components are not
working.
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2.6 Exercises

Exercise 2.1: What is the reliability function of a series system of order n
where the component states are assumed to be independent?

Exercise 2.2: Consider the parallel structure of order 2 in Figure 2.2. Assume
that the component states are independent.

a) If you know that p1 = P (X1 = 1) = 0.5 and p2 = P (X2 = 1) = 0.7, what is
the reliability of the parallel system?

b) What is the system reliability if p1 = 0.9 and p2 = 0.1?

c) Can you give an interpretation of these results?

Exercise 2.3: Consider a binary monotone system (C, φ), where the component
set is C = {1, . . . , 4} and where φ is given by:

φ(X) = X1 ·X2 · (X3 qX4).

a) Draw a reliability block diagram of this system.

b) Assume that the components in the system are independent. What is the
corresponding reliability function?

Exercise 2.4: Consider the system shown in Figure 2.11.

1 2

3

4

5

Figure 2.11: A mixed parallel and series system.

a) What is the structure function of this system?

b) Assume that the components in the system are independent. What is the
corresponding reliability function?

Exercise 2.5: There are 8 different coherent systems of order less than or equal
to 3 (not counting permutations in the numbering of components). What are
they?

(Hint: Here are a couple to get you started φ(X) = X1·X2·X3, φ(X) = X1qX2.)

Exercise 2.6: Consider a monotone system (C, φ) of order n, and let A ⊂ C
the set of irrelevant components. Furthermore, let (C \ A, φ′), be a binary
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monotone system of order m = n − |A|, where φ′ is a binary non-decreasing
function defined for all m-dimensional binary vectors x ∈ {0, 1}m such that:

φ′(x) = φ(1A,xĀ)

Show that (C \A, φ′) is coherent.

Exercise 2.7: Prove the right-hand inequality in Theorem 2.2.4.

Exercise 2.8: Prove item (ii) in Theorem 2.2.5 as well as the equivalence which
is not proved in the text.

Exercise 2.9: Prove that the dual structure of a k-out-of-n structure is an
(n− k + 1)-out-of-n structure.

Exercise 2.10: Let S be a stochastic variable with values in {0, 1, . . . , n}. We
then define the generating function of S as:

GS(y) = E[yS ] =

n∑
s=0

ysP (S = s). (2.13)

a) Explain why GS(y) is a polynomial, and give an interpretation of the coeffi-
cients of this polynomial.
b) Let T be another non-negative integer valued stochastic variable with values
in {0, 1, . . . ,m} which is independent of S. Show that:

GS+T (y) = GS(y) ·GT (y). (2.14)

c) Let X1, . . . , Xn be independent binary variables with P (Xi = 1) = pi and
P (Xi = 0) = 1− pi = qi, i = 1, . . . , n. Show that:

GXi
(y) = qi + piy, i = 1, . . . , n. (2.15)

d) Introduce:

Sj =

j∑
i=1

Xi, j = 1, 2, . . . , n,

and assume that we have computed GSj
(y). Thus, all the coefficients of GSj

(y)
are known at this stage. We then compute:

GSj+1
(y) = GSj

(y) ·GXj+1
(y).

How many algebraic operations (addition and multiplication) will be needed to
complete this task?
e) Explain how generating functions can be used in order to calculate the re-
liability of a k-out-of-n system. What can you say about the order of this
algorithm4?

4By the order of an algorithm we mean a suitable function of the size of the problem such
that the number of basic operations needed to complete the calculations grows (approximately)
proportionally to this function. In the context of reliability calculations the size of the problem
will typically be the number of components in the system.



Chapter 3
Basic reliability calculation
methods

In this chapter we will present various methods for simplifying reliability calcu-
lations by structuring the problems in certain ways. The first method involves
conditioning on the state of a given component. This enables us to decompose
the system into simpler building blocks. Furthermore, will see that the struc-
ture function of monotone systems can be represented via its so-called paths and
cuts; roughly, this is the components which ensure that the system functions or
fails. Another useful way to represent monotone systems is via modules. The
idea here is to divide a complicated system into parts which may then be anal-
ysed separately. Finally, we will comment briefly on how to include time into
this framework by looking at dynamic system analysis.

3.1 Pivotal decompositions

Sometimes reliability calculations can be simplified by dividing the problem into
two simpler problems. By considering these simpler problems and combining the
results afterwards, even very complex systems can be analysed successfully. The
following result shows how a structure and reliability function of order n can be
expressed via two corresponding functions of order n− 1. This is called pivotal
decomposition, and allows us to reduce the order of the system at hand. This is
particularly useful when computing the exact system reliability, see Chapter 4:

Theorem 3.1.1 Let (C, φ) be a binary monotone system of order n. Then we
have:

φ(x) = xiφ(1i,x) + (1− xi)φ(0i,x), i = 1, 2, . . . , n. (3.1)

Similarly, for the reliability function of a monotone system where the component

21
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state variables are independent, we have

h(p) = pih(1i,p) + (1− pi)h(0i,p), i = 1, 2, . . . , n. (3.2)

Proof: Let i ∈ C. Since xi is binary, we consider two cases: xi = 1 and xi = 0.
If xi = 1, then the right-hand side of (3.1) becomes φ(1i,x). Hence (3.1) holds
in this case. On the other hand, if xi = 0, the right-hand side of (3.1) becomes
φ(0i,x), so (3.1) holds in this case as well. Equation (3.2) is proved by replacing
the vector x by the stochastic vector X in (3.1), and taking the expected value
on both sides of this equation. �

Note that (3.1) and (3.2) can alternatively be written respectively as:

φ(x) = φ(0i,x) + [φ(1i,x)− φ(0i,x)]xi, i = 1, . . . n, (3.3)
h(p) = h(0i,p) + [h(1i,p)− h(0i,p)]pi i = 1, . . . n. (3.4)

From these expressions it follows that φ is a linear function of xi, while h is a
linear function of pi, i = 1, . . . , n. A function which is linear in each argument
is said to be multilinear.

   3

1 4

2 5

Figure 3.1: A bridge structure.

Example 3.1.2 Let (C, φ) be the bridge structure shown in Figure 3.1, where
C = {1, . . . , 5}. In order to derive the structure function of this system, we note
that:

φ(13,X) = The state of the system given that component 3 is functioning,
φ(03,X) = The state of the system given that component 3 is failed.

Given that component 3 is functioning, the system becomes a series connection
of two parallel systems, the first one is the parallel system of component 1 and
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2, while the second one is the parallel system of component 4 and 5. Hence, we
get that:

φ(13,X) = (X1 qX2) · (X4 qX5).

If on the other hand, component 3 is failed, the system becomes a parallel con-
nection of two series systems, the first one is the series system of component 1
and 4, while the second one is the parallel system of component 2 and 5. From
this it follows that:

φ(03,X) = (X1 ·X4)q (X2 ·X5).

By Theorem 3.1.1 it follows that φ can be written as:

φ(X) = X3 · φ(13,X) + (1−X3) · φ(03,X).

Combining all this we get that φ is given by:

φ(X) = X3 · (X1 qX2)(X4 qX5) + (1−X3) · (X1 ·X4 qX2 ·X5). (3.5)

Assuming that the component state variables are independent, we get that:

h(p) = E[φ(X)]

= E[X3(X1 qX2)(X4 qX5) + (1−X3)(X1X4 qX2X5)]

= p3(p1 q p2)(p4 q p5) + (1− p3)(p1p4 q p2p5)

A consequence of Theorem 3.1.1 is that for coherent systems, the reliability
function is strictly increasing if the reliabilities are strictly between 0 and 1:

Theorem 3.1.3 Let h(p) be the reliability function of a binary monotone sys-
tem (C, φ) of order n, and assume that 0 < pj < 1 for j ∈ C. If component i is
relevant, then h(p) is strictly increasing in pi.

Proof: From equation (3.2), it follows that

∂h(p)

∂pi
= h(1i,p)− h(0i,p) (3.6)

= E[φ(1i,X)]− E[φ(0i,X)] = E[φ(1i,X)− φ(0i,X)]

=
∑

(·i,x)∈{0,1}n−1

[
φ(1i,x)− φ(0i,x)

]
P
(
(·i,X) = (·i,x)

)
Since (C, φ) is a monotone system, φ is non-decreasing in each argument,

and hence all the terms in this sum are non-negative. We then assume that
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component i is relevant. That is, there exists (·i,y) such that φ(1i,y)−φ(0i,y) =
1. Moreover, since we have assumed that 0 < pj < 1 for j ∈ C we have:

P
(
(·i,X) = (·i,y)

)
=

n∏
j=1,j 6=i

p
yj
j (1− pj)1−yj > 0

Thus, at least one of the terms in the last sum in (3.6) is positive which implies
that

∂h(p)

∂pi
> 0.

Hence, we conclude that h(p) is strictly increasing in each pi. �

Note that if (C, φ) is coherent and 0 < pj < 1 for j ∈ C, it follows from
Theorem 3.1.3 that h is strictly increasing in each argument, since in this case,
all components are relevant.

3.2 Representation of binary monotone systems
by paths and cuts

Now, we will look at a way to represent monotone systems via certain subsets of
the component set, called path and cut sets. This turns out to be very useful in
order to compute the exact system reliability, which will be done in Chapter 4.

In the following, we consider deterministic vectors x,y. We say that a vector
y is smaller than another vector x, that is y < x if yi ≤ xi for i = 1, . . . , n and
yi < xi for at least one i.

Notation 3.2.1 For any binary monotone system (C, φ} of order n, and vector
x ∈ {0, 1}n the component set C can be divided into two subsets

C0(x) = {i : xi = 0}, C1(x) = {i : xi = 1}.

Thus, if X = x, the subset C1(x) denotes the set of components which are
functioning, while C0(x) denotes the set of components which are failed.

Definition 3.2.2 Let (C, φ) be a binary monotone system.

• A vector x is a path vector if and only if φ(x) = 1. The corresponding
path set is C1(x).

• A minimal path vector is a path vector, x, such that y < x implies that
φ(y) = 0. The corresponding minimal path set is C1(x).

• A vector x is a cut vector if and only if φ(x) = 0. The corresponding cut
set is C0(x).
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• A minimal cut vector is a cut vector, x, such that x < y implies that
φ(y) = 1. The corresponding minimal cut set is C0(x).

Thus, a path vector is a vector x1 such that the system is functioning if
X = x1. A cut vector is a vector x0 such that the system is failed if X = x0.
A minimal path vector is a path vector which cannot be decreased in any way
and still be a path vector. Similarly, a minimal cut vector is a cut vector which
cannot be increased in any way and still be a cut vector. A minimal path set is
a minimal set of components which ensure that the system is working if these
components are working. A minimal cut set is a minimal set of components
such that if these are sabotaged, the system will be sabotaged.

Example 3.2.3 Consider the bridge structure in Figure 3.2. To find the min-
imal path sets, look at Figure 3.2 and try to locate paths where it is possible to
send a signal through the system. For instance, one such path is through com-
ponents 1 and 4. Hence, {1, 4} is a path set. We then see that this set is in
fact minimal, because if only components 1 and 4 are functioning, and one of
them fails, the system will fail as well. Similarly, we can argue for e.g. the path
through components 2 and 5. Continuing like this, we find that the minimal path
sets are:

P1 = {1, 4}, P2 = {2, 5}, P3 = {1, 3, 5} and P4 = {2, 3, 4}.

(Verify that these are in fact minimal!)
To find the minimal cut sets, look at Figure 3.2 and see what combination

of components not functioning will sabotage the whole system. For example, if
components 1 and 2 are not functioning, the system is sabotaged because there
is no way for a signal to make it past the initial point. The set {1, 2} is in fact a
minimal cut set, because if all other components are functioning except 1 and 2,
and one of them is fixed, the system will start to function. A similar argument
shows that {4, 5} is a minimal cut set. Continuing in the same way, we find
that the minimal cut sets are:

K1 = {1, 2}, K2 = {4, 5}, K3 = {1, 3, 5} and K4 = {2, 3, 4}.

(Make sure you can explain why all of these are minimal cut sets!)

Now, we are ready to explain how structures can be represented via their
minimal path and cut sets. In order to do so, we consider a binary monotone
system (C, φ), and let Pj ⊆ C be the jth minimal path set of this system. Then
we can define the following binary monotone system (Pj , ρj), where ρj = ρj(xPj )
is given by:

ρj(xPj ) =
∏
i∈Pj

xi. (3.7)

(Pj , ρj) is referred to as the jth minimal path series structure of the system,
j = 1, . . . , p. From this, we find that:

φ(x) =

p∐
j=1

ρj(xPj ) =

p∐
j=1

∏
i∈Pj

xi. (3.8)
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   3

1 4

2 5

Figure 3.2: A bridge structure.

That is, the system (C, φ) can be represented as a parallel structure of the
minimal path series structures. See Figure 3.2 for an illustration of how the
bridge structure in Example 3.2.3 can be represented as a parallel structure
of its minimal path series structures. The reason for this is that the system
functions if and only if at least one of the minimal path series structures are
functioning.
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Figure 3.3: The reliability block diagram of a bridge structure in Example 3.2.3
represented as a parallel structure of its minimal path series structures.

Similarly, let Kj ⊆ C be the jth minimal cut set of this system. Then we
can define the following binary monotone system (Kj , κj), where κj = κj(xKj )
is given by:

κj(xKj ) =
∐
i∈Kj

xi. (3.9)
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Figure 3.4: The reliability block diagram of a bridge structure in Example 3.2.3
represented as a series structure of its minimal cut parallel structures.

(Kj , κj) is referred to as the jth minimal cut parallel structure of the system,
j = 1, . . . , k. From this, we find that:

φ(x) =

k∏
j=1

κj(xKj ) =

k∏
j=1

∐
i∈Kj

xi. (3.10)

That is, the system (C, φ) can be represented as a series structure of the minimal
cut parallel structures. See Figure 3.4. The reason for this is that for the system
to be failed, it suffices for one of the minimal cut parallel structures is failed.

These representations of the structure function are very useful, and will be
applied in Chapter 4 to compute the exact system reliability. However, a major
challenge is that computing the minimal path and cut sets for a large system
is computationally very time consuming. Therefore, it is important to derive
fast algorithms for finding the minimal path and cut sets. This is an important
challenge in applied reliability theory, but beyond the scope of these notes.

The proof of the following theorem is left as an exercise:

Theorem 3.2.4 Let (C, φ) be a binary monotone system, and let (CD, φD) be
its dual. Then the following statements hold:

(i) x is a path vector (alternatively, cut vector) for (C, φ) if and only if xD is
a cut vector (path vector) for (CD, φD).

(ii) A minimal path set (alternatively, cut set) for (C, φ) is a minimal cut set
(path set) for (CD, φD).

3.3 Modules of monotone systems

Sometimes, it is possible to divide a monotone system into subsystems which are
analysed separately before finally analysing how these subsystems are connected.

Let A ⊆ C. Then, the complement set of A, i.e., C \ A, is denoted by Ā.
We have the following formal definition of a module:
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Definition 3.3.1 Let (C, φ) be a monotone system, and A ⊆ C. The monotone
system (A,χ) is a module of (C, φ) if and only if the structure function φ can
be written as:

φ(x) = ψ(χ(xA),xĀ), for all x ∈ {0, 1}n,

where ψ is a monotone structure function. The set A is called a modular set of
(C, φ).

The structure function χ expresses the state of the module as a function of
the states of the components in the modular set, while ψ expresses how the
state of the system depends on the state of the module as well as on the states
of componentsoutside of the module. You can think of a module as a "large
component" which can be circled in and separated out from the rest of the
system. More precisely, a module consists of a subset of the component set
which is such that the structure function of the system depends on the states
of the components within this set only through the structure function of the
module. Thus, in order to determine the state of the system, we only need
to know the state of the module, not the states of the individual components
within the module.

Definition 3.3.2 A modular decomposition of a monotone system (C, φ) is
a set of modules {(Aj , χj)}rj=1 connected by a binary monotone organisation
structure function ψ. The following conditions must be satisfied:

(i) C =
⋃r
j=1Aj, where Aj ∩Ak = ∅ for j 6= k.

(ii) φ(X) = ψ[χ1(XA1), . . . , χr(XAr )].

We observe that a modular decomposition is a disjoint partition of the com-
ponent set into modules such that the structure function of the whole system is
a function of the structure functions of these modules.

Example 3.3.3

1

2

3

4

5

Figure 3.5: A monotone system which can be modularly decomposed.
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In order to find a modular decomposition for the system in Figure 3.5, we
can let A1 = {1, 2}, A2 = {3, 4, 5},

χ1(XA1) = X1 qX2, χ2(XA2) = X3 qX4 qX5

and
ψ(χ1(XA1), χ2(XA2)) = χ1(XA1) · χ2(XA2).

If the component state variables are independent, we may calculate the re-
liability of the system in a two-step process. In the first step we compute the
reliability of the modules. Then in the second step we treat the modules as
components and compute the system relaibility by using the reliabilities of the
modules as input. Thus, whenever one can identify modules in a system, this
can be utilized in order to simplify and speed up the reliability calculations.

Modular decompositions can also be used in cases where it is not possible
to compute the system reliability exactly as it is too time consuming. In such
cases, we may have to resort to finding upper and lower bounds for the system
reliability. It turns out that modules may be used to improve bounds. We will
return to this in Section 6.2.

3.4 Dynamic system analysis
So far, we have only considered components and systems at one specific time.
Now, we will also consider the development over time. Let t ≥ 0, i = 1, . . . , n:

Xi(t) = the state of component i at time t, (3.11)

Here, Xi(t) is a random variable (corresponding to Xi of the previous sections).
Hence, the development of the state of component i over time, {Xi(t)}t≥0,
is a stochastic process. We assume that the stochastic processes {Xi(t), t ≥
0}ni=1 are independent. This corresponds to assuming that the components are
independent. Also, let

φ(X(t)) = the state of the system at time t. (3.12)

As for the components, φ(X(t)) is a random variable, and the development
of the system state over time, {φ(X(t))}t≥0 is a stochastic process. We also
introduce

pi(t) = P (Xi(t) = 1) = the reliability of component i at time t, (3.13)

h(p(t)) = P (φ(X(t) = 1)) = the reliability of the system at time t.

In the following, we do not consider the possibility of repairing components, and
let (for i = 1, . . . , n)

Ti = the lifetime of component i, (3.14)
S = the lifetime of the system.
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Now, let Ti have cumulative distribution function Fi, i = 1, . . . , n and S cumu-
lative distribution function G. We assume that the Fi’s are known, and would
like to determine G. Then we have the following relations:

pi(t) = P (Xi(t) = 1) = P (Ti > t) = 1− Fi(t) =: F̄i(t), (3.15)

and
G(t) = 1− P (S > t) = P (φ(X(t)) = 0) = 1− h(p(t)). (3.16)

Then we have the following theorem:

Theorem 3.4.1 For a monotone system (C, φ) with minimal path sets P1, . . . , Pp
and minimal cut sets K1, . . . ,Kk we have:

S =

{
max1≤j≤p mini∈Pj Ti

min1≤j≤k maxi∈Kj Ti

Proof: To prove the first equality: The lifetime of the system equals the lifetime
of the minimal path series structure which lives the longest (from the definition
of minimal path series structures). The lifetime of the longest living minimal
path series structure equals the lifetime of the shortest living component in this
path set.

The second equality can be proved similarly. This is left as an exercise.
�

3.5 Exercises

Exercise 3.1: Prove equation (3.2) in another way than what is done in the
proof of Theorem 3.1.1.
(Hint: Condition on the state of component i.)

Exercise 3.2: Prove Theorem 3.2.4.

Exercise 3.3: Find all of the path and cut sets of the brigde structure in
Figure 3.2.

Exercise 3.4: Find the representations via the minimal path sets and the
minimal cut sets of the following systems:

(i) The 2-out-of-3 system.

(ii) The 3-out-of-4 system.

(iii) The series system of 3 components.

(iv) The parallel system of 4 components.
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Exercise 3.5: Consider a coherent structure (C, φ) with minimal path sets
P1, . . . , Pp and minimal cut sets K1, . . . ,Kk. Prove that

p⋃
j=1

Pj = C =

k⋃
j=1

Kj .

1

2

8

3

7

6

4

5   

Figure 3.6: A series connection of a parallel structure, a bridge structure and a
single component.

Exercise 3.6: Find the minimal path sets and the minimal cut sets of the
system in Figure 3.6. Find two different expressions for the structure function
of this system.

Exercise 3.7: Show that if (C, φ) is a bridge structure (see Figure 3.1), then
(CD, φD) is a bridge structure as well. [Hint : Compare the minimal path and
cut sets of (C, φ).]

Exercise 3.8: Let (A,χ) be a module of (C, φ). Assume that x1 and x0 are
such that χ(xA1 ) = 1 and χ(xA0 ) = 0. Prove that

φ(xA1 ,x) ≡ φ(1A,x) and φ(xA0 ,x) ≡ φ(0A,x).

Exercise 3.9: Find all the modules of the following structure function:

φ(X) = (X1(X2 qX3))q (X4 qX5).

Exercise 3.10: What are the modules of a k-out-of-n structure where 1 < k <
n? Give a reason for your answer.

Does this mean that a k-out-of-n system is well suited for modular decom-
position?
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Figure 3.7: A system suited for modular decompostition.

Exercise 3.11: Consider the system shown in Figure 3.7.
a) Find the structure function of the system by dividing the system into

modules.
b) Find the structure function of the system without dividing the system

into modules.
c) Compare the computational efforts in a) and b).

    3 7

1 4

2 5

6

Figure 3.8: A mixed bridge and parallel system.

Exercise 3.12: Consider the system shown in Figure 3.8.
a) What is the structure function of this system?
b) Assume that all of the component states are independent. What is the
reliability function of the system?
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Figure 3.9: A twist on a mixed bridge and parallel system.

Exercise 3.13: Consider the system shown in Figure 3.9.
a) What is the structure function of this system.
b) Assume that all of the component states are independent. What is the
reliability function of the system?

Exercise 3.14: Prove the second equality of Theorem 3.4.1.

Exercise 3.15: Consider a binary monotone system (C, φ) with minimal path
sets P1, . . . , Pp and minimal cut sets K1, . . . ,Kk and let f be a non-negative
function defined over the positive integers {1, . . . , n}. Prove that

min
1≤j≤k

max
i∈Kj

f(i) = max
1≤j≤p

min
i∈Pj

f(i).
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Chapter 4
Exact computation of the
reliability of binary monotone
systems

In this chapter, we will look at various methods for computing the exact relia-
bility of a binary monotone system. In the general case this is a hard problem
in the sense that the running time of all known algorithms grows exponentially
in the size of the problem, i.e., in the order of the system.

If the running time of an algorithm grows approximately proportionally to
a positive function f(n), where n is measuring the size of the problem (i.e, the
number of components in a binary monotone system), we say that the algorithm
is of order O(f(n)). More formally, let t(n) denote the worst case running time
of the algorithm as a function of the size n. Then the order of the algorithm is
O(f(n)) if and only if there exists a positive constant M and a positive integer
n0 such that:

t(n) ≤Mf(n), for all n ≥ n0.

If f is a polynomial in n, we say that the algorithm is a polynomial time algo-
rithm, while if f is an exponential function of n, we say that the algorithm is
an exponential time algorithm.

In computational complexity theory, NP (for nondeterministic polynomial
time) is a complexity class used to describe certain types of problems. NP
contains many important problems, the hardest of which are called NP-complete
problems. The most important open question in complexity theory is whether
polynomial time algorithms actually exist for solving NP-complete problems. It
is widely believed that this is not the case. The class of NP-hard problems is a
class of problems that are, informally, at least as hard as the hardest problems
in NP. A comprehensive treatment of complexity is beyond the scope of this
book. See Garey and Johnson [17] for more on this.

35
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Unfortunately, the problem of computing the reliability of a binary mono-
tone system is known to be NP-hard in the general case. See Rosenthal [40]
and Ball [2] for details. Thus, all known algorithms for analytical reliability cal-
culations typically has a computational complexity which grows exponentially
with the order of the system. Still for moderately sized systems it is possible to
calculate the reliability using standard methods. Moreover, for certain classes
of systems faster algorithms are available.

In Exercise 2.6 we saw that the reliability of a k-out-of-n system can be
calculated in polynomal time using generating functions, even when the com-
ponents have unequal reliability. In fact this particular algorithm is of order
O(n2), which is very fast compared to an exponential time algorithm. From
this result one might think that it would be easy to obtain similar performance
for a larger class of systems. The following example shows that this is not the
case.

Example 4.0.1 A threshold system is a binary monotone system (C, φ), where
the structure function has the following form:

φ(x) = I(

n∑
i=1

aixi ≥ b),

where a1, . . . , an and b are non-negative real numbers, and I(·) denotes the in-
dicator function, i.e., a function defined for any event A which is 1 if A is true
and zero otherwise.

We observe that if (C, φ) is a threshold system where a1 = · · · = an = 1
and b = k, (C, φ) is a k-out-of-n system. Thus, the class of threshold systems
is a generalization of the class of k-out-of-n systems. However, despite the sim-
ilarity between threshold systems and k-out-of-n systems, it can be shown that
calculating the reliability of a threshold system is NP-hard. See Winther [48].

In the next sections we present both general algorithms as well as specialized
algorithms tailored for certain classes of systems.

4.1 State space enumeration

The idea of this method is simple. We know that the reliability of a binary
monotone system (C, φ) is simply the expected value of φ(X). Thus, by standard
probability theory this can be calculated as:

h = E[φ(X)] =
∑

x∈{0,1}n
φ(x)P (X = x) (4.1)

Note that in order to calculate the reliability using (4.1) we must enumerate all
possible states of the component vector (i.e., all x ∈ {0, 1}n). Moreover, if the
components are dependent, we must know the entire joint distribution of X in
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order to compute the system reliability using (4.1). As this distribution is usu-
ally not known, this method is unsuitable for the case of dependent components.
However, if the components are independent, we have:

P (X = x) =

n∏
i=1

pxi
i (1− pi)1−xi

Inserting this into equation (4.1) we get:

h(p) =
∑

x∈{0,1}n
φ(x)

n∏
i=1

pxi
i (1− pi)1−xi . (4.2)

To compute the system reliability via (4.2), it suffices to know the individual
component reliabilities. However, since we need to enumerate all the possible
states of the component state vector x, the number of terms in the sum (4.2) is
2n. Thus, this algorithm is at least of order O(2n). In fact the order may be even
greater since we have not included the work of computing φ(·) for each of the
possible states of the component state vector x. For some structure functions
this may also represent a considerable task.

While the order of the algorithm cannot be changed, there are still ways to
improve the method. Sometimes it is possible to run through the states in a
clever order. For example, if we come across x0 such that φ(x0) = 0, we do not
have to include any of the states x such that x < x0 since φ is non-decreasing
(as it is assumed to be monotone), so φ(x) must be 0 as well. Note also that
since φ(0) = 0, the maximum amount of terms we need to compute in (4.2) is
2n − 1.

Example 4.1.1 Consider a binary monotone system (C, φ) where C = {1, 2, 3},
and where the structure function φ is given by:

φ(x) = (x1 · x2)q x3.

We assume that the component state variables are independent, and that the
component reliabilities are P (Xi = 1) = pi, i = 1, 2, 3. By using (4.2) we find
that:

h(p) = φ(0, 0, 0) · (1− p1)(1− p2)(1− p3)

+ φ(1, 0, 0) · p1(1− p2)(1− p3) + · · ·+ φ(1, 1, 1) · p1p2p3

= p1p2(1− p3)

+ (1− p1)(1− p2)p3 + p1(1− p2)p3 + (1− p1)p2p3 + p1p2p3.

Note that the last expression contains just 5 terms, not 23 = 8 terms. The
reason for this is that there are exactly 5 vectors such that φ(x) = 1. The other
3 terms vanish in the final formula. Moreover, we observe that the last 4 terms
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have p3 as a common factor. Thus, the expression for h(p) can be simplified to:

h(p) = p1p2(1− p3)

+ [(1− p1)(1− p2) + p1(1− p2) + (1− p1)p2 + p1p2] · p3

= p1p2(1− p3) + p3

This example shows that the expansion obtained by state space enumeration may
not be the most efficient expression for the reliability function.

4.2 The multiplication method
The first step of the multiplication method for computing the exact system
reliability, it to find the minimal path sets or alternatively, the minimal cut sets
of the system. Denote these by respectively P1, . . . , Pp and K1, . . . ,Kk. Now,
from the formula (3.8) and (3.10), we know that:

φ(X) =

p∐
j=1

∏
i∈Pj

Xi = 1− [

p∏
j=1

(1−
∏
i∈Pj

Xi)]

=

k∏
j=1

∐
i∈Kj

Xi =

k∏
j=1

[1−
∏
i∈Kj

(1−Xi)].

By expanding either the formula based on the minimal path sets, or the formula
based on the minimal cut sets, and using that Xr

i = Xi, i = 1, . . . , n, r =
1, 2, . . ., we eventually get an expression of the form:

φ(X) =
∑
A⊆C

δ(A)
∏
i∈A

Xi (4.3)

where for all A ⊆ C, δ(A) denotes the coefficient of the term associated with∏
i∈AXi. The δ-function is called the signed domination function of the struc-

ture. The fact that we end up with an expression of the form (4.3) follows since
φ is multilinear (see the comments after Theorem 3.1.1), and all multilinear
functions can be written in this form.

By taking the expectation on both sides of (4.3), and assuming that the
component state variables are independent, we obtain the following expression:

h(p) = E[φ(X)] =
∑
A⊆C

δ(A)
∏
i∈A

E[Xi] =
∑
A⊆C

δ(A)
∏
i∈A

pi (4.4)

As for the state space enumeration method, we again end up with a sum con-
taining 2n terms. Thus, calculating the reliability of the system using (4.4) also
has the order O(2n). In a given case, however, there will typically be far less
terms in this expansion since δ(A) = 0 for many of the sets A.

Note, that when using this method, we also need to determine the signed
domination function before we can use (4.4). It turns out that identifying all
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the minimal path or cut sets is another operation which has the order O(2n).
Moreover, depending on the number of minimal path or cut sets, the task of
expanding the structure function into the form (4.3) is yet another complicated
task.

The multiplication method can be improved by avoiding identifying the min-
imal path or cut sets as well as the multiplication step. In order to explain this,
we introduce the following alternative way of expressing the structure function
of a binary monotone system (C, φ):

φ(B) = φ(1B ,0B̄), for all B ⊆ C.

Thus, for all B ⊆ C, φ(B) denotes the state of the system given that all the
components in the set B are functioning, while all the components in the set
B̄ = C \B are failed. In Huseby [22] the following formula was proved:

δ(A) =
∑
B⊆A

(−1)|A|−|B|φ(B), for all A ⊆ C. (4.5)

This formula allows us to compute the signed domination function without
using the minimal path and cut sets. In its most general form the sum in (4.5)
still contains 2n terms. Thus, evaluating this formula is yet another complex
operation of order 2n. However, for certain classes of systems (4.5) can be used
as basis for deriving simpler formulas allowing much faster calculations. We will
return to this in Section 4.4.

Example 4.2.1 Consider a binary monotone system (C, φ) where C = {1, 2, 3},
and where the minimal path sets of the system are P1 = {1, 2} and P2 = {1, 3}.
Using the multiplication method we obtain:

φ(X) = (X1X2)q (X1X3) = 1− (1−X1X2)(1−X1X3)

= 1− (1−X1X2 −X1X3 +X2
1X2X3)

= X1X2 +X1X3 −X1X2X3,

where we have used that X2
1 = X1. Thus, we see that φ is of the form (4.3),

where δ({1, 2}) = δ({1, 3}) = 1, δ({1, 2, 3}) = −1, while δ(A) = 0 for all other
subsets of C.

Note that these coefficients can be obtained using (4.5) as well since:

δ({1, 2}) = (−1)|{1,2}|−|{1,2}|φ({1, 2}) = 1,

δ({1, 3}) = (−1)|{1,3}|−|{1,3}|φ({1, 3}) = 1,

δ({1, 2, 3}) = (−1)|{1,2,3}|−|{1,2}|φ({1, 2}) + (−1)|{1,2,3}|−|{1,3}|φ({1, 2})
+ (−1)|{1,2,3}|−|{1,2,3}|φ({1, 2, 3}) = −1− 1 + 1 = −1.

Having derived the formula for the structure function φ, we immediately
obtain the reliability function:

h(p) = p1p2 + p1p3 − p1p2p3.
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4.3 The inclusion-exclusion method
Just like for the multiplication method, the inclusion exclusion method is based
on first finding the minimal path sets and the minimal cut sets of the system.
Let these sets be denoted respectively by P1, . . . , Pp and K1, . . . ,Kk. We then
introduce the events

Ej = {All of the components in Pj are functioning}, j = 1, . . . , p.

Since the system is functioning if and only if at least one of the minimal path
sets is functioning, we have:

φ = 1 if and only if
p⋃
j=1

Ej holds true. (4.6)

Calculating the probability of a union of events can be done by using the well-
known inclusion-exclusion formula. That is we have:

h = P (

p⋃
j=1

Ej) (4.7)

= P (E1) + P (E2) + · · ·+ P (Ep)

− P (E1 ∩ E2)− P (E1 ∩ E3)− · · · − P (Ep−1 ∩ Ep)
+ P (E1 ∩ E2 ∩ E3) + · · ·+ P (Ep−2 ∩ Ep−1 ∩ Ep)
· · ·
+ (−1)p−1P (E1 ∩ · · · ∩ Ep).

The initial number of terms in (4.7) is 2p − 1. However, typically many of the
terms can be merged as they correspond to the same component set. Thus,
after simplifying the expression we usually end up with much fewer terms.

Note that an event of form Ei1 ∩ · · · ∩ Eir occurs if and only if all the
components in the set Pi1∪· · ·∪Pir are functioning. Thus, when the component
state variables are independent, we get that:

P (Ei1 ∩ · · · ∩ Eir ) =
∏

i∈Pi1
∪···∪Pir

pi.

Example 4.3.1 Consider a binary monotone system (C, φ) where C = {1, 2, 3, 4}
with minimal path sets P1 = {1, 2}, P2 = {1, 3}, P3 = {2, 3, 4}. We then let Ej
denote the event that all components in Pj are functioning, j = 1, 2, 3. Assum-
ing that the component state variables are independent, we then get the following
probabilities:

P (E1) = p1p2, P (E2) = p1p3, P (E3) = p2p3p4

P (E1 ∩ E2) = p1p2p3, P (E1 ∩ E3) = P (E2 ∩ E3) = p1p2p3p4

P (E1 ∩ E2 ∩ E3) = p1p2p3p4.



4.3. THE INCLUSION-EXCLUSION METHOD 41

Hence, the reliability of the system is:

h(p) = p1p2 + p1p3 + p2p3p4 − p1p2p3 − 2p1p2p3p4 + p1p2p3p4

= p1p2 + p1p3 + p2p3p4 − p1p2p3 − p1p2p3p4.

We observe that the final expression for the reliability function is exactly
the same as the one we get using the multiplication methods. That is, in both
cases we end up with a formula of the form:

h(p) =
∑
A⊆C

δ(A)
∏
i∈A

pi,

where δ denotes the signed domination function. However, the steps we take in
order to get this expression is different.

When using the inclusion-exclusion formula we see that all terms in the
expansion correspond to sets A ⊆ C which are unions of minimal path sets. If
Pi1 , . . . , Pir is a collection of minimal path sets such that:

r⋃
j=1

Pij = A,

the collection is said to be a formation of the set A. The formation is odd if r is
an odd number, and even if r is an even number. We note that odd formations
produce terms with a coefficient +1 in the inclusion-exclusion formula, while
even formations produce terms with a coefficient −1 in the inclusion-exclusion
formula. When we simplify the expansion, all terms corresponding to formations
of the same set are merged. From this observation it follows that we have the
following result:

Theorem 4.3.2 Let (C, φ) be a binary monotone system with minimal path
sets P1, . . . , Pp, and let δ denote the signed domination function of the system.
Then for all A ⊆ C we have:

δ(A) = The number of odd formations of A (4.8)
− The number of even formations of A.

In particular δ(A) = 0 if A is not a union of minimal path sets.

As a corollary we obtain the following result:

Corollary 4.3.3 If (C, φ) is a binary monotone system which is not coherent,
then δ(C) = 0.

The proof is left as an exercise.

A nice feature of the inclusion-exclusion formula is that it can be used to pro-
duce a simple upper bound for the system reliability. Thus, if we skip all higher
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order terms and only keep the probabilities of the individual events E1, . . . , Ep,
we get:

h ≤
p∑
j=1

P (Ej). (4.9)

By including higher order terms, it is possible to obtain both lower bounds and
improved upper bounds as well. However, as we introduce the higher order
terms, the total number of terms in these expansions grows fast. Thus, only
the simple bound (4.9) is considered here. In order to obtain a lower bound we
instead use a dual approach. That is, we consider the minimal cut sets of the
system K1, . . . ,Kk, and introduce the events:

Fj = {All the components in Kj are failed}, j = 1, . . . , k.

Since the system is failed if and only if all the components in at least one cut
set are failed, we have:

1− h = P (

k⋃
j=1

Fj). (4.10)

The quantity 1−h is referred to as the unreliability of the system. By the same
argument as we used above, an upper bound on this quantity is given by:

1− h ≤
k∑
j=1

P (Fj). (4.11)

By combining (4.9) and (4.11), we see that

1−
k∑
j=1

P (Fj) ≤ h ≤
p∑
j=1

P (Ej). (4.12)

If the components are independent, (4.12) implies that:

1−
k∑
j=1

∏
i∈Kj

(1− pi) ≤ h(p) ≤
p∑
j=1

∏
i∈Pj

pi. (4.13)

In many real life applications the component reliabilities are close to 1. In such
cases the lower bound given in (4.13) turns out to be very good, while the upper
bound is extremely poor. In fact it may easily happen that the upper bound
becomes greater than 1. If on the other hand the component reliabilites are
close to 0, the lower bound may be less than 0, while the upper bound turns
out to be very good. In order to avoid bounds outside of the interval [0, 1], one
could replace (4.13) by:

max(1−
k∑
j=1

∏
i∈Kj

(1− pi), 0) ≤ h(p) ≤ min(

p∑
j=1

∏
i∈Pj

pi, 1). (4.14)
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4.4 Computing the reliability of directed network
systems

For some particular kinds of systems, the multiplication method and the inclusion-
exclusion method can be significantly improved. The most important class of
such systems are Source-to-K terminal systems, or SKT-systems:

Definition 4.4.1 A Source-to-K-terminal-system (SKT-system) is a system
defined relative to a directed network where the system functions if and only
if a node S (called the source) can send information to a given set of K nodes
T1, . . . , TK (called the terminals). The components of the system are the directed
edges of the network, while the nodes are assumed to be functioning perfectly with
probability one.
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T2       T4

Figure 4.1: An S4T system

Example 4.4.2 Figure 4.1 shows an example of an S4T system with compo-
nents 1, 2, . . . , 10. The node S is the source, while the nodes T1, T2, T3, T4 are
the terminals.

In the following theorem we recall that any structure function can be written
on the form (4.3).

Theorem 4.4.3 Let φ(X) =
∑
A⊆C δ(A)

∏
i∈AXi be the structure function of

an SKT system.

(i) If A can be expressed as a union of minimal path sets, and the subgraph
spanned by A does not contain any directed cycle, we have:

δ(A) = (−1)|A|−v(A)+1
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where v(A) denotes the number of nodes in the subgraph spanned by A.

(ii) In the opposite case we have:

δ(A) = 0

Theorem 4.4.3 was first proved by Satyanarayana [41] using Theorem 4.3.2.
However, a simpler proof based on the formula (4.5) is given in Huseby [22].

Prabhakar and Satyanarayana [43] also developed an efficient algorithm for
identifying all sets A ⊆ C such that δ(A) 6= 0 directly, without using the minimal
path sets. By using this algorithm in combination with Theorem 4.4.3, we get
a very fast method for computing the reliability of an SKT system.
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3

4

5 6

7
S T

Figure 4.2: An S1T system

Example 4.4.4 Consider the S1T-system shown in Figure 4.2. The component
set C = {1, . . . , 7} consists of the directed edges in the networks. The system
is functioning if the source S can send signals to the terminal T through the
network. We assume that the component state variables are independent and
that P (Xi = 1) = pi for i ∈ C.

The minimal path sets of this system are P1 = {1, 4, 6}, P1 = {1, 4, 5, 7},
P1 = {2, 3, 4, 6} and P1 = {2, 7}. We calculate the reliability of this sysem by
using the inclusion-exclusion formula (4.7). Since there are 4 minimal path sets,
this formula will consist of 24 − 1 = 15 terms before we simplify:

h(p) = p1p4p6 + p1p4p5p7 + p2p3p4p6 + p2p7

− p1p4p5p6p7 − p1p2p3p4p6 − p1p2p4p6p7

− p1p2p3p4p5p6p7 − p1p2p4p5p7 − p1p2p4p5p7

+ p1p2p3p4p5p6p7 + p1p2p4p5p6p7 + p1p2p3p4p6p7 + p1p2p3p4p5p6p7

− p1p2p3p4p5p6p7.
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By merging similar terms we obtain:

h(p) = p1p4p6 + p1p4p5p7 + p2p3p4p6 + p2p7

− p1p4p5p6p7 − p1p2p3p4p6 − p1p2p4p6p7

− p1p2p4p5p7 − p1p2p4p5p7

+ p1p2p4p5p6p7 + p1p2p3p4p6p7.

We observe that δ(A) is either +1, −1 or zero for all A ⊆ C. In particular,
since the network contains a directed cycle {3, 4, 5}, the highest order term will
have δ(C) = 0. Moreover, we can easily verify that the formula for δ(A) given
in Theorem 4.4.3 is correct:

δ({1, 4, 6}) = (−1)3−4+1 = +1,

δ({1, 4, 5, 7}) = (−1)4−5+1 = +1,

· · · · · ·
δ({1, 4, 5, 6, 7}) = (−1)5−5+1 = −1,

δ({1, 2, 3, 4, 6}) = (−1)5−5+1 = −1,

δ({1, 2, 4, 6, 7}) = (−1)5−5+1 = −1,

· · · · · ·
δ({1, 2, 4, 5, 6, 7}) = (−1)6−5+1 = +1,

δ({1, 2, 3, 4, 6, 7}) = (−1)6−5+1 = +1.

We close this section by noting that SKT-systems are not the only types of
systems where the signed domination is either +1, −1 or zero. In fact this class
can be extended to a much larger class called oriented matroid systems. See
Huseby [25] for details. Moreover, there are also other classes of systems with
similar properties:

Example 4.4.5 Let (C, φ) be a linear consecutive 2-out-of-5 system. That is,
C = {1, . . . , 5}, and the minimal path sets are P1 = {1, 2}, P2 = {2, 3}, P3 =
{3, 4}, P4 = {4, 5}. By using e.g., the inclusion-exclusion formula it is easy
to see that the reliability of this system, assuming independent component state
variables, is:

h(p) = p1p2 + p2p3 + p3p4 + p4p5

− p1p2p3 − p2p3p4 − p3p4p5 − p1p2p4p5

+ p1p2p3p4p5.

It can be shown that this system is not an SKT-system. The proof is left
as an exercise. Still, linear consecutive k-out-of-n systems share the property
with SKT-systems (and the more general class of oriented matroid systems)
that the signed domination function is either +1, −1 or zero for all subsets of
the component set. See Calkin et. al [9].
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4.5 Computing the reliability of undirected net-
work systems

In principle this algorithm can be applied to any binary monotone system where
the component state varaiables are independent. However, for optimal perfor-
mance we assume that the system can be represented as an undirected network
system, where the components of the system are the edges of the systems, and
where the system is functioning if a set of terminals can communicate through
the network. In an undirected network signals can be sent both ways along the
edges, see Figure 4.3.

31

2 7

4

5 6

S T

Figure 4.3: An undirected network with components 1, 2, . . . , 7 and terminal
nodes S and T .

The method is based on pivoting (see Theorem 3.1.1) and the following
result:

Theorem 4.5.1 Let i, j ∈ C, i 6= j.

(i) If i and j are connected in series, then h(p) will only depend on pi and pj
through pi · pj. Hence, i and j can be replaced by a single component with
reliability pi · pj without altering the system reliability. Such a reduction
is called a series reduction.

(ii) If i and j are connected in parallel, then h(p) will only depend on pi and pj
through piqpj. Hence, i and j can be replaced by a single component with
reliability pi q pj without altering the system reliability. Such a reduction
is called a parallel reduction.

The common term for either series or parallel reductions is s-p-reductions.

Definition 4.5.2 We say that a system is s-p-reducable if there are components
in either series or parallel in the system. If not, the system is said to be complex.
A system which can be s-p-reduced to a single component is called an s-p system.
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1 2

3

4

5

Figure 4.4: A reliability block diagram of a mixed parallel and series system.

The bridge structure shown in Figure 3.1 is an example of a complex system
because there are no components in series or parallel.

The system in Figure 4.4 is an example of an s-p system because components
1 and 2 (in series) can be replaced with a component 1′ with reliability p1′ =
p1 · p2. Similarly, components 3 and 4 can be replaced by a component 3′ with
reliability p3′ = p3qp4. The resulting system is a series structure of components
1′, 3′ and 5. These three components can be replaced by a single component
with reliability p1′ · p3′ · p5, which is the reliability of the whole system.

The factoring algorithm can be described as follows:

Algorithm 4.5.3 Let (C, φ) be a monotone system, that is, assume that at
least one of its components is relevant. To compute the reliability h(p), proceed
as follows:
Step 1: Perform all possible s-p-reductions. Let the reduced system be denoted
by (Cr, φr). Then, (Cr, φr) must also have at least one relevant component
(make sure you understand why).
Step 2: Now, one of the two following cases can happen:

Case 1. (Cr, φr) containts precisely one relevant component with updated
reliability pe. Then, h(p) = pe.

Case 2. (Cr, φr) contains several relevant components. In this case, choose
a component e ∈ Cr and do a pivotal decomposition. That is, compute h(p) by
using Theorem 3.1.1:

h(pC
r

) = peh(1e,pC
r

) + (1− pe)h(0e,pC
r

).

Then, compute h(1e,pC
r

) and h(0e,pC
r

) by repeated use of the algorithm.

Note that there is a choice involved in Case 2. of Algorithm 4.5.3. In gen-
eral, the efficiency of the factoring algorithm depends on the choice of pivoting
component. For the bridge structure in Example 3.1.2, we actually used the
factoring algorithm. There, we chose to pivot with respect to component 3. For
this particular system the choice does not matter. In general, however, it can
be shown that when the factoring algorithm is applied to undirected network
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systems, one should always pivot such that both resulting substructures are
coherent1. This was first proved by Satyanarayana and Chang [42], and later
generalized to a more abstract class by Huseby [22].

Despite being a very easy and convenient method for reliability calculations,
the factoring algorithm is still of order O(2n). Hence, in that sense it is not
significantly better than e.g., the state space enumeration method. Still, in
many cases, it is very efficient.
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Figure 4.5: An undirected network system
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Figure 4.6: Subsystems (C \4, φ+4) and (C \4, φ−4) obtained by pivotal decom-
position with respect to component 4

Example 4.5.4 Consider the undirected network system (C, φ) shown in Fig-
ure 4.5. The component set C = {1, . . . , 7} consists of the undirected edges in
the networks. The system is functioning if the terminals S and T can commu-
nicate through the network. We assume that the component state variables are
independent and that P (Xi = 1) = pi for i ∈ C.

1Note that the assumtion that the system is an undirected network system is essential here.
While the result can be generalized to a larger class of systems, see Huseby [22], there exists
many other types of systems where this rule is not optimal.
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Figure 4.7: The subsystem ((C \ 4)r, (φ+4)r) obtained by a parallel reduction
of (C \ 4, φ+4) with respect to components 3 and 5
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Figure 4.8: Subsystems ((C \ 4)r \ 3′, (φ+4)r+3′) and ((C \ 4)r \ 3′, (φ+4)r−3′)
obtained from the subsystem ((C \4)r, (φ+4)r) by a pivotal decomposition with
respect to component 3′

This system is not s-p-reducable, so we need to do a pivotal decomposition.
For this purpose we choose component 4. The resulting subsystems are shown in
Figure 4.6, where the left-hand system, denoted (C \ 4, φ+4) and with reliability
h+4, is obtained by conditioning on that component 4 is functioning, while the
right-hand system, denoted (C \ 4, φ−4) and with reliability h+4, is obtained by
conditioning on that component 4 is failed. The system reliability is then given
by:

h = p4 · h+4 + (1− p4) · h−4.

We observe that (C \ 4, φ−4) is s-p-reducable with reliability h−4 given by:

h−4 = [(p1 · p3)q p2] · [(p5 · p6)q p7].

The subsystem (C \ 4, φ+4) is s-p-reducable as well, but the only possible s-p-
reduction is the parallel reduction of components 3 and 5. The resulting com-
ponent is denoted 3′ and has component reliability p3′ = p3 q p5. The resulting
system is shown in Figure 4.6, and is denoted by ((C \ 4)r, (φ+4)r).
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In order to calculate the reliability of this system, we need to do another
pivotal decomposition. This time we choose component 3′. The resulting sub-
systems, denoted respectively ((C \4)r \3′, (φ+4)r+3′) and ((C \4)r \3′, (φ+4)r−3′)
are shown in Figure 4.8. Both these subsystems are s-p-reducable, and we get
that:

h+4 = (h+4)r = p3′ · (h+4)r+3′ + (1− p3′) · (h+4)r−3′ ,

where:

(h+4)r+3′ = (p1 q p2) · (p6 q p7)

(h+4)r−3′ = (p1 · p6)q (p2 · p7)

This completes the calculations.

Note that it is obviously possible to combine all the various expressions in
Example 4.5.4 into one unified large formula for the reliability h. However, when
implementing the factoring algorithm, this is done recursively. This implies that
only the resulting numbers, not the symbolic expressions, are passed backwards
through the algorithm. This is actually an essential point as this saves both
time and space.

4.6 Exercises
Exercise 4.1: Consider the bridge structure from Example 3.1.2 with inde-
pendent component state variables and reliability function h(p) as given in this
example. Assume that the reliability of all five components is 0.9. What do the
bounds (4.12) reduce to in this case? Comment on the result.

Exercise 4.2: Draw an example of the following systems:

(i) An S3T system.

(ii) An S5T system.

Exercise 4.3: Consider the S1T system in Figure 4.9.
a) Find the minimal path sets of the system.
b) How many terms will there be in the inclusion-exclusion formula for the

reliability of this system before simplification?
c) How many of these terms will vanish in the final simplified expression?

Exercise 4.4: Show that the linear consecutive 2-out-of-5 system given in
Example 4.4.5 cannot be an SKT-system. [Hint: Let δ denote the signed dom-
ination function of the system. Compare δ({1, 2, 3, 4}) and δ({1, 2, 3, 4, 5}) and
interpret the result in the light of Theorem 4.4.3.

Exercise 4.5: Compute the reliability function of the undirected network sys-
tem in Figure 4.10 which functions if and only if the nodes S and T can com-
municate through the network. Use the factoring algorithm.]
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Figure 4.9: An S1T system.
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Figure 4.10: An undirected network system with components 1, 2, . . . , 8 and
terminals S and T .

Exercise 4.6: Compute the reliability function of the undirected network sys-
tem in Figure 4.11 by using the factoring algorithm.

Since the system is complex, it has to be factored with respect to some
component. Which component? Compare the computational work for different
component choices.

Exercise 4.7: Consider the series connection of bridge structures in Figure 4.12.
a) Compute the reliability function of the system by using the factoring

algorithm.

b) Instead, compute this by taking the product of the three reliability func-
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Figure 4.11: An undirected network system with components 1, 2, . . . , 7 and
terminals S and T .
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Figure 4.12: A series system of bridge structures.

tions of the three bridge structures. Compare the computational effort with the
one in a).

c) How many terms are there in the inclusion-exclusion formula for the reli-
ability of this system? Comment this result.

Exercise 4.8: Prove Corollary 4.3.3. [Hint : Use the result given in Exercise
3.5.]



Chapter 5
Structural and reliability
importance for components in
binary monotone systems

By considering the structure- or reliability function of a binary monotone sys-
tem, it is evident that not all the components are equally important for the
system to function. For instance, a component connected in series or parallel
with the rest of the system will typically be more important than the other
components in the system. In this section, we will define various measures for
importance of the components in a system. There are many reasons for consid-
ering such measures, but among the most important ones are the following:

1. A measure of importance can be used to identify components that should
be improved in order to increase the system reliability.

2. A measure of importance can be used to identify components that most
likely have failed, given that the system has failed.

5.1 Structural importance of a component
The measures of importance which we are about to introduce are all based on
the notion of criticality. This is defined as follows:

Definition 5.1.1 Let (C, φ) be a binary monotone system, and let i ∈ C. We
say that component i is critical for the system if:

φ(1i,x) = 1 and φ(0i,x) = 0.

If this is the case, we also say that (·i,x) is a critical vector for component i.

53
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We observe that criticality is strongly related to the notion of relevance.
Thus, a component i in a binary monotone system (C, φ) is relevant if and only
if there exists at least one critical vector for i.

1

2

3

4

Figure 5.1:

Example 5.1.2 Consider the binary monotone system (C, φ) shown in Fig-
ure 5.1, where C = {1, 2, 3, 4}, and where the structure function is given by:

φ(x) = x1(x2 q x3 q x4)

We start out by considering component 1, and we see that this component is
critical if and only if at least one of the other components are functioning. Thus,
there are seven critical vectors for i:

(·, 1, 0, 0), (·, 0, 1, 0), (·, 0, 0, 1)

(·, 1, 1, 0), (·, 1, 0, 1), (·, 0, 1, 1)

(·, 1, 1, 1).

We then compare this to any of the other components, e.g., component 2. For
this component to be critical component 1 must function, while both component 3
and 4 must be failed. Hence, the only critical vector for component 2 is (1, ·, 0, 0).

By Definition 5.1.1 it follows that a component i of a binary monotone system
(C, φ) is critical if and only if:

φ(1i,x)− φ(0i,x) = 1.

Hence, the number of critical vectors for i can be calculated by summing this
expression over all possible vectors (·i,x):∑

(·i,x)

[φ(1i,x)− φ(0i,x)].

Based on this Birnbaum [7] suggested the following measure of structural im-
portance of a component in a binary monotone system:
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Definition 5.1.3 Let (C, φ) be a binary monotone system of order n, and let
i ∈ C. The Birnbaum measure for the structural importance of component i,
denoted J (i)

B , is defined as:

J
(i)
B :=

1

2n−1

∑
(·i,x)

[φ(1i,x)− φ(0i,x)].

Note that the denominator, 2n−1 is the total number of states for the n− 1

other components. Thus, J (i)
B can be interpreted as the fraction of all states for

the n − 1 other components where component i is critical. By computing J (i)
B

for all of the components in a system, we can rank the components based on
their respective structural importance.

Example 5.1.4 Let φ be a 2-out-of-3 system. To compute the structural im-
portance of component 1, we note that the critical vectors for this component
are (·, 1, 0) and (·, 0, 1). Hence, we have:

J
(1)
B =

2

23−1
=

1

2
.

By similar arguments, we find that:

J
(2)
B = J

(3)
B =

1

2
.

So in a 2-out-of-3 system, all of the components have the same structural im-
portance. This is intuitively obvious since the structure function is symmetrical
with respect to the components.

Example 5.1.5 Consider the system φ with structure function:

φ(x) = (x1 q x2)x3.

To find the structural importance of component 1, note that the only critical
vector for this component is (·, 0, 1). Hence, we have:

J
(1)
B =

1

23−1
=

1

4
.

Since components 1 and 2 play completely similar roles in the system, it follows
that we must have:

J
(2)
B =

1

4
as well. Thus, components 1 and 2 have the same structural importance. How-
ever, this is not the case for component 3: The critical path vectors for compo-
nent 3 are (1, 0, ·), (0, 1, ·) and (1, 1, ·), so:

J
(3)
B =

3

23−1
=

3

4
.

From this, we see that:
J

(1)
B = J

(2)
B < J

(3)
B .

Hence, component 3, which is in series with the rest of the system, is more
important than components 1 and 2.
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5.2 Reliability importance of a component
While structural importance only depends on the structure function of the sys-
tem, reliability importance takes into account the joint distribution of the com-
ponent state variables as well. Thus, instead of considering the fraction of
components state vectors where a given component is critical, we compute the
probability that a given component is critical. This motivates the following
definition introduced by Birnbaum [7]:

Definition 5.2.1 Let (C, φ) be a binary monotone system, and let i ∈ C. More-
over, let X be the vector of component state variables. The Birnbaum measure
for the reliability importance of component i, denoted I(i)

B is defined as:

I
(i)
B := P (Component i is critical for the system)

= P (φ(1i,X)− φ(0i,X) = 1).

Since the difference φ(1i,X) − φ(0i,X) is a binary variable, it follows that
we may write:

I
(i)
B = E[φ(1i,X)− φ(0i,X)] = E[φ(1i,X)]− E[φ(0i,X)]. (5.1)

In particular, if the component state variables of the system are independent,
and P (Xi = 1) = pi for i ∈ C, we get that:

I
(i)
B = h(1i,p)− h(0i,p). (5.2)

By using the last identity we can show the following result which is sometimes
taken as the definition of reliability importance in the case of independent com-
ponents:

Theorem 5.2.2 Let (C, φ) be a binary monotone system where the component
state variables are independent, and P (Xi = 1) = pi for i ∈ C. Then:

I
(i)
B =

∂h(p)

∂pi
, for all i ∈ C.

Proof: By Theorem 3.1.1 we have that:

h(p) = pih(1i,p) + (1− pi)h(0i,p)

By differentiating this identity with respect to pi we get:

∂h(p)

∂pi
= h(1i,p)− h(0i,p).

Hence, the result follows by (5.2). �

We observe that Theorem 5.2.2 shows that the reliability importance of a
component indicates how much the system reliability grows with respect to the
reliability of this component.

Now, we will prove some further properties of the Birnbaum measure.
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Theorem 5.2.3 For a binary monotone system, (C, φ), we always have

0 ≤ I(i)
B ≤ 1. (5.3)

Assume that the component state variables are independent, and P (Xj = 1) =
pj, where 0 < pj < 1 for all j ∈ C. If component i is relevant, we have:

0 < I
(i)
B . (5.4)

Furthermore, if there exists at least one other relevant component, we also have:

I
(i)
B < 1. (5.5)

Proof: We note that (5.3) follows directly from Definition 5.2.1 since the relia-
bility importance is a probability.

We then assume that the component state variables are independent, and
P (Xj = 1) = pj , where 0 < pj < 1 for all j ∈ C. If component i is relevant, we
know from Theorem 3.1.3 that h is strictly increasing in pi. That is, we must
have:

∂h(p)

∂pi
> 0.

Combining this with Theorem 5.2.2, we get (5.4).
Finally, we assume that there exists at least one other relevant component,

say k ∈ C. In order to prove that this implies that I(i)
B < 1, we assume conversely

that I(i)
B = 1. We will then show that this leads to a contradiction. From this

assumption, it follows by Definition 5.2.1 that :

P (φ(1i,X)− φ(0i,X) = 1) = 1

Since 0 < pj < 1, for all j ∈ C, it follows that P ((·i,X) = (·i,x)) > 0 for all
(·i,x). Hence, we must have that:

φ(1i,x) = 1 and φ(0i,x) = 0 for all (·i,x).

At the same time, since component k is relevant, there exists a vector (·k,y)
such that:

φ(1k,y) = 1 and φ(0k,y) = 0.

If yi = 1, it follows that φ(1i, 0k,y) = 0, contradicting that φ(1i,x) = 1 for all
(·i,x). Similarly, if yi = 0, it follows that φ(0i, 1k,y) = 1, contradicting that
φ(0i,x) = 0 for all (·i,x). Hence, we conclude that for both possible values of
yi we end up with contradictions. Thus, the only possibility is that I(i)

B < 1. �

We recall from Section 5.1 that J (i)
B can be interpreted as the fraction of

all states for the n − 1 other components where component i is critical. By
Definition 5.2.1 I(i)

B is the probability that component i is critical. Thus, J (i)
B

is just a special case of I(i)
B corresponding to the situation where all component

state vectors have the same probability. This occurs when P (Xi = 1) = 1
2 for

all i ∈ C. Thus, we have the following result
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Theorem 5.2.4 Consider a binary monotone system (C, φ) where the compo-
nent state variables are independent, and where P (Xi = 1) = 1

2 for all i ∈ C.
Then we have:

I
(i)
B = J

(i)
B

We close this section by considering some examples. In all these examples
we consider binary monotone systems (C, φ) where C = {1, . . . , n}, where the
component state variables are independent, and where P (Xi = 1) = pi for all
i ∈ C. Without loss of generality we assume that the components are ordered
so that:

p1 ≤ p2 ≤ . . . ≤ pn. (5.6)

Example 5.2.5 Let (C, φ) be a series system. Then for all i ∈ C we have:

I
(i)
B =

∂
∏n
j=1 pj

∂pi
=
∏
j 6=i

pj .

Hence, by the ordering (5.6), we get that:

I
(1)
B ≥ I(2)

B ≥ · · · ≥ I(n)
B .

Thus, in a series system the worst component, i.e., the one with the smallest
reliability, has the greatest reliability importance.

Example 5.2.6 Let (C, φ) be a parallel system. Then for all i ∈ C we have:

I
(i)
B =

∂
∐n
j=1 pj

∂pi
=
∏
j 6=i

(1− pj).

Hence, from the ordering (5.6)

I
(1)
B ≤ I(2)

B ≤ · · · ≤ I(n)
B .

Thus, in a parallel system the best component, i.e., the one with the greatest
reliability, has the greatest reliability importance.

Example 5.2.7 Let (C, φ) be a 2-out-of-3 system. It is then easy to show that:

h(p) = p1p2 + p1p3 + p2p3 − 2p1p2p3.

See Exercise 5.4. This implies that

I
(1)
B = p2 + p3 − 2p2p3,

I
(2)
B = p1 + p3 − 2p1p3,

I
(3)
B = p1 + p2 − 2p1p2.
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We then consider the function f(p, q) = p + q − 2pq and note that I(1)
B =

f(p2, p3), I(2)
B = f(p1, p3), and I(3)

B = f(p1, p2). Moreover, the partial deriva-
tives of f are respectively:

∂f

∂p
= 1− 2q,

∂f

∂q
= 1− 2p.

If p, q ≤ 1
2 , f is non-decreasing in p and q. Thus, if p1 ≤ p2 ≤ p3 ≤ 1

2 , we
have:

f(p1, p2) ≤ f(p1, p3) ≤ f(p2, p3).

Hence, in this case we have:

I
(3)
B ≤ I(2)

B ≤ I(1)
B . (5.7)

If p, q ≥ 1
2 , f is non-increasing in p and q. Thus, if 1

2 ≤ p1 ≤ p2 ≤ p3, we
have:

f(p2, p3) ≤ f(p1, p3) ≤ f(p1, p2).

Hence, in this case we have:

I
(1)
B ≤ I(2)

B ≤ I(3)
B . (5.8)

However, other orderings are possible as well. Assume e.g., that p1 = 1
2 − z,

p2 = 1
2 and p1 = 1

2 + z, where z ∈ (0, 1
2 ). In this case we get:

I
(1)
B = (

1

2
) + (

1

2
+ z)− 2 · (1

2
)(

1

2
+ z) =

1

2
,

I
(2)
B = (

1

2
− z) + (

1

2
+ z)− 2 · (1

2
− z)(1

2
+ z) =

1

2
+ 2z2,

I
(3)
B = (

1

2
− z) + (

1

2
)− 2 · (1

2
− z)(1

2
) =

1

2
,

Hence in this case we have:

I
(1)
B = I

(3)
B ≤ I(2)

B . (5.9)

Note that this result holds also if z ∈ (− 1
2 , 0) in which case p1 > p2 > p3.

Example 5.2.7 shows that the reliability ordering of the components depends
strongly on how reliable the components are. Thus, predicting the final ranking
can often be difficult if we rely on our intuition only. Still some intuitive expla-
nation can be obtained in special cases. Note e.g., that if p1 ≤ p2 ≤ p3 ≤ 1

2 , the
components fail with a high probability. In this case the system behaves almost
like a series system, which is reflected in (5.7) where the worst component is
ranked as the most important component. Thus, in this case we have the same
ordering as in Example 5.2.5. Similarly, if 1

2 ≤ p1 ≤ p2 ≤ p3, the components
function with a high probability. In this case the system behaves almost like a
parallel system, which is reflected in (5.8) where the best component is ranked
on top. In this case we have the same ordering as in Example 5.2.6.
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5.3 The Barlow-Proschan measure of reliability
importance

One disadvantage of the Birnbaum measure for the reliability importance is that
it is time dependent. In order to avoid this problem, we consider the following
measure introduced by Barlow and Proschan [4]:

Definition 5.3.1 Consider a binary monotone system (C, φ), where the com-
ponents are never repaired. Moreover, let Ti denote the lifetime of component
i, i ∈ C, and let S denote the lifetime of the system. Then for all i ∈ C the
Barlow-Proschan measure of the reliability importance of component i is defined
as:

I
(i)
B−P := P (Component i fails at the same time as the system)

= P (Ti = S).

Note that if component i fails at the same time as the system, this may be
interpreted as i is the component eventually causing the system to fail.

Before we proceed we need to introduce the concept of absolute continuity.
We say that a real-valued stochastic variable, T has an absolutely continuous
distribution if P (T ∈ A) = 0 for all measurable sets A ⊆ R such that m1(A) =
0, where m1 denotes the Lebesgue measure1 in R. It can be shown that if
T1, . . . , Tn are independent and absolutely continuously distributed, then the
vector T = (T1, . . . , Tn) is absolutely continuously distributed in Rn. That is,
P (T ∈ A) = 0 for all (measurable) sets A ⊆ Rn such that mn(A) = 0, where
mn denotes the Lebesgue measure in Rn. In particular, if A = {t : ti = tj},
where i 6= j, then mn(A) = 0. Hence, P (Ti = Tj) = 0 when i 6= j.

The following theorem uses the concept of absolute continuity in order to
obatin some fundamental properties of the Barlow-Proschan measure.

Theorem 5.3.2 Let (C, φ) be a non-trivial binary monotone system where the
components are never repaired where C = {1, . . . , n}, and let Ti denote the
lifetime of component i, i = 1, . . . , n, while S denotes the lifetime of the sys-
tem. Moreover, assume that T1, . . . , Tn are independent, absolutely continuously
distributed. Then S is absolutely continuously distributed as well, and we have:

n∑
i=1

I
(i)
B−P = 1.

1The Lebesgue measure in R, denoted m1, is a function defined on the family of all mea-
surable subsets A of R. If A = [a, b], then m1(A) = b − a. Thus, the Lebesgue measure
m1 generalizes the length of intervals to arbitrary measurable subsets of R. Similarly, the
Lebesgue measure in Rn, denoted mn, is a function defined on the family of all measurable
subsets A of Rn. If A = [a1, b1] × · · · × [an, bn], then mn(A) =

∏n
i=1(bn − an). Thus, the

Lebesgue measure mn generalizes the volume of n-dimensional rectangular sets to arbitrary
measurable subsets of Rn.
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Proof: Since we have assumed that the system is non-trivial, the lifetime of the
system, S can be expressed as:

S = max
1≤j≤p

min
i∈Pj

Ti, (5.10)

where P1, . . . , Pp are the minimal path sets of the system. This implies that:

P (

n⋃
i=1

{Ti = S}) = 1. (5.11)

Let A ⊆ R be an arbitrary measurable set such that m1(A) = 0. Since we have
assumed that T1, . . . , Tn are absolutely coninuously distributed, we get that:

0 ≤ P (S ∈ A) ≤ P (

n⋃
i=1

{Ti ∈ A}) ≤
n∑
i=1

P (Ti ∈ A) = 0,

which implies that S is absolutely continuously distributed as well.
Since T1, . . . , Tn are absolutely continuously distributed, it follows that the

probability of having two or more components failing at the same time is zero.
This implies e.g., that P ({Ti = S} ∩ {Tj = S}) = 0 for i 6= j. Thus, when
calculating the probability of the union of the events {Ti = S}, i = 1, . . . , n, all
intersections can be ignored as they have zero probability of occurring. Hence,
by (5.11) we get:

1 = P (

n⋃
i=1

{Ti = S}) =

n∑
i=1

P (Ti = S) =

n∑
i=1

I
(i)
B−P ,

where the second equality follows by ignoring all intersections of the events
{Ti = S}, i = 1, . . . , n. The last equality follows by the definition of I(i)

B−P .
Hence, the proof is complete. �

The next result provides a convenient formula for computing the Barlow-
Proschan measure.

Theorem 5.3.3 Let (C, φ) be a non-trivial binary monotone system where the
components are never repaired where C = {1, . . . , n}, and let Ti denote the
lifetime of component i, i = 1, . . . , n. Moreover, assume that T1, . . . , Tn are
independent, absolutely continuously distributed with densities f1, . . . , fn respec-
tively. Then, we have:

I
(i)
B−P =

∫ ∞
0

I
(i)
B (t)fi(t)dt,

where I(i)
B (t) denotes the Birnbaum measure of the reliability importance of com-

ponent 1 at time t, i.e., the probability that component i is critical at time t.
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Proof: From the definitions of the Barlow-Proschan measure and the Birnbaum
measure, it follows that:

I
(i)
B−P = P (Component i fails at the same time as the system)

=

∫ ∞
0

P (Component i is critical at time t) · fi(t)dt

=

∫ ∞
0

I
(i)
B (t)fi(t)dt.

�

We observe that according to Theorem 5.3.3 the Barlow-Proschan measure,
I

(i)
B−P , can be expressed as a weighted average of the Birnbaum measure I(i)

B (t)
with respect to the component lifetime densities, fi(t). Hence, according to the
Barlow-Proschan measure, the points of times where fi(t) is large are viewed as
important. The Barlow-Proschan measure implies that components with long
lifetimes compared to the system lifetime will have a large reliability importance.

5.4 The Natvig measure of reliability importance

As mentioned, the Barlow-Proschan measure implies that components with long
lifetimes compared to the system lifetime will have a large reliability impor-
tance. An alternative measure can be defined by instead saying components
which greatly reduce the remaining system lifetime by failing, are the most im-
portant components. In order to reflect this Natvig [34] introduced the following
measure:

Definition 5.4.1 Consider a monotone structure φ consisting of n components
which are not repaired and let

Zi := reduction of remaining lifetime for the system due to comp. i failing.

Then, the Natvig measure for the reliability importance of the i’th component,
I

(i)
N , is defined by

I
(i)
N =

E[Zi]∑n
i=1E[Zj ]

where we assume that E[Zi] is finite.

From this definition, we see that 0 ≤ I(i)
N ≤ 1 and

∑n
i=1 = 1. It is shown in

Natvig [35], that E[Zi] can be interpreted as the reduction in remaining system
lifetime due to the i’th component failing. Natvig [35] also shows the following
connection between the Natvig measure and the Birnbaum measure:
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Theorem 5.4.2 Consider a monotone structure φ of n components which are
not repaired, where the state processes of the components {Xi(t), t ≥ 0}ni=1 are
independent and their lifetimes are absolutely continuously distributed. Then,

E[Zi] =

∫ ∞
0

F̄i(t)(− ln(F̄i(t)))I
(i)
B (t)dt.

We omit the proof, and refer interested readers to Natvig [35] Theorem
3.4.10. Note that Theorem 5.4.2 says that E[Zi], which is the building block of
the Natvig measure, is a weighted average of the Birnbaum measure, I(i)

B (t) with
F̄i(t)(− ln(F̄i(t))) as weight (recall the definition of F̄i(t) in (3.15)). It is shown
in Natvig [35] that this weight is the improvement of the survival probability of
the i’th component at time t by allowing one repair. Hence, the Natvig measure
implies that times where this improvement is large are of great importance.

There are also other examples of measures of component reliability impor-
tance. One example is the so-called Vesely-Fussell measure, which has been
omitted here due to several critical weaknesses (for instance, if a component
fails after the system, it still contributes to the measure). For more on this, see
Natvig [35].

To conclude our review of reliability importance measures, we remark that
no measure can be said to be universially best. They all have strengths and
weaknesses, which are important to be aware of when applying such measures
in practice. Note for instance that none of the measures presented in these
sections take into consideration the cost of improving the different components.

5.5 Exercises
Exercise 5.1: Let φ be a k-out-of-n system. Prove that all the components of
this system have the same Birnbaum measure for structural importance.

Exercise 5.2: Compute J (i)
B for the components of the bridge structure in

Example 3.1.2 and compare their structural importance.

Exercise 5.3: Let the i’th component be in series with the rest of a monotone
structure φ, while the j’th component is not. Prove that

J
(i)
B > J

(j)
B .

Exercise 5.4: Prove that the reliability function of a 2-out-of-3 structure is

h(p) = p1p2 + p1p3 + p2p3 − 2p1p2p3.

Exercise 5.5: Compute I(i)
B for the components of the bridge structure in

Example 3.1.2 and compare their reliability importance.

Exercise 5.6: Assume that the component lifetimes have so-called proportional
hazards, that is:

F̄i(t) = exp(−λiR(t)), λi > 0, t ≥ 0, i = 1, . . . , n,
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where R is a strictly increasing, differentiable function such that R(0) = 0, and
limt→∞R(t) =∞. Prove that for a series structure, we have:

I
(i)
B−P = I

(i)
N =

λi∑n
i=1 λj

.

Exercise 5.7: Assume that the i’th component is irrelevant for the system φ.
Then, what is I(i)

B (t), I(i)
B−P and I(i)

N ?



Chapter 6
Association and bounds for the
system reliability

In this chapter, we begin by introducing a natural kind of positive dependency
between random variables (for instance component states in a system). This
positive dependency is called association. We show that associated random
variables have some nice properties, which can be used in order to derive upper
and lower bounds of the reliability of a system. As previously mentioned, it
is not always possible to derive the exact reliability of a system due to e.g.
computational time or complexity of the system in question. Nevertheless, we
would like to find out something about how reliable a system is. This is the
purpose of reliability bounds. In Section 6.2, we will derive several different
such bounds, where some assume independence of components, while others
just assume that the component states are associated.

6.1 Associated random variables

So far, we have usually assumed that the components in a system are inde-
pendent, and hence that the corresponding random variables are independent.
However, in many real-life situations, this is not the case. Some examples of
such dependencies are components which are exposed to a common source of
outer stress (for instance parts of a windmill) and structures where several com-
ponents share a common load, so if one component fails, the load on the other
components increases (for instance parts of a bridge or a house). In this sec-
tion, we define a concept of non-negative dependence between random variables
called association.

A fairly natural definition of non-negative association is that two random
variables S and T are associated if and only if Cov(S, T ) ≥ 0. Though this def-
inition is intuitive, the actual definition of association is stricter and applicable

65
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to any number of random variables.

Definition 6.1.1 Let T1, . . . , Tn be random variables, and let T = (T1, . . . , Tn).
We say that T1, . . . , Tn are associated if

Cov(Γ(T),∆(T)) ≥ 0,

for all binary non-decreasing functions Γ and ∆.

Note that according to this definition we only require Cov(Γ(T),∆(T)) ≥ 0
for all binary non-decreasing functions. This property may seem somewhat
strange. It turns out, however, that association implies the following apparently
stronger result:

Theorem 6.1.2 Let T1, . . . , Tn be associated random variables, and f and g
functions which are non-decreasing in each argument such that Cov(f(T), g(T))
exists, i.e.,

E[|f(T)|] <∞, E[|g(T)|] <∞, E[|f(T)g(T)|] <∞.

Then we have:
Cov(f(T), g(T)) ≥ 0.

We skip the proof here and refer to Barlow and Proschan [5] for details.

Associated random variables have some very useful properties. In order to
establish these properties we need the following lemma:

Lemma 6.1.3 Let X, Y and Z be random variables, and assume that Cov(X,Y ) <
∞. Then we have:

Cov(X,Y ) = E[Cov(X,Y |Z)] + Cov[E(X|Z), E(Y |Z)].

Proof: By the definition of covariance we know that:

Cov(X,Y ) = E(XY )− E(X)E(Y ).

We then apply the law of total expectation and condition with respect to the
variable Z. This yields:

Cov[X,Y ] = E[E(XY |Z)]− E[E(X|Z)]E[E(Y |Z)]

Now we rewrite the first term using the definition of covariance once again:

E[E(XY |Z)] = E[E(XY |Z)− E(X|Z)E(Y |Z)] + E[E(X|Z)E(Y |Z)]

= E[Cov(X,Y |Z)] + E[E(X|Z)E(Y |Z)]

Inserting this in the expression for Cov(X,Y ) we get:

Cov[X,Y ] = E[Cov(X,Y |Z)] + E[E(X|Z)E(Y |Z)]− E[E(X|Z)]E[E(Y |Z)]

= E[Cov(X,Y |Z)] + Cov[E(X|Z), E(Y |Z)],

which concludes the proof of the lemma. �
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Theorem 6.1.4 Associated random variables have the following properties:
(i) Any subset of a set of associated random variables also consists of associated
random variables.
(ii) A single random variable is always associated.
(iii) Non-decreasing functions of associated random variables are associated.
(iv) If two sets of associated random variables are independent, then their union
is a set of associated random variables.

Proof: We note that (i) follows from (iii). However, we can also prove this
property directly. Thus, let T1, . . . , Tn be a set of associated random variables,
and let A ⊂ {1, . . . , n}. We would like to prove that {Ti}i∈A is a set of associated
random variables. To do so, let ΓA, ∆A be arbitrary, binary functions which
are non-decreasing in all of their arguments Ti, i ∈ A. We then define:

Γ(T) = ΓA(TA), ∆(T) = ∆A(TA).

From this it follows that:

Cov(ΓA(TA),∆A(TA)) = Cov(Γ(T),∆(T)) ≥ 0,

where the inequality follows from Definition 6.1.1 because we have assumed that
T1, . . . , Tn is a set of associated random variables. Hence, (i) is proved.

To prove (ii) we let T be a random variable, and let Γ,∆ be arbitrary,
binary functions which are non-decreasing in T . Then, since Γ,∆ are binary
and non-decreasing in T , there are two possible cases:

Case 1. Γ(T ) ≤ ∆(T) for all T ,

Case 2. Γ(T ) ≥ ∆(T) for all T .

We consider Case 1 only, as Case 2 can be handled similarly. Then, we have:

Cov(Γ(T ),∆(T )) = E[Γ(T )∆(T )]− E[Γ(T )]E[∆(T )]

= E[Γ(T )]− E[Γ(T )]E[∆(T )]

= E[Γ(T )](1− E[∆(T )]) ≥ 0,

where the second equality follows from the fact that we are in case 1. This means
that either Γ(T ) = ∆(T ), in which case (since Γ,∆ are binary) E[Γ(T )∆(T )] =
E[Γ(T )]. Or, alternatively, Γ(T ) = 0, ∆(T ) = 1, in which case E[Γ(T )∆(T )] =
0 = E[Γ(T )]. The inequality holds because Γ(T ),∆(T ) ∈ {0, 1} for all T . Hence,
(ii) is proved as well.

We now turn to the proof of (iii) and let T1, . . . , Tn be associated, and
let T = (T1, . . . , Tn). Moreover, we let Si = fi(T), i = 1, . . . ,m, where
f1, . . . , fm are non-decreasing functions, and let S = (S1, . . . , Sm). Finally,
let Γ = Γ(S) and ∆ = ∆(S) be binary non-decreasing functions. Then Γ(S) =
Γ(f1(T), . . . , fm(T)) and ∆(S) = ∆(f1(T), . . . , fm(T)) are non-decreasing func-
tions of T as well. Hence, by Definition 6.1.1 it follows that:

Cov(Γ(S),∆(S)) = Cov(Γ(f1(T), . . . , fm(T)),∆(f1(T), . . . , fm(T))) ≥ 0.
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Hence, we conclude that S1, . . . , Sm are associated as well.

Finally, we prove (iv). Thus, we let X and Y be two vectors of associated
random variables, and assume that X and Y are independent of each other.
Moreover, we assume that Γ = Γ(X,Y) and ∆ = ∆(X,Y) are binary and
non-decreasing functions in both X and Y. Then by Lemma 6.1.3 we have:

Cov(Γ,∆) = E[Cov(Γ,∆|X)] + Cov[E(Γ|X), E(∆|X)]. (6.1)

We then note that for any x, Γ(x,Y) and ∆(x,Y) are binary non-decreasing
functions of Y. Hence, we must have:

Cov(Γ(X,Y),∆(X,Y)|X = x) = Cov(Γ(x,Y),∆(x,Y)) ≥ 0, for all x,

where the equality follows since Y is independent of X, while the inequality
follows since Y is associated. This implies that:

E[Cov(Γ,∆|X)] ≥ 0. (6.2)

Moreover, E[Γ(x,Y)] and E[∆(x,Y)] are non-decreasing (but not necessar-
ily binary) functions of x. Hence, since X is associated, it follows by Theorem
6.1.2 that:

Cov[E(Γ|X), E(∆|X)] ≥ 0. (6.3)

Note that since Γ and ∆ are binary, we must have that E(Γ|X) ∈ [0, 1] and
E(Γ|X) ∈ [0, 1] with probability one. Thus, obviously Cov[E(Γ|X), E(∆|X)]
exists.

Combining (6.1), (6.2) and (6.3) implies that:

Cov(Γ,∆) ≥ 0.

Thus, we conclude that (X,Y) is associated. �

Theorem 6.1.5 Let T1, . . . , Tn be independent random variables. Then, they
are also associated.

Proof: The proof is by induction on n. The result obviously holds for n = 1
by Theorem 6.1.4 (ii). Assume that the theorem holds for n = m − 1. That
is, {T1, . . . , Tm−1} is a set of associated random variables. Moreover, by The-
orem 6.1.4 (ii), {Tm} is associated as well. By the assumption, these two sets
are independent. Hence, it follows from Theorem 6.1.4 (iv) that their union
{T1, . . . , Tm−1, Tm} is a set of associated random variables. Thus, the result is
proved by induction. �

At the completely opposite end of the scale, we have the following result:

Theorem 6.1.6 Let T1, . . . , Tn be completely positively dependent random vari-
ables, i.e.,

P (T1 = T2 = . . . = Tn) = 1.

Then they are associated.
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Proof: Let Γ,∆ be binary functions which are non-decreasing in each argument
and let T = (T1, . . . , Tn) and T1 = (T1, . . . , T1). By the assumption it follows
that T and T1 must have the same distribution. Hence, we get that:

Cov(Γ(T),∆(T)) = Cov(Γ(T1),∆(T1)) ≥ 0

where the final inequality follows by of Theorem 6.1.4 (ii) and Definition 6.1.1.
�

In the next section, we will establish upper and lower bounds for the system
reliability. In order to do this, the following theorem is useful:

Theorem 6.1.7 Let X1, . . . , Xn be the associated or independent component
state variables of a monotone system (C, φ). Moreover, let the minimal path
series structures of the system be (P1, ρ1), . . . , (Pp, ρp), where:

ρj(XPj ) =
∏
i∈Pj

Xi, j = 1, . . . , p. (6.4)

Then, ρ1, . . . , ρp are associated. Similarly, let the minimal cut parallel structures
of the system be (K1, κ1), . . . , (Kk, κk), where:

κj(XKj ) =
∐
i∈Kj

Xi, j = 1, . . . , k. (6.5)

Then, κ1, . . . , κk are associated.

Proof: The result follows since ρ1, . . . , ρp in (6.4) and κ1, . . . , κk in (6.5) are
non-decreasing functions of associated random variables, and hence associated
by Theorem 6.1.4, (iii). �

The following result extends Theorem 6.1.4, (iii) to non-increasing functions
as well.

Theorem 6.1.8 Let T = (T1, . . . , Tn) be associated, and let:

Ui = gi(T), i = 1, . . . ,m,

where gi, i = 1, . . . ,m are non-increasing functions. Then, U = (U1, . . . , Um)
is associated.

Proof: Let Γ,∆ be binary non-decreasing functions, and introduce g(T) =
(g1(T), . . . , gm(T)). Thus, U = g(T). We then introduce

Γ̄(T) = 1− Γ(g(T)) = 1− Γ(U)

∆̄(T) = 1−∆(g(T)) = 1−∆(U)
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It follows directly that Γ̄ and ∆̄ are binary and non-decreasing in Ti, i = 1, . . . , n.
Hence, by the assumption that T is associated, it follows that:

Cov(Γ(U),∆(U))) = Cov(1− Γ̄(T), 1− ∆̄(T))

= Cov(1, 1) + Cov(1,−∆̄(T)) + Cov(−Γ̄(T), 1)

+ Cov(−Γ̄(T),−∆̄(T))

= Cov(Γ̄(T), ∆̄(T)) ≥ 0.

Hence, we conclude that U is associated. �

In order to check whether two random variables are associated, the following
result can sometimes be used. It states that for two binary random variables,
association and non-negative covariance are equivalent.

Theorem 6.1.9 Let X and Y be two binary random variables. Then, X and
Y are associated if and only if

Cov(X,Y ) ≥ 0.

Proof: Assume first thatX and Y are associated. We may then choose Γ(X,Y ) =
X and ∆(X,Y ) = Y . Since obviously Γ and ∆ are binary and non-decreasing
functions, it follows from Definition 6.1.1 that Cov(X,Y ) = Cov(Γ,∆) ≥ 0.

We then assume conversely that Cov(X,Y ) ≥ 0. If can prove that this
implies that Cov(Γ,∆) ≥ 0 for all binary non-decreasing functions, the result is
proved. Since there are only two variables in this case, X and Y , there are only
a very limited number of choices for Γ and ∆. In fact, the only choices are:

Γ1 ≡ 0, Γ2 = X · Y, Γ3 = X, Γ4 = Y, Γ5 = X q Y, Γ6 ≡ 1.

Moreover, we have the following partial ordering:

Γ1 ≤ Γ2 ≤
{

Γ3

Γ4

}
≤ Γ5 ≤ Γ6.

Assume first that Γ and ∆ from the set {Γ1, . . . ,Γ6} such that Γ(X,Y ) ≤
∆(X,Y ). We then have:

Cov(Γ,∆) = E(Γ ·∆)− E(Γ) · E(∆)

= E(Γ)− E(Γ) · E(∆) = E(Γ)[1− E(∆)] ≥ 0.

The only possibility left is Γ = Γ3 = X and ∆ = Γ4 = Y . However, in this case
we get that:

Cov(Γ,∆) = Cov(X,Y ) ≥ 0,

where the last inequality follows by the assumption. Hence, we conclude that
Cov(Γ,∆) ≥ 0 for all binary non-decreasing functions, and thus the result is
proved. �
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6.2 Upper and lower bounds for the reliability of
monotone systems

As mentioned, it is often the case that we are unable to compute the exact
reliability of a system. This may be the case for large, complex systems where
the computations simply take too much time, but also for systems where the
components are not independent (recall that we assumed independence of the
components throughout Section 4). In this section, we derive several different
upper and lower bounds for the system reliability. These bounds can be useful
whenever computing the exact reliability is impossible or too computationally
costly.

Note that in this section, we will not always assume that the component
state variables are independent. However, to get useful bounds, we still need to
assume something about the dependencies between the components. In most
of the results of this section, this assumption will be that the component state
variables are associated (see Section 6.1).

The following theorem is a key result for deriving reliability bounds.

Theorem 6.2.1 Let T1, . . . , Tn be associated random variables such that 0 ≤
Ti ≤ 1, i = 1, . . . , n. Then,

E[

n∏
i=1

Ti] ≥
n∏
i=1

E[Ti] (6.6)

E[

n∐
i=1

Ti] ≤
n∐
i=1

E[Ti] (6.7)

Proof: We note that since 0 ≤ Ti ≤ 1, both Ti and Si = 1 − Ti are non-
negative random variables, i = 1, . . . , n. Hence, the product functions

∏n
i=1 Ti

and
∏n
i=1 Si are both non-decreasing in each argument.

By using Theorem 6.1.2, we find:

E[
n∏
i=1

Ti]− E[T1]E[

n∏
i=2

Ti] = Cov(T1,

n∏
i=2

Ti) ≥ 0,

since the product function is non-decreasing in each argument because Ti ≥ 0,
i = 2, . . . , n. This implies that:

E[

n∏
i=1

Ti] ≥ E[T1]E[

n∏
i=2

Ti].

By repeated use of this inequality, we get (6.6).
From Theorem 6.1.8, S1, . . . , Sn are associated random variables. Moreover,

0 ≤ Si ≤ 1, i = 1, . . . , n, so we can apply (6.6) to these variables. From this it
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follows that:

E[

n∐
i=1

Ti] = 1− E[

n∏
i=1

(1− Ti)] = 1− E[

n∏
i=1

Si]

≤ 1−
n∏
i=1

E(Si) = 1−
n∏
i=1

(1− E[Ti])

=

n∐
i=1

E[Ti],

so (6.7) is proved as well.
�

Theorem 6.2.1 has an important interpretation: If we apply the theorem to
the binary component state variables X1, . . . , Xn, (6.6) says that for a series
structure of associated components, an incorrect assumption of independence
will lead to an underestimation of the system reliability. Correspondingly, (6.7)
says that for a parallel structure, an incorrect assumption of independence be-
tween the components will lead to an overestimation of the system reliability.
Clearly, overestimating the system reliability can have serious consequences in
applications, and should be avoided. Since most systems are not purely series
or purely parallel, we conclude that for an arbitrary structure, we cannot say
for certain what the consequences of an incorrect assumption of independence
will be. This means that in any application where we do not know for sure that
the components are independent, simply assuming independence in order to use
one of the methods in Section 4 to compute the exact system reliability can
be dangerous. Fortunately, it is still possible to obtain bounds on the system
reliability.

In the next results we interpret Ti, i = 1, . . . , n as the lifetimes of components
in a binary monotone system.

Theorem 6.2.2 Let T1, . . . , Tn be non-negative associated random variables.
Then, for all ti, i = 1, . . . , n:

P [∩ni=1(Ti > ti)] ≥
n∏
i=1

P [Ti > ti], (6.8)

P [∩ni=1(Ti ≤ ti)] ≥
n∏
i=1

P [Ti ≤ ti]. (6.9)

Proof: Interpreting Ti as the lifetime of the ith component in a binary monotone
system, we may introduce the corresponding binary component state process
{Xi(t)}, i = 1, . . . , n, where:

Xi(t) =

1, t < Ti

0, t ≥ Ti.
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In Figure 6.1 we have plotted Xi(t) as a function of t ≥ 0 for a given value
of Ti. The plot shows that Xi(t) is a non-increasing function of t. For a fixed
point of time t we may alternatively view Xi(t) as a function of the lifetime Ti.
The resulting plot is shown in Figure 6.2. From this plot we see that Xi(t) is
a non-decreasing function of Ti. Hence, by Theorem 6.1.4, X1(t), . . . , Xn(t) are
associated for all t ≥ 0.

Ti

1

t

X (t)i

Figure 6.1: The binary component state process Xi(t) plotted as a function of
the time t ≥ 0.

Ti

1

t

X (t)i

Figure 6.2: The binary component state process Xi(t) plotted as a function of
the lifetime Ti for a given t ≥ 0.
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Hence, by applying (6.6):

P [∩ni=1(Ti > ti)] = P [∩ni=1(Xi(ti) = 1)]

= P [

n∏
i=1

Xi(ti) = 1] = E[

n∏
i=1

Xi(ti)]

≥
n∏
i=1

E[Xi(ti)] =

n∏
i=1

P [Xi(ti) = 1]

=

n∏
i=1

P [Ti > ti],

so (6.8) is proved. The proof of (6.9) is similar by using (6.7) instead of (6.6)
and left as an exercise to the reader.

�

Note that the left hand side of (6.9) is the joint cumulative distribution
of T1, . . . , Tn, while the right hand side is the corresponding cumulative distri-
bution in the case where T1, . . . , Tn are independent. As a corollary to Theo-
rem 6.2.2, we have:

Corollary 6.2.3 Let T1, . . . , Tn be non-negative associated random variables.
Then:

P ( min
1≤i≤n

Ti > t) ≥
n∏
i=1

P (Ti > t), (6.10)

P ( max
1≤i≤n

Ti > t) ≤
n∐
i=1

P (Ti > t). (6.11)

Proof: This follows from Theorem 6.2.2 by letting ti = t for i = 1, . . . , n.
Alternatively, this can also be proved by applying Theorem 6.2.1 to the binary
component states at time t, since min1≤i≤n Ti is the lifetime of a series system
and max1≤i≤n Ti is the lifetime of a parallel system. �

Now, we are ready to derive our first (crude) bounds of the reliability of a
monotone system. In words, these bounds say that for any monotone system,
the reliability is lower bounded by the reliability of a series system and upper
bounded by the reliability of a parallel system. This corresponds to our previous
observation (see the comments after Theorem 2.2.4) that the series system is
the worst non-trivial monotone system, while the parallel system is the best.

Theorem 6.2.4 Let X1, . . . , Xn be the component state variables of a non-
trivial binary monotone structure (C, φ) with component reliabilities p1, . . . , pn,
and assume that X1, . . . , Xn are associated. Then we have:

n∏
i=1

pi ≤ h ≤
n∐
i=1

pi.
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Proof: We get:

n∏
i=1

pi =

n∏
i=1

E[Xi]

≤ E[

n∏
i=1

Xi] ≤ E[φ(X)]

≤ E[

n∐
i=1

Xi] ≤
n∐
i=1

E[Xi]

=

n∐
i=1

pi.

Here, the first inequality follows from (6.6), the second and third inequalities
from Theorem 2.2.4 and the fourth inequality follows from (6.7). �

As mentioned, these bounds are very crude, and usually not of much prac-
tical use. Luckily, we are always able to establish better bounds than those of
Theorem 6.2.4 by including information about the minimal path and cut sets of
the system. These improved bounds are a corollary to the following result:

Theorem 6.2.5 Consider a monotone structure (C, φ) with minimal path sets
P1, . . . , Pp, and minimal cut sets K1, . . . ,Kk. Then we have:

max
1≤j≤p

P [min
i∈Pj

Xi = 1] ≤ h ≤ min
1≤j≤k

P [max
i∈Kj

Xi = 1].

Proof: From (3.8) and (3.10), we get

min
i∈Pr

Xi ≤ max
1≤r≤p

min
i∈Pr

Xi = φ(X) = min
1≤s≤k

max
i∈Ks

Xi ≤ max
i∈Ks

Xi,

for all r = 1, . . . , p and all s = 1, . . . , k. This implies that:

P (min
i∈Pr

Xi = 1) ≤ h ≤ P (max
i∈Ks

Xi = 1)

for all r = 1, . . . , p and all s = 1, . . . , k. This proves the theorem. �

In Theorem 6.2.5, we made no assumptions about the dependence between
the components. In order to obtain an explicit expression for the lower bound,
we need to compute P (mini∈Pr

Xi = 1), j = 1, . . . , p. Similarly, to obtain an
explicit expression for the upper bound, we need to compute P (maxi∈Kr

Xi =
1), j = 1, . . . , k. This is difficult without making further assumptions about the
joint distribution of the component state variables. In the following corollary we
make the assumption that the component state variables are associated. This
enables us to obtain explicit bounds.
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Corollary 6.2.6 Consider the same monotone system (C, φ) as in Theorem 6.2.5.
Moreover, assume that the component state variables are associated with com-
ponent reliabilities p1, . . . , pn. Then we have:

max
1≤j≤p

∏
i∈Pj

pi ≤ h ≤ min
1≤j≤k

∐
i∈Kj

pi.

Proof: The result follows immediately from Theorem 6.2.5 by using (6.6) and
(6.7) because: ∏

i∈Pj

pi ≤ E[
∏
i∈Pj

Xi] = P [min
i∈Pj

Xi = 1]

and ∐
i∈Kj

pi ≥ E[
∐
i∈Kj

Xi] = P [max
i∈Kj

Xi = 1].

�

The assumptions in Theorem 6.2.4 and Corollary 6.2.6 are the same. How-
ever, the bounds in Corollary 6.2.6 are obviously better than those in Theo-
rem 6.2.4 because:

n∏
i=1

pi =
∏
i∈Pj

pi
∏
i/∈Pj

pi ≤
∏
i∈Pj

pi ≤ max
1≤j≤p

∏
i∈Pj

pi

since pi ∈ [0, 1] for i = 1, . . . , n. A similar argument proves that the upper
bound in Corollary 6.2.3 is better than the one in Theorem 6.2.4.

If we in addition to the assumptions in Corollary 6.2.6 assume that the
components are independent, we get bounds which are sometimes better than
those in Corollary 6.2.6 and sometimes worse. These bounds are a corollary to
the following theorem:

Theorem 6.2.7 Let X1, . . . , Xn be the associated component states of a binary
monotone system (C, φ) with minimal path series structures (P1, ρ1), . . . , (Pp, ρp))
and minimal cut parallel structures (K1, κ1), . . . , (Kk, κk)). Then,

k∏
j=1

P (κj(XKj ) = 1) ≤ h ≤
p∐
j=1

P (ρj(XPj ) = 1). (6.12)

Proof: From the comments after Theorem 6.1.4, it follows from Theorem 6.1.4
(iii) that the minimal path series structures, and the minimal cut parallel struc-
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tures, are associated. Hence, we get that:

k∏
j=1

P (κj(XKj ) = 1) ≤ E[

k∏
j=1

κj(XKj ]

= h

= E[

p∐
j=1

ρj(XPj )]

≤
p∐
j=1

P (ρj(XPj ) = 1),

where the first inequality follows from (6.6), the first and second equalities follow
from (3.10) and (3.8) respectively and the final inequality follows from (6.7). �

The problem with Theorem 6.2.7 is the same as the problem with Theo-
rem 6.2.5. Without having explicit expressions for the reliabilities of the path
series structures and cut parallel structures the bounds are difficult to use.
However, by assuming independent component state variables, we can derive
the following corollary.

Corollary 6.2.8 Let (C, φ) be a binary monotone system of independent com-
ponent states and where the component reliabilities are p1, . . . , pn. Let P1, . . . , Pn
and K1, . . . ,Kn be respectively the minimal path and cut sets of the system.
Then we have:

k∏
j=1

∐
i∈Kj

pi ≤ h(p) ≤
p∐
j=1

∏
i∈Pj

pi. (6.13)

Proof: For independent components, the lower bound in (6.13) is equal to the
one in (6.12) because

P (κj(XKj ) = 1) = E[
∐
i∈Kj

Xi] =
∐
i∈Kj

pi.

The upper bound in (6.13) is proved in the same way. �

We conclude this section with an example.

Example 6.2.9 Consider a 3-out-of-4 system with pi = p, i = 1, 2, 3, 4. We
assume that all the component state variables are independent. We shall compare
the bounds from Corollary 6.2.6 to those from Corollary 6.2.8.

The minimal path sets for a 3-out-of-4 system are:

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4},

and the minimal cut sets are:

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}.
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In the calculations below we will repeatedly use the formula for the reliability of a
parallel system of two components with independent component state variables.
Denoting the reliability of this system by h2, and assumin that the components
have reliability q, we have:

h2(q) = q q q = 1− (1− q)(1− q) = 2q − q2.

We denote the lower and upper bounds in Corollary 6.2.6 by l1(p) and u1(p)
respectively. Since all the components have the same reliability, these bounds
are given by:

l1(p) = max
1≤j≤4

∏
i∈Pj

p = max
1≤j≤4

p3 = p3,

u1(p) = min
1≤j≤6

∐
i∈Kj

p = min
1≤j≤6

h2(p) = 2p− p2.

Similarly, we denote the bounds in Corollary 6.2.8 by l2(p) and u2(p) respec-
tively. Again since all the components have the same reliability, and since we
have assumed that the component state variables are independent, these bounds
are given by:

l2(p) =

6∏
j=1

∐
i∈Kj

p =

6∏
j=1

h2(p) = (2p− p2)6,

u2(p) =

4∐
j=1

∏
i∈Pj

p = h2(p3)q h2(p3) = 2(2p3 − p6)− (2p3 − p6)2.

From Example ??, we find that the reliability of the 3-out-of-4 system is:

h(p) = 4p3(1− p) + p4.

The bounds l1(p), u1(p), l2(p), u2(p), as well as the reliability function h(p), are
plotted in Figure 6.3.

From Figure 6.3, we see that in this case, the bounds from Corollary 6.2.8
are better than those from Corollary 6.2.6. However, note that the lower bound
from Corollary 6.2.6 is actually best for small values of p, while the opposite is
true for larger p-values. Correspondingly, the upper bound from Corollary 6.2.6
is best for large p-values, while the upper bound from Corollary 6.2.8 is best for
smaller values of p.

By defining a new lower bound as the largest of the two lower bounds from
Corollary 6.2.6 and Corollary 6.2.8, and a new upper bound as the smallest of
the two upper bounds from the same corollaries, we get a new set of bounds
which is better than the previous ones. It is also possible to improve these
bounds further by using a modular decomposition of the system at hand. We
will not go into details on this, but refer to Natvig [35] for more on this topic.
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Figure 6.3: Illustration of the bounds in Example 6.2.9.

6.3 Exercises
Exercise 6.2.1: Prove (6.9) of Theorem 6.2.2 by using equation (6.7).

Exercise 6.2.2: Prove that the upper bound in Corollary 6.2.6 is better than
the one in Theorem 6.2.4.

Exercise 6.2.3: Prove the upper bound of Corollary 6.2.8.

Exercise 6.2.4: Prove the upper bound in Corollary 6.2.6 by applying the
lower bound on the dual structure function φD.

Exercise 6.2.5: Prove the upper bound in Corollary 6.2.8 by applying the
lower bound on the dual structure function φD.

Exercise 6.2.6: Consider the network in Figure 6.4 consisting of independent
components with component reliabilities p.

a) What is the reliability h(p) for this system?
b) For p ∈ [0, 1], write a program to compute the reliability h(p). Plot h(p).
c) In the same plot, illustrate the bounds from Corollary 6.2.6 and 6.2.8.

Comment on the result.
d) Is it possible to improve these bounds further?
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Figure 6.4: Illustration of the network for Exercise 6.2.6.



Chapter 7
Computing reliability using
conditional Monte Carlo methods

As a result of the availability of high-speed computers, the use of Monte Carlo
methods have accelerated. In many cases, however, it is necessary to use various
clever tricks in order to make the methods converge faster. In particular this is
true in situations where one needs to estimate something that involves events
with very low probabilities. One such area is system reliability estimation. Since
failure events often have very low probability, a large number of simulations is
needed in order to obtain stable results. Sometimes, however, conditioning can
be used to improve the convergence.

7.1 Monte Carlo simulation and conditioning
In the general case the principle of conditioning can be stated as follows: Let
X = (Xn, . . . , Xn) be a random vector with a known distribution, and assume
that we want to calculate the expected value of φ = φ(X). We denote this
expectation by h. Assume furthermore that the distribution of φ cannot be
derived analytically in polynomial time with respect to n. Using Monte Carlo
simulations, however, we can proceed by generating a sample of size N , of
independent vectors X1, . . . ,XN , all having the same distribution as X, and
then estimate h with the simple Monte Carlo estimate:

ĥMC =
1

N

N∑
r=1

φ(Xr). (7.1)

The variance of this estimate is given by:

Var
(
ĥMC

)
=

1

N2

N∑
r=1

Var(φ) =
1

N
Var(φ) (7.2)

81
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Now, assume that S = S(X) is some other function whose distribution can be
calculated analytically in polynomial time with respect to n. More specifically,
we assume that S is a discrete variable with values in the set {s1, . . . , sk}. We
also introduce:

θj = E[φ | S = sj ], j = 1, . . . , k. (7.3)

By the formula for conditional expectation we then have:

h =

k∑
j=1

E[φ | S = sj ]P (S = sj) =

k∑
j=1

θjP (S = sj) (7.4)

Instead of generating N samples from the distribution of X as in (7.1), we
divide the set into k groups, one for each θj , where the j-th group has size
Nj , j = 1, . . . , k, and N1 + · · · + Nk = N . The data in the j-th group are
sampled from the conditional distribution of X given that S = sj , and are used
to estimate the conditional expectation θj , j = 1, . . . , k. Denoting the data in
the j-th group by {Xr,j : r = 1, . . . , Nj}, θj is estimated by:

θ̂j =
1

Nj

Nj∑
r=1

φ(Xr,j), j = 1, . . . , k. (7.5)

The variances of these estimates are:

Var(θ̂j) =
1

N2
j

Nj∑
r=1

Var(φ|S = sj) =
1

Nj
Var(φ|S = sj), j = 1, . . . , k. (7.6)

By combining θ̂1, . . . , θ̂k, we get the conditional Monte Carlo estimate:

ĥCMC =

k∑
j=1

θ̂jP (S = sj). (7.7)

Since θ̂1, . . . , θ̂k are independent, the variance of the conditional Monte Carlo
estimate is:

Var(ĥCMC) = Var[

k∑
j=1

θ̂jP (S = sj)] =

k∑
j=1

Var(θ̂j)[P (S = sj)]
2

=

k∑
j=1

1

Nj
Var(φ|S = sj)[P (S = sj)]

2.

We observe that the variance of the conditional estimate depends on the
choices of the Nj ’s. Ideally we would like Nj to be large if the product of the
conditional variance and the squared probability is large, and small otherwise,
as this would yield the most efficient partition of the total sample with respect
to minimizing the total variance. In practice, however, this is difficult, since the
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conditional variance is typically not known. In order to compare the result with
the variance of the original Monte Carlo estimate, we instead let:

Nj ≈ N · P (S = sj), j = 1, . . . , k,

so that:
k∑
j=1

Nj ≈
k∑
j=1

N · P (S = sj) = N ·
k∑
j=1

P (S = sj) = N.

With this choice we get:

V ar(ĥCMC) ≈
k∑
j=1

1

N · P (S = sj)
Var(φ|S = sj)[P (S = sj)]

2 (7.8)

=
1

N

k∑
j=1

Var(φ|S = sj)P (S = sj) =
1

N
E[Var(φ|S)]

=
1

N

(
Var(φ)−Var[E(φ|S)]

)
≤ 1

N
Var(φ) = Var(ĥMC).

From the above equation we see that the conditional estimate has smaller
variance than the original Monte Carlo estimate provided that Var[E(φ | S)] is
positive. This quantity can be interpreted as a measure of how much information
S contains relative to φ. Thus, when looking for good choices for S we should
look for variables containing as much information about φ as possible. However,
there are some other important points that need to be considered. First of all
S must have a distribution that can be derived analytically in polynomial time.
Next, the number of possible values of S, i.e., k, must be polynomially limited
by n. Finally, it must be possible to sample efficiently from the distribution of
X given S.

The problem of sampling from conditional distributions has been studied
recently by several authors. Lindqvist and Taraldsen [32] proposes a general
method for sampling from conditional distributions in cases where S is a suf-
ficient statistic. Of special relevance to the present paper, is Broström and
Nilsson [8] who consider the problem of sampling independent Bernoulli vari-
ables given their sum. See also Nilsson [38]. In the remaining part of this paper
we shall focus on applications in reliability theory, where X typically is a vector
of independent Bernoulli variables. In relation to this we shall derive our own
conditional sampling methods.

We now apply the above ideas in the context of system reliability. That is,
we assume that X is a vector of independent Bernoulli variables, interpreted as
the component state vector relative to a system of n components. A component
is failed if its state variable is 0, and functioning if the state variable is 1. The
function φ is also assumed to take values 0, 1, and interpreted as the system
state. If φ is 0, the system is failed, and if φ is 1, the system is functioning. The
function φ is referred to as the structure function of the system, and is assumed
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to be a nondecreasing function of the component state vector, X. In general the
calculation of φ for a given component state vector depends very much on the
representation of this function. If e.g., the system is represented as some sort
of communication network its state can usually be evaluated in O(n) time or
better. If on the other hand the system is specified in terms of a list of minimal
path (or cut) sets, the evaluation can be very slow since the number of such sets
in the worst cases grows exponentially with the number of components. For this
study, however, we assume that φ can be calculated in O(n) time for a given
component state vector.

There are in general many different choices for the variable S which can be
used in a reliability setting. In the next sections we will consider one possible
choice. For other choices see Huseby et al. [24].

7.2 Conditioning on the sum of the component
state variables

For the remaining part of the paper we focus on the case where S is the sum of
all the component state variables. This approach was taken in in Naustdal [37].
In this situation the random variable S takes values in the set {0, 1, . . . , n}.
Thus, the uncertain quantities we need to estimate, are:

θs = E[φ|S = s], s = 0, 1, . . . , n. (7.9)

As in the previous section, we need to have an efficient way of sampling from
the conditional distribution of X given S = s, s = 0, 1, . . . , n. In relation to this
we need the use of the partial sums, S1, . . . , Sn, defined as:

Sm =

n∑
i=m

Xi, m = 1, . . . , n.

Using these quantities, we can develop the algorithm for sampling from the
distribution of X given S = s. The idea is simply to start out by sampling X1

from the conditional distribution of X1 | S = s. We then continue by sampling
X2 from X2 | S = s, X1 = x1, where x1 denotes the sampled outcome of X1,
and so on. This turns out to be easy noting that:

P (Xm = xm | X1 = x1, . . . , Xm−1 = xm−1, S = s)

=
P (Xm = xm, S = s | X1 = x1, . . . , Xm−1 = xm−1)

P (S = s | X1 = x1, . . . , Xm−1 = xm−1)

=
P (Xm = xm, Sm+1 = s−

∑m
j=1 xj)

P (Sm = s−
∑m−1
j=1 xj)

=
pxm
m (1− pm)1−xmP (Sm+1 = s−

∑m
j=1 xj)

P (Sm = s−
∑m−1
j=1 xj)

,
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Assuming that the distributions of S1, . . . , Sn are all calculated before run-
ning the simulations, we see that all the necessary conditional probabilities can
be calculated when needed during the simulations without imposing additional
computational complexity. Note that we only calculate those conditional proba-
bilities we really need along the way during the simulations, not the entire set of
all possible conditional probabilities corresponding to all possible combinations
of values of the Xj ’s. Thus, in each simulation run we calculate n probabilities,
one for each Xj . Moreover, each probability can be calculated using a fixed
number of operations (independent of n). Hence, it follows that sampling from
the conditional distribution of X given S = s, can be done in O(n) time.

The CMC-algorithm can now be summarized as follows: Divide the N sim-
ulations into (n + 1) groups, one for each θs, where the s-th group has size
Ns, s = 0, 1, . . . , n. The data in the s-th group is sampled from the condi-
tional distribution of X given that S = s, and is used to estimate the condi-
tional expectation θs, s = 0, 1, . . . , n. Denoting the data in the s-th group by
{Xr, s : r = 1, . . . , Ns}, θs is estimated essentially by using (7.5), and combined
into the CMC-estimate by using (7.7).

A remaining problem is of course how to choose the sample sizes for each
of the (n+ 1) groups. One possibility is to proceed as we did in Section 1 and
let Ns ≈ N · P (S = s), s = 0, 1, . . . , n. In this case, however, it is possible to
improve the results slightly. As in the previous section we denote the size of the
smallest path set by d, and the size of the smallest cut set by c. By examining
the system, it is often easy to determine d and c. Given these two numbers
it is easy to see that θs = 0 for s < d, and θs = 1 for s > n − c. Moreover,
Var(φ | S = s) = 0 for s < d, or s > n− c. Hence, there is no point in spending
simulations on estimating θs for s < d, or s > n− c, so we let Ns = 0 for s < d,
or s > n− c. As a result, we have more simulations to spend on the remaining
quantities.

An extreme situation occurs when the system is a k-out-of-n-system, i.e.,
when φ(X) = I(S ≥ k). For such systems d = k, and c = (n − k + 1). In this
situation all the θs’s are known. Specifically, θs = 0 for s < k and θs = 1 for
s ≥ k. Thus, the CMC-estimate isequal to the true value of the reliability, and
can be calculated without doing any simulations at all. The reason for this is
of course that in this case φ depends on X only through S.

For all other nontrivial systems, however, it is easy to see that we always
have that d ≤ n− c. In order to ensure that we get improved results, we assume
that P (d ≤ S ≤ n− c) > 0, and let:

Ns ≈ N · P (S = s)/P (d ≤ S ≤ n− c), s = d, . . . , n− c . (7.10)

Using a similar argument as we did in (7.8) we now get that:

Var(ĥCMC) ≤ P (d ≤ S ≤ n− c)Var(ĥMC) (7.11)

Hence, we see that if d and (n − c) are close, i.e., there are few unknown
θs’s, the variance is reduced considerably.
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7.3 System reliability when all the component
state variables have identical reliabilities

If all the components in the system have the same reliability, i.e., p1 = · · · =
pn = p, it is possible to improve things even further. In this case we note that S
has a binomial distribution. Moreover, the conditional distribution of X given
S is given by:

P (X = x | S = s) =
p
∑n

i=1 xi(1− p)n−
∑n

i=1 xi(
n
s

)
ps(1− p)n−s

=
1(
n
s

) , (7.12)

for all x such that
∑n
i=1 xi = s. From this it follows that:

θs = E[φ | S = s] =
∑

{x|∑n
i=1 xi=s}

φ(x)P (X = x | S = s) =
bs(
n
s

) , (7.13)

where bs = the number of path sets with s components, s = 0, . . . , n. Finally,
the system reliability, h, expressed as a function of p, is given by:

h(p) =

n∑
s=0

θsP (S = s)

=

n∑
s=0

bs(
n
s

) (n
s

)
ps(1− p)n−s =

n∑
s=0

bsp
s(1− p)n−s.

Note that the unknown quantities, θ0, . . . , θn, do not depend on p. Thus,
by estimating these quantities, we get an estimate of the entire h(p)-function
for all p ∈ [0, 1]. Moreover, we see that θs can be interpreted as the fraction
of path sets of size s among all sets of size s, for s = 0, 1, . . . , n. Thus, θs can
be estimated by sampling random sets of size s and calculating the frequency
of path sets among the sampled sets. It turns out that this can be done very
efficiently as follows:

The idea is to sample sequences of sets of increasing size by sampling from
the component set, C = {1, . . . , n}, without replacements. The only set of size
0 is of course ∅. If ∅ is a path set, we have a trivial system which is always
functioning. Obviously, θ0 = 1 in this case. Moreover, the reliability of such a
system is 1. If ∅ is not a path set, it follows that θ0 = 0. In both cases we do
not need to sample anything to determine the value of θ0. Thus, we can focus
on estimating θ1, . . . , θn by sampling sets of size s, for s = 1, . . . , n.

Algorithm 7.3.1 Let T = (T1, . . . , Tn) be a vector for storing results from
the simulations. Before we start the simulations, this vector is initialized as
(0, . . . , 0). Then for i = 1, . . . , N do:

1. Sample a component from the set C, say component i1, and define A1 =
{i1}. If A1 is a path set, T1 is incremented with 1.
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2. Sample a component from the set C \ A1, say component i2, and define
A2 = {i1, i2}. If A2 is a path set, T2 is incremented with 1.

· · ·

n. Sample the last remaining component, say component in, and define An =
C. If An is a path set, Tn is incremented with 1.

When all the simulations are carried out, the vector T contains the number of
observed path sets of sizes 1, . . . , n. From this we get the resulting estimates of
θ1, . . . , θn simply as:

θs = Ts/N, s = 1, . . . , n.

It is easy to see that sampling components randomly without replacements
is equivalent to sampling the components according to a random permutation,
(i1, . . . , in), of the component set {1, . . . , n}. Such a permutation can easily be
generated using a well-known algorithm described in Knuth [31]. This algorithm
works as follows:

Assume that we start out with a vector representing an initial arbitrary
permutation of the components, say (i1, . . . , in). One may e.g., simply use
(1, . . . , n). We then generate a random permutation vector by modifying this
initial permutation vector by running through n steps. In the k-th step we
consider the element currently being the k-th element of the vector. We then
sample a random index, j, in the interval k, . . . , n, and let the k-th and the
j-th elements switch places in the permutation vector. When all the n steps
are completed, it is easy to see that the resulting vector is indeed a random
permutation, regardless of the initial state of the vector.

By using this algorithm, we are able to generate a complete sequence of n
sets in just O(n) time. However, since all sets in a sequence are derived from
the same permutation, the θs-estimates become correlated. Still, the effect of
this is more than compensated for since each θs-estimate now can be based on
all N simulations, compared to just a subset of size Ns as was the case in the
previous section.

When running this algorithm, much of the time is spent on the steps where
the system state is evaluated. Thus, in order to minimize the running time of
the algorithm, one would like to reduce the number of such evaluations. Since
A1 ⊂ A2 ⊂ · · · ⊂ An, it follows by the monotonicity of the structure function, φ,
that if Ak is a path set, then so is Ak+1. Thus, we can stop evaluating the state
of the system as soon as we have generated a path set, since we then know that
all the remaining sets will be path sets as well. Still it is obviously important to
carry out the system state evaluations as efficient as possible. The methodology
for doing this may typically depend strongly on the representation of the given
system.

In order to show how this can be done, we consider two different classes of
systems. The first class we consider is the class of threshold systems (see Example
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4.0.1), i.e., binary monotone systems (C, φ) where the structure function can be
written in the following form:

φ(X) = I
( n∑
i=1

aiXi ≥ b
)
, (7.14)

where a1, . . . , an and b are positive numbers. The ai’s are called the weights
associated with the components, while the number b is called the threshold
value. Notice that if a1 = · · · = an = 1 and b = k, we get a standard k-
out-of-n-system. For such systems it is very easy to carry out all the system
state evaluations. To do so we keep track of the sum of the weights associated
with the sampled components. When a new component is sampled, the sum is
updated by adding the weight associated with this component. When the sum
of weights is greater than or equal to the threshold value, we know that we have
generated a path set. Using this method, each system evaluation is carried out
in constant time. Thus, in this case the total computational complexity of the
simulation algorithm is just O(nN), where n is the number of components in
the system, and N is the number of simulations.

The second class is the class of undirected network systems (see Section 4.5).
The components of such a system are the edges of an undirected network. An
edge is functioning if its end-nodes can “communicate” through it. The system
is functioning if a subset of the nodes (with K elements), called the terminals,
can communicate through the network.

If all the edges are functioning, we assume that the network is connected,
i.e., all nodes can communicate with each other. If only a subset of the edges
are functioning, however, the node set is partitioned into a set of equivalence
classes such that a pair of nodes can communicate if and only if they belong to
the same equivalence class. Moreover, the system is functioning if and only if
all the terminals belong to the same equivalence class.

In order to minimize the running time spent on system state evaluation, we
maintain lists of nodes belonging to each equivalence class as we sample the
edges. For each list we also keep track of the number of terminals contained
in the list. When a new edge is sampled, we investigate its end-nodes. If they
belong to the same equivalence class, the system state is not changed. On the
other hand, if the end-nodes belong to different equivalence classes, we merge
the two classes and calculate the number of terminals included in the merged
class. When we arrive at an equivalence class containing K terminals, (i.e., all
the terminals), we know that we have generated a path set.

The most time-consuming part of this algorithm is the merging of equivalence
classes. Assuming that the classes are stored as linked lists, the actual merging
of the lists can be done in constant time. However, in order to minimize the
time spent on checking whether or not two nodes belong to the same class, the
nodes should be marked with a reference to its class list. When two classes,
say A and B, are merged, all the nodes in the smallest class, say B must be
marked with a reference to the class list of A instead. Updating such references
can be done in O(v) time, where v is the number of nodes in the network. It
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should be noted, however, that this is a very pessimistic estimate, as in most
cases the number of updating operations is much smaller. Anyway, the total
computational complexity of the simulation algorithm is O(nvN) in this case.

We close this section by illustrating the effect of the improved method on a
specific example. The system we consider is the 2-terminal undirected network
system illustrated in Figure 7.1. We assume that all the 7 components have
the same reliability p, and estimate the system reliability h(p) for all p ∈ [0, 1].
Moreover, we let N = 100. With so few iterations it is easier to see how much
better the conditional Monte Carlo method is compared to crude Monte Carlo
method.

1

2

3

4

5 6

7
S T

Figure 7.1: A 2-terminal undirected network system

For the conditional Monte Carlo method we know that we get an estimate
of the entire h(p)-function by estimating the fractions θ1, . . . , θn. For the crude
Monte Carlo estimate one possible approach is to proceed by obtaining esti-
mates of h(p) for each individual value of p. This would imply that we would
need N = 100 iterations for each chosen value of p. Thus, with a suitable reso-
lution of p-values, say p ∈ {0.01, 0.02, . . . , 1.00} we need 100N = 10000 samples.
Fortunately, it is possible to avoid this issue. In order to do so, the following
sampling method can be used. In the jth iteration we generate uniformly dis-
tributed random variables U1j , . . . , U7j . For a given value of p ∈ [0, 1] we then
define:

Xij(p) = I(Uij ≤ p), i = 1, . . . , 7, j = 1, . . . N,

where I(Uij ≤ p) = 1 if Uij ≤ p and zero otherwise. This implies that:

P (Xij(p) = 1) = P (Uij ≤ p) = p, i = 1, . . . , 7, j = 1, . . . N.

We denote the structure function of the system by φ. Moreover, we denote the
jth sampled component state vector, expressed as a function of the common
component reliability p, by Xj(p) = (X1,j(p), . . . , X7,j(p)), j = 1, . . . , N . We
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can then estimate h(p) as follows:

ĥ(p) =
1

N

N∑
j=1

φ(Xj(p)).

By varying p in the interval [1, 0], we obtain an estimate of h(p) for all p.
Hence, we can use the same sample of uniformly distributed variables to obtain
an estimate of the system reliability for each value of p. Thus, we only need
N = 100 samples for this method as well, which saves us a lot of time. Moreover,
it is easy to see that Xj(p) is a non-decreasing function of p for all j. Hence,
since φ is a non-decreasing function of Xj , the estimated curve, ĥ(p), is non-
decreasing as well, a property which the true function h(p) also has.

Using a program called CMCsim1 we can run the conditional Monte Carlo
simulations. This program has an intuitive graphical user interface, and can
be used to estimate reliability and component importance of any undirected
network system.

In Figure 7.2 we have plotted the two estimates for h(p) along with the true
reliability function. The red curve is the crude Monte Carlo estimate, the green
curve is the conditional Monte Carlo curve, while the blue curve represents the
true reliability function. As we can see, the green and the blue curves are almost
identical. Thus, even with as few as N = 100 iterations, we get a very precise
estimate of the entire h(p)-function. The crude Monte Carlo estimate is far
more irregular and deviates considerably from the true curve.

1CMCsim is a java program developed at the Department of Mathematics, University of
Oslo. The program is freely available at http://www.riscue.org/cmcsim/.
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Figure 7.2: System reliability as a function of the common component reliability
p. Crude Monte Carlo estimate (red curve), conditional Monte Carlo estimate
(green curve) and true reliability (blue curve).
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Chapter 8
Discrete event simulation

Discrete event models are typically used in simulation studies to model and
analyze pure jump processes. For an extensive introduction to discrete event
models we refer to Glasserman [18]. See also Klebaner [30]. A discrete event
model can be viewed as a system consisting of a collection of stochastic processes,
where the states of the individual processes change as results of various kinds
of events occurring at random points of time. Between these events the states
of the processes are assumed to be constant. We refer to the processes included
in the collection, as the elementary processes of the system. In our context we
always assume that each event only affects one of the elementary processes.

Asymptotic system availability and component criticality, can easily be es-
timated by running a single discrete event simulation on the system over a suf-
ficiently long time horizon, or by working directly on the stationary component
availabilities. Sometimes, however, one needs to estimate how these properties
evolve over time. In such cases it is necessary to run many simulations to obtain
stable availability and criticality estimates. One possible approach to this prob-
lem is to sample the system state at fixed points of time, and then use the mean
values of the states at these points as curve estimates. With this approach all
information about the process between the sampling points is thrown away. In
the present paper we propose an alternative sampling procedure where we uti-
lize process data between the sampling points as well. This simulation method
is particularly useful when estimating various kinds of component importance
measures for repairable systems.

8.1 Pure jump processes

In this section we formalize the consept of a pure jump process. Thus, let {S(t)}
be a stochastic process where S(t) denotes the state of the process at time t ≥ 0.
Moreover, we let T1 < T2 < · · · denote the points of time of the events affecting
the process, and let T0 = 0. Following Klebaner [30] a pure jump process is a

93
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process where S(t), can be written as:

S(t) = S(0) +

∞∑
j=1

I(Tj ≤ t)Jj , t ≥ 0, (8.1)

where I(·) denotes the indicator function, and Jj denotes the change in the
state (positive or negative) of the process at time Tj . The representation (8.1)
implies that the state function S(t) is piecewise constant and right-continuous
in t, with jumps at T1 < T2 < · · · . In particular, for k = 0, 1, . . ., we have:

S(t) = S(0) +

k∑
j=1

Jj = S(Tk), for all t ∈ [Tk, Tk+1). (8.2)

Thus, in order to keep track of how the process evolves and update the value of
the state function, only the points of time where the events happen need to be
considered. This property is convenient during simulations.

The infinite sum in (8.1) indicates that the number of events occurring in
the interval [0, t] is unbounded. The possibility of having an infinite number of
events in [0, t], however, may cause various technical difficulties. In particular,
this may cause simulations to break down since an infinite number of events
need to be generated and handled. See Glasserman [19] for a further discussion
of this issue. To avoid these difficulties, we always assume that the number
of events occurring in any finite interval is finite with probability one. A pure
jump process satisfying this assumption is said to be regular. Note, however,
that the regularity assumption does not imply the existence of a fixed number
N < ∞ such that the number of events in the interval [0, t] is bounded by N
with probability one. The number of events in [0, t] will typically be a random
variable with a distribution that ranges over all non-negative integers. When
the simulation procedure is chosen, this must be taken into account.

We now present a few basic results on regularity of pure jump processes
which we need later. We consider a pure jump process {S(t)} with jumps at
T1 < T2 < · · · . We also introduce the times between the events defined as:

∆j = Tj − Tj−1, j = 1, 2, . . . . (8.3)

Using these quantities the event times can be expressed as:

Tk =

k∑
j=1

∆j , k = 1, 2, . . . . (8.4)

Obviously, the process {S(t)} is regular if and only if T∞ =∞ almost surely.
Thus, it follows that a necessary and sufficient criterion for regularity is that
the series

∑∞
j=1 ∆j is divergent with probability one. This condition can often

be verified using the following simple result:
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Proposition 8.1.1 Let {S(t)} be a pure jump process with jumps at T1 < T2 <
· · · . Moreover, we let T0 = 0 and introduce the non-negative random variables
∆j = Tj − Tj−1, j = 1, 2, . . . . Assume then that the sequence {∆j} contains
an infinite subsequence {∆kj} of independent, identically distributed random
variables such that E[∆kj ] = d > 0. Then S is regular.

Proof: By the strong law of large numbers it follows that:

P ( lim
n→∞

n−1
n∑
j=1

∆kj = d) = 1.

This implies that the series
∑∞
j=1 ∆kj is divergent with probability one. Hence,

since obviously
∑∞
j=1 ∆kj ≤

∑∞
j=1 ∆j , the result follows. �

The regularity property implies that the set of points where the process
jumps almost surely does not have any accumulation points. The following
result utilizes this to show the existence of left limits of the state function of a
regular pure jump process.

Proposition 8.1.2 Let {S(t)} be a regular pure jump process with jumps at
T1 < T2 < · · · . Then limt→s− S(t) exists for every s > 0 with probability one.

Proof: Let 0 ≤ t < s <∞. We then consider the set T = {Tj : t ≤ Tj < s}∪{t}.
Since S is assumed to be regular, the number of elements in T is finite with
probability one. Moreover, T is non-empty since t ∈ T . Thus, this set contains
a maximal element, which we denote by t′. Moreover, since every element in
T is less than s, then so is t′. From this it follows that the interval (t′, s)
is nonempty. At the same time (t′, s) does not contain any jumps, so S(t)
is constant throughout this interval. Hence, limt→s− S(t) exists. Since s was
arbitrary chosen, this holds for any s > 0 �

Regularity is also of importance when considering the integral of a pure jump
process:

Proposition 8.1.3 Let {S(t)} be a regular pure jump process with jumps at
T1 < T2 < · · · , and let 0 ≤ u < v < ∞. Assume that {Tj : u < Tj < v} =
{T (1), . . . , T (k)}, where T (1) < · · · < T (k). Moreover, we let T (0) = u and
T (k+1) = v. Then we have:∫ v

u

S(t)dt =

k∑
j=0

S(T (j))(T (j+1) − T (j)).

Proof: We first note that since S is assumed to be regular, the number of
elements in the set {Tj : u < Tj < v} is finite with probability one. Thus, this
set can almost surely be written in the form {T (1), . . . , T (k)}, for some suitable
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k < ∞. Since S is right-continuous and piecewise constant, it follows that
S(t) = S(T (j)) for all t ∈ [T (j), T (j+1)), j = 0, 1, . . . , k. Thus, we have:∫ T (j+1)

T (j)

S(t)dt = S(T (j))(T (j+1) − T (j)), j = 0, 1, . . . , k.

The result then follows by adding up the contributions to the integral from each
of the k + 1 intervals [T (0), T (1)), . . . , [T (k), T (k+1)) �

We then consider a system consisting of a collection of n regular pure jump
processes, S1, . . . , Sn. The state of the system is then typically expressed as a
function of the states of the elementary processes. It is easy to see that the
system state also evolves as a regular pure jump process. That is, we have:

Proposition 8.1.4 Let {S1(t)}, . . . , {Sn(t)} be n regular pure jump processes,
and let H(t) = H(S(t)), where S(t) = (S1(t) . . . , Sn(t)), t ≥ 0. Then {H(t)} is a
regular pure jump process as well. That is, H(t) = H(S(t)) is piecewise constant
and right-continuous in t, and the number of jumps in any finite interval is finite
with probability one.

Proof: Let Ti be the set of time points corresponding to the jumps of the process
Si, i = 1, . . . , n, and let T be the set of time points corresponding to the jumps
of the process {H(t)}. Since the state value of H cannot change unless there is
a change in the state value of at least one of the elementary processes, it follows
that T ⊆ (T1 ∪ · · · ∪ Tn). Thus, H(t) is piecewise constant and right-continuous
in t. Moreover, for any finite interval [t, s] we also have:

T ∩ [t, s] ⊆ [(T1 ∩ [t, s]) ∪ · · · ∪ (Tn ∩ [t, s])].

Since by regularity (Ti ∩ [t, s]) is finite for i = 1, . . . , n, it follows that T ∩ [t, s]
is finite as well. Hence, we conclude that {H(t)} is regular. �

8.2 Binary monotone system of repairable com-
ponents

As we shall see, stationary statistical properties of a pure jump process, can often
be calculated by working directly on the stationary probability distributions of
the elementary processes. Sometimes, however, one needs to estimate how the
expected value of the process evolves over time. In such cases it is often necessary
to use some sort of Monte Carlo simulation method.

In order to illustrate how this can be done we consider a binary monotone
system (C, φ) of n repairable components. The elementary processes are the
component state processes, denoted {X1(t)}, . . . , {Xn(t)}, where Xi(t) repre-
sents the state of component i at time t ≥ 0, i = 1, . . . , n. That is, Xi(t) = 1 if
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component i is functioning at time t, and zero otherwise, i = 1, . . . , n. We also
introduce the component state vector at time t ≥ 0, X(t) = (X1(t), . . . , Xn(t)).
Thus, φ = φ(X(t)) = 1 if the system is functioning at time t and zero otherwise.

We now introduce the lifetimes and repair times for the components. That
is, for i = 1, . . . , n and j = 1, 2, . . . we let:

Uij = The jth lifetime of the ith component. (8.5)
Dij = The jth repair time of the ith component. (8.6)

We assume that Uij has an absolutely continuous distribution Fi with a positive
mean value µi <∞, while Dij has an absolutely continuous distribution Gi with
a positive mean value νi <∞, i = 1, . . . , n, j = 1, 2, . . .. All lifetimes and repair
times are assumed to be independent. Thus, in particular the component states
X1(t), . . . , Xn(t) are independent for each t ≥ 0.

We then introduce the availability of the ith component at time t, denoted
Ai(t), as the probability that the component is functioning at time t. That is,
for i = 1, . . . , n we have:

Ai(t) = Pr(Xi(t) = 1) = E[Xi(t)].

It can then be shown (see Barlow and Proschan [5]) that the corresponding
stationary availabilities can be expressed as:

Ai = lim
t→∞

Ai(t) =
µi

µi + νi
, i = 1, . . . , n. (8.7)

Introduce A(t) = (A1(t), . . . , An(t)) and A = (A1, . . . , An). The system avail-
ability at time t is given by:

Aφ(t) = Pr(φ(X(t)) = 1) = E[φ(X(t))] = h(A(t)),

where h is the system’s reliability function. The corresponding stationary avail-
ability is given by:

Aφ = lim
t→∞

Aφ(t) = h(A). (8.8)

We now extend Definition 5.1.1 to repairable components in the obvious way by
stating that component i is critical at time t if:

ψi(X(t)) = φ(1i,X(t))− φ(0i,X(t)) = 1. (8.9)

We will refer to ψi(X(t)) as the criticality state of component i at time t.
Moreover, we extend Definition 5.2.1 to this context by defining the Birnbaum
measure of importance of a repairable component i at time t, as the probability
that component i is critical at time t. This is denoted I(i)

B (t) and given by:

I
(i)
B (t) = Pr(ψi(X(t)) = 1) = E[ψi(X(t))] (8.10)

= h(1i,A(t))− h(0i,A(t)).

The corresponding stationary measure is given by:

I
(i)
B = lim

t→∞
I

(i)
B (t) = h(1i,A)− h(0i,A). (8.11)
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8.3 Simulating repairable systems
Discrete event simulation is a very well established technique for analyzing sys-
tems of pure jump processes with applications in many different areas such as
queueing and inventory systems and reliability. For an introduction to this field
see Banks et al. [3].

As in the previous section we consider a binary monotone system (C, φ) with
component state processes, denoted {X1(t)}, . . . , {Xn(t)}. The events affecting
the ith component are denoted by Ei1, Ei2, . . ., listed in chronological order,
i = 1, . . . , n. Since we assumed that all lifetimes and repair times have ab-
solutely continuous distributions, all these events happen at distinct points of
time almost surely. We let Ti1 < Ti2, . . . be the corresponding points of time for
these events. We also let Ti0 = 0, i = 1, . . . , n. As in (8.1) the component state
processes can then be expressed as:

Xi(t) = Xi(0) +

∞∑
j=1

I(Tij ≤ t)Jij , t ≥ 0,i = 1, . . . , n, (8.12)

where the jumps Jij are either −1 if Eij is a failure event, or +1 if Eij is a
repair event. We assume that all components start out by being functioning.
Thus, we have Xi(0) = 1, and Jij = (−1)j , for i = 1, . . . , n and j = 1, 2, . . ..
Finally, for i = 1, . . . , n we introduce the times between the events defined as:

∆ij = Tij − Tij−1, i = 1, . . . , n,j = 1, 2, . . . . (8.13)

Then for i = 1, . . . , n we have:

∆i1 = Ui1, ∆i2 = Di1, ∆i3 = Ui2, . . . (8.14)

Since Ui1, Ui2, . . . are independent and identically distributed with positive mean
value µi, it follows by Proposition 8.1.1 that Xi is a regular pure jump process,
i = 1, . . . , n. Hence, by Proposition 8.1.4 the system state φ = φ(X) as well as
the criticality states ψ1(X), . . . , ψn(X) are regular pure jump processes.

At the system level the event set is the union of all the component event
sets. Let E(1), E(2), . . . denote these events sorted with respect to their respec-
tive points of time, and let T (1) < T (2) < · · · be the corresponding points of
time. Note that since we assumed that all lifetimes and repair times have abso-
lutely continuous distributions, each system event corresponds almost surely to
a unique component event.

In order to simulate such a system, we use an object oriented approach where
the components as well as the system are represented as objects. The compo-
nent objects are equipped with methods for generating failure and repair events
according to their respective life- and repair time distributions. The system
object determines the state of the system as a function of the component states.
To keep track of the events and process them in the correct order, they are
organized in a dynamic queue sorted with respect to the points of time of the
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events. The component processes place their upcoming events into the queue
where they stay until they are processed.

More specifically, at time zero each component starts out by being function-
ing, and places its first failure event into the queue. As soon as all these failure
events have been placed into the queue, the first event in the queue is processed.
That is, the system time is set to the time of the first event, and the event is
taken out of the queue and passed on to the component responsible for handling
this event. The component then updates its state, generates a new event, in this
case a repair event, which is placed into queue, and notifies the system about its
new state so that the system state can be updated as well. Then the next event
in the queue is processed in the same fashion, and so forth until the system
time reaches a certain predefined point of time. Note that since the component
events are generated as part of the event processing, the number of events in
the queue stays constant.

Although the system state and component states stay constant between
events, it may still be of interest to log the state values at predefined points of
time. In order to facilitate this, we introduce yet another type of event, called a
sampling event. Such sampling events will typically be spread out evenly on the
timeline. Thus, if e1, e2, . . . denote the sampling events, and t1 < t2 < · · · are
the corresponding points of time, we would typically have tj = j · ∆ for some
suitable number ∆ > 0.

The sampling events will be placed into the queue in the same way as for
the ordinary events. As a sampling event is processed, the next sampling event
will be placed into the queue. Thus, at any time only one sampling event needs
to be in the queue.

In principle one must update the system state every time there is a change
in the component states. For large complex systems, these updates may slow
down the simulations considerably. Thus, whenever possible one should avoid
computing the system state. Fortunately, since the structure function of a binary
monotone system is non-decreasing in each argument, it is possible to reduce
the updating to a minimum. To explain this in detail, we consider the event
Eij affecting component i. Let Tij be the corresponding point of time, and let
X(T−ij ) denote the value of the component state vector immediately before Eij
occurs, i.e., X(T−ij ) = limt→T−ij

X(t). Note that by Proposition 8.1.2 these limits
exist since the component state processes are regular.

If Eij is a failure event of component i, i.e., Xi(T
−
ij ) = 1 and Xi(Tij) = 0,

then the event cannot change the system state if the system is already failed,
i.e., φ(X(T−ij )) = 0. Similarly, if Eij is a repair event of component i, i.e.,
Xi(T

−
ij ) = 0 and Xi(Tij) = 1, this event cannot change the system state if the

system is already functioning, i.e., φ(X(T−ij )) = 1. Thus, we see that we only
need to recalculate the system state whenever:

φ(X(T−ij )) 6= Xi(Tij). (8.15)

Hence, the number of times we need to recalculate the system state is drastically
reduced.
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In cases where we keep track of the criticality state of each of the components,
we can simplify the calculations even further by noting that the system state is
changed as a result of the event Eij if and only if component i is critical at the
time of the event. Moreover, if i is critical, and Eij is a failure event, it follows
that the system fails as a result of this event, i.e., φ(X(Tij)) = 0. If on the other
hand i is critical, and Eij is a repair event, it follows that the system becomes
functioning as a result of this event, i.e., φ(X(Tij)) = 1. Thus, we see that in
this setup all the calculations we need to carry out, are related to the updating
of the criticality states.

A similar technique can be used when updating the criticality states of the
components. Thus, we consider the event Eij affecting the state of component
i. We first note that the criticality state function of component i, ψi(X(t)) =
φ(1i,X(t)) − φ(0i,X(t)) does not depend on the state of component i. Thus,
the event Eij does not have any impact on the criticality state of i. However,
Eij may still change the criticality state of other components in the system
even when the system state remains unchanged. Thus, let k 6= i be another
component, and consider its criticality state function ψk(X(Tij)).

If Xk(Tij) = 1 and φ(X(Tij)) = 0, it follows that:

φ(1k,X(Tij)) = φ(0k,X(Tij)) = 0. (8.16)

Thus, in this case we must have ψk(X(Tij)) = 0. On the other hand, if
Xk(Tij) = 0 and φ(X(Tij)) = 1, it follows that:

φ(1k,X(Tij)) = φ(0k,X(Tij)) = 1. (8.17)

Thus, we must have ψk(X(Tij)) = 0 in this case as well. Hence, we see that a
necessary condition for component k to be critical at time Tij is that:

φ(X(Tij)) = Xk(Tij). (8.18)

Utilizing these observations reduces the need to recalculate the criticality states.

8.4 Estimating availability and importance

Stationary availability and importance measures are typically easy to derive.
If the system under consideration is not too complex, these quantities can be
calculated analytically using (8.7), (8.8) and (8.11). For larger complex systems
one may estimate the availability and importance using Monte Carlo simula-
tions. A fast simulation algorithm for this is provided in [?]. Alternatively,
estimates can be obtained by running a single discrete event simulation on the
system over a sufficiently long time horizon.

Here, however, we focus on the problem of estimating the system availability
Aφ(t) and the component importance measures I(1)

B (t), . . . , I
(n)
B (t) as functions

of t. Ideally we would like to estimate these quantities for any t ≥ 0. For
practical purposes, however, we have to limit the estimation to a finite set of
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points. More specifically, we will estimate Aφ(t) for t ∈ {t1, . . . , tN}, i.e., the
set of the N first sampling points. For the points of time between the sampling
points, we just use linear interpolation to obtain the curve estimate.

A simple approach to this problem is to run M simulations on the system,
where each simulation covers the time interval [0, tN ]. In each simulation we
sample the values of φ and ψ1, . . . , ψn at each sampling point t1, . . . , tN . We
denote the sth simulated value of the component state vector process at time t ≥
0 by Xs(t), s = 1, . . . ,M , and obtain the following estimates for j = 1, . . . , N :

Âφ(tj) =
1

M

M∑
s=1

φ(Xs(tj)), (8.19)

Î
(i)
B (tj) =

1

M

M∑
s=1

ψi(Xs(tj)). (8.20)

We will refer to these estimates as pointwise estimates. It is easy to see that for
j = 1, . . . , N , Âφ(tj) and Î

(i)
B (tj) are unbiased and strongly consistent estimates

of Aφ(tj) and I
(i)
B (tj) respectively. In order to estimate Aφ(t) and I

(i)
B (t) be-

tween the sampling points, one may use interpolation. Using a sufficiently high
sampling rate, i.e., a small value of ∆, a satisfactory estimate of the full curve
can be obtained. Still, all information about the process between the sampling
points is thrown away.

We now present an alternative approach where we utilize process data be-
tween the sampling points as well. As above we assume that the system is
simulated M times over the interval [0, tN ], and let Xs(t) denote the sth simu-
lated value of the component state vector process at time t ≥ 0, s = 1, . . . ,M .
Then let E(1)

s , E
(2)
s , . . . denote the events in the interval [0, tN ] in the sth simu-

lation, including sampling events at times t1, . . . , tN , and let T (1)
s < T

(2)
s < · · ·

be the corresponding points of time, s = 1, . . . ,M . In this case we also include
an extra sampling event in each simulation at time t0 = 0, denoted E(0)

s , and
let T (0)

s = 0, s = 1, . . . ,M .
The idea now is to use average simulated availability and criticalities from

each interval [tj−1, tj), j = 1, . . . , N as respective estimates for the availability
and criticalities at the midpoints of these intervals. By using Proposition 8.1.3,
we obtain the following estimates for j = 1, . . . , N :

Ãφ(t̄j) =
1

M

M∑
s=1

1

∆

∑
k∈Esj

φ(Xs(T
(k)
s ))(T (k+1)

s − T (k)
s ), (8.21)

Ĩ
(i)
B (t̄j) =

1

M

M∑
s=1

1

∆

∑
k∈Esj

ψi(Xs(T
(k)
s ))(T (k+1)

s − T (k)
s ), (8.22)

where Esj denotes the index set of the events in [tj−1, tj) in the sth simulation,
and where we have introduced the interval midpoints t̄j = (tj−1 + tj)/2, j =
1, . . . , N . We will refer to these estimates as interval estimates.
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By Proposition 8.1.3, it follows that for j = 1, . . . , N , Ãφ(t̄j) and Ĩ
(i)
B (t̄j)

are unbiased and strongly consistent estimates of the corresponding average
availability and criticality in the intervals [tj−1, tj) respectively. By choosing
∆ so that the availabilities and criticalities are relatively stable within each
interval, the interval estimates are approximately unbiased estimates for Aφ(t̄j)

and I
(i)
B (t̄j) as well. In fact the resulting interval estimates tend to stabilize

much faster than the pointwise estimates. In order to estimate Aφ(t) and I(i)
B (t)

between the interval midpoints, one may again use interpolation. Note that since
all process information is used in the estimates, satisfactory curve estimates can
be obtained for a much higher value of ∆ than the one needed for the pointwise
estimates.

In order to illustrate this we consider a simple bridge system shown in Figure
8.1. The components of this system are the five edges in the graph, labeled
1, . . . , 5. The system is functioning if the source node s can communicate with
the terminal node t through the graph. All the components in the system have
exponential lifetime and repair time distributions with mean values 1 time unit.
The objective of the simulation is to estimate Aφ(t) and I(1)

B (t), . . . , I
(5)
B (t) for

t ∈ [0, tN ], where tN = 1000.

Figure 8.1: A bridge system.

All the simulations were carried out using a program called Eventcue1. This
program has an intuitive graphical user interface, and can be used to estimate
availability and criticality of any undirected network system.

Since all the lifetimes and repair times are exponentially distributed with
the same mean, it is easy to derive explicit analytical expressions for the com-
ponent availabilities. To see this, we consider the ith component at a given
point of time t and introduce Ni(t) as the number of failure and repair events
affecting component i in [0, t]. With times between events being independent

1Eventcue is a java program developed at the Department of Mathematics, University of
Oslo. The program is freely available at http://www.riscue.org/eventcue/.
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and exponentially distributed with mean 1 it follows that Ni(t) has a Poisson
distribution with mean t. Moreover, component i is functioning at time t if and
only if Ni(t) is even. Thus, the ith component availability at time t is given by:

Ai(t) =

∞∑
k=0

Pr(Ni(t) = 2k) =

∞∑
k=0

t2k

(2k)!
e−t. (8.23)

Using (8.23) one can verify numerically that all the component availabilities
converge very fast towards their common stationary value, 0.5. As a result of this
the system availability, Aφ(t), converges very fast towards its stationary value,
0.5, as well. In fact, for t > 20, numerical calculations show that |Aφ(t)−0.5| <
10−15. Similarly, the Birnbaum measures of importance converges so that for
t > 20, |I(i)

B (t) − 0.375| < 10−15, i = 1, 2, 4, 5, while |I(3)
B (t) − 0.125| < 10−15.

Thus, for t > 20 the true values of all the curves are approximately constant.
This makes it easy to evaluate and compare the quality of the different Monte
Carlo estimates in this particular case.

Figure 8.2: Interval estimate (black curve) and pointwise estimate (gray curve)
of the availability curve.

Figure 8.2 and Figure 8.3 show respectively the availability curve and the
criticality curve of component 1. The black curves are obtained using the inter-
val estimates, while the gray curves show the corresponding pointwise estimate
curves. In all cases we have used M = 1000 simulations and N = 100 sample
points.

The plots clearly show the difference between the two methods. The black
interval estimate curves are much more stable, and thus much closer to the true
curve values, compared to the gray pointwise estimates.

One may think that increasing the number of sampling points would make
the pointwise curve estimate better as more information is sampled. However, it
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Figure 8.3: Interval estimate (black curve) and pointwise estimate (gray curve)
of the importance curve.

turns out that the main effect of this is that the curve jumps more and more up
and down. In fact with shorter intervals between sampling points the interval
estimate becomes more unstable as well, and in the limit where the interval
lengths go to zero, the two methods become equivalent. The only effective
way of stabilizing the results for the pointwise curve estimate is to increase the
number of simulations, i.e., M .

Table 8.1: Standard deviations for the pointwise curve estimates
M 2000 4000 6000 8000
St.dev. 0.0121 0.0076 0.0062 0.0054

In Table 8.1 we have listed estimated standard deviations for pointwise curve
estimates for different values of M . We see that the standard deviation shows
a steady decline as M increases. The corresponding numbers for M = 1000
are 0.0055 for the interval curve estimate and 0.0148 for the pointwise estimate.
Thus, in this particular case we see that to obtain a pointwise curve estimate
with a comparable stability to the interval curve estimate, one needs about eight
times as many simulations.

For the interval curve estimate it is possible to obtain an even smoother curve
simply by increasing ∆. Still, in general ∆ should not be made too large, as this
could produce a curve where important effects are obscured. Thus, in order to
obtain optimal results, one should try out different values for ∆, and balance
smoothness against the need of capturing significant oscillation properties of the
curve.

Now, if smoothness is important, it is of course possible to apply some stan-
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dard smoothing technique, such as moving averages or exponential smoothing,
to the pointwise curve estimate. While such post-smoothing would clearly make
the curve smoother, this technique does not add any new information to the es-
timate. The main advantage with the interval curve estimates is that such
estimates actually use information about all events. Especially in cases where
events occur at a very high rate, this turns out to be a great advantage.
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Chapter 9
Applications

In this chapter, we study two different applications of the theory presented in
the previous chapters. In Section 9.1, we show how to perform a reliability
analysis of two different kinds of fishing boat engines, while in Section 9.2, we
compute the reliability of a network for transmission of electronic pulses.

9.1 Case study: Reliability analysis and compar-
ison of two fishing boat engines

This section is based on a collaboration from 1977 between Bent Natvig and
what was then called Fiskeriteknologisk Forkningsinstitutt (the Norwegian de-
partment of fishery technology and research).

We will perform a reliability analysis and comparison of two different engines
for fishing boats. In the following, we say that the boat engine is functioning if
and only if the propeller and the power supply are functioning.

In 1977, Fiskeriteknologisk Forskningsinstitutt only approved one of the two
engines we will study. The critical parts of this engine are a propulsion engine,
an auxiliary engine and a hydraulic operated clutch. In Natvig [35], you can
find a detailed illustration of the engine. We omit the details, and instead focus
on the parts which are essential to our reliability analysis.

We define the following fault-events which may happen in this engine:

F1 : The propulsion engine fails (9.1)
K1 : The hydraulic clutch fails
H1 : The auxiliary engine fails

Corresponding to the engine, we can make a fault tree to illustrate what
may cause engine failure. This fault tree is shown in Figure 9.1.

The "OR" part of the fault tree means that at least one of the faults under
the "OR" must occur for for the above fault to occur. For instance, in order for
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System error

OR

No propeller No power supply

OR AND

F1 K1 F1 H1

Figure 9.1: Fault tree for the first boat engine.

there to be a system failure, either the propeller is not functioning or there is no
power supply. Correspondingly, the "AND" means that both of the faults under
the "AND" must occur for the fault to occur. That is, in order for there to be
no power supply, both F1 and H1 must happen. A more detailed description
of fault trees can be found in Barlow and Proschan [5].

The auxiliary engine is only used when the boat is at harbour, while the
propulsion engine and the clutch are used while the boat is running at sea.
The time at sea per year is 3000 hours, while the harbour time is 2000 hours.
Hence, the run time for the propulsion engine and the clutch is 3000 hours,
while the run time for the auxiliary engine is 2000 hours (per year). We assume
that the lifetime distributions of the components are exponential. Due to the
memoryless property of the exponential distribution and the fact that we are
considering mechanical components, this may be unrealistic. The Weibull dis-
tribution (which takes aging of components into account) would be preferable.
However, to simplify, we assume exponential lifetimes.

Det Norske Veritas supplied point estimates for the failure rates, measured in
failures per hour run. For a diesel engine (such as the propulsion engine and the
auxiliary engine), this failure rate is estimated to be 2.96 ·10−4. For a magnetic
clutch, the estimate is 3.88 ·10−5, while for a mechanic clutch it is 6.0 ·10−6 (we
will use this later in the section). Due to lack of data for hydraulic clutches, the
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error estimate for the magnetic clutch was used as an approximation.
Based on this, we can compute the following estimates for the probability of

the basic fault events in (9.1) happening in one year:

P (F1) = 1− exp(−2.96 · 10−4 · 3000) = 0.58852, (9.2)

P (K1) = 1− exp(−3.88 · 10−5 · 3000) = 0.10988,

P (H1) = 1− exp(−2.96 · 10−4 · 2000) = 0.44678.

This gives the following estimates:

P (propeller failure in a year) = 1− (1− P (F1)) · (1− P (K1)) = 0.63373,

P (no power supply in a year) = P (H1) · P (F1) = 0.26294.

From this, Fiskeriteknologisk Forskningsinstitutt concluded that:

P (system failure in a year) = 1− (1− 0.63373)(1− 0.26294) = 0.73004. (9.3)

However, this method is incorrect because it does not take into account the
dependence which the basic fault F1 creates in the fault tree because it occurs
twice. In order to derive the correct reliability (or equivalently, the probability
of system failure within a year), we introduce the following binary variables:

X1 =

{
1 if F1 does not occur within a year
0 otherwise

(9.4)

X2 =

{
1 if K1 does not occur within a year
0 otherwise

X3 =

{
1 if H1 does not occur within a year
0 otherwise

The fault tree 9.1 is equivalent to reliability block diagram shown in Fig-
ure 9.2. In the reliability block diagram component 1 with state variable X1

corresponds to the propulsion engine, component 2 with state variable X2 cor-
responds to the clutch, while component 3 with state variable X3 corresponds
to the auxiliary engine.

From Figure 9.2, we see that component 3, i.e., the auxiliary engine, is
an irrelevant component. It does not matter whether the auxiliary engine is
working for the system to be working. This can also be seen by deriving the
structure function of the system in Figure 9.2:

φ1(X) = X1X2(1− (1−X1)(1−X3))

= X1X2 +X1X2X3 −X1X2X3

= X1X2.
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1 2

1

3

Figure 9.2: System equivalent to the fault tree.

Hence, we get the following correct estimate of the probability of system error
within a year.

P (System failure within a year) (9.5)
= P (φ1(X) = 0) = 1− P (φ1(X) = 1)

= 1− (1− P (F1))(1− P (K1)) = 0.63373

By comparing this to the estimate in equation (9.3), we see that Fiskerite-
knologisk Forskningsinstutt ended up with a failure probability which is larger
than the actual one.

As mentioned in the beginning of the section, we would like to perform a
reliability analysis for two different engines, and compare them. Let us now turn
to the second engine, which is a two-engine system consisting of right and left
propulsion engines, right and left hydraulic clutches and a mechanical clutch.
Again, we will omit a detailed illustration of the system (this can be found in
Natvig [35], Figure 5.1.4). Instead, we focus on the corresponding fault tree
shown in Figure 9.3 consisting of the following basic fault-events:

F2 : Error in the left propulsion engine (9.6)
K2 : Error on left hydraulic clutch
F3 : Error in the right propulsion engine
K3 : Error on right hydraulic clutch
K4 : Error on mechanical clutch

For this system, both left and right engines are used at sea. At the harbour,
only the right engine is used (this runs the generator which produces power
when docking). Hence, the run time per year for the right engine is 5000 hours,
and for the mechanical clutch it is 2000 hours (this is only used when docking).
For the left propulsion engine and the two hydraulic clutches, the run time per
year is 3000 hours, as they are only used at sea.
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System error

OR

No propeller No power supply

AND AND

OR OR OR F2

No power supply

F2 K2 F3 K3 F3 K4

Figure 9.3: Fault tree for the second boat engine.

Based on the point estimates from Det Norske Veritas (see the comments
before equation (9.2)), we compute the following estimates for the probabilities
of the basic fault-events:

P (F2) = P (F1) = 0.58852, (9.7)
P (K2) = P (K3) = P (K1) = 0.10988,

P (F3) = 1− exp(−2.96 · 10−4 · 5000) = 0.77236,

P (K4) = 1− exp(−6 · 10−6 · 2000) = 0.01192.
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This leads to the following estimates:

P (propeller failure in a year)
= [1− (1− P (F2))(1− P (K2))][1− (1− P (F3))(1− P (K3))]

= 0.63372 · 0.79737

= 0.50532,

P (no power supply in a year)
= [1− (1− P (F3))(1− P (K4))]P (F2)

= 0.77508 · 0.58852

= 0.45615.

If we make the same kind of error as was done for the one-engine system in
equation (9.3), we find that:

P (system error in a year) (9.8)
= 1− (1− 0.50532)(1− 0.45615) = 0.73097.

In order to correct this mistake, we introduce some binary random variables:

X1 =

{
1 if F2 does not occur within a year
0 if F2 occurs within a year

(9.9)

X2 =

{
1 if K2 does not occur within a year
0 if K2 occurs within a year

X3 =

{
1 if F3 does not occur within a year
0 if F3 occurs within a year.

X4 =

{
1 if K3 does not occur within a year
0 if K3 occurs within a year.

X5 =

{
1 if K4 does not occur within a year
0 if K4 occurs within a year.

Again, by letting component 1 with state variable X1, correspond to the left
propulsion engine, component 2 with state variable X2 correspond to the left
hydraulic clutch and so on, we see that the fault tree for the two-engine system
is equivalent to the reliability block diagram shown in Figure 9.4.
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21

3 4

1

3 5

Figure 9.4: System equivalent to the fault tree for the two-engine system.

From this, we get that the structure function for the two-engine system is:

φ2(X) = [1− (1−X1X2)(1−X3X4)][1− (1−X1)(1−X3X5)]

= (X1X2 +X3X4 −X1X2X3X4)(X1 +X3X5 −X1X3X5)

= X1X2 +X1X3X4 −X1X2X3X4 +X1X2X3X5 +X3X4X5

−X1X2X3X4X5 −X1X2X3X5 −X1X3X4X5 +X1X2X3X4X5

= X1X2 +X1X3X4 −X1X2X3X4 +X3X4X5 −X1X3X4X5

= X1X2 +X3X4[X1(1−X2) +X5(1−X1)].

Hence, all of the components are relevant since they are all part of the structure
function. From this, we derive the correct estimate for the probability of the
two-engine system failing:

P (System error within a year) (9.10)
= 1− P (φ2(X) = 1)

= 1− E[φ2(X)]

= 1−
(
(1− P (F2)) · (1− P (K2)) + (1− P (F3)) · (1− P (K3))

· [(1− P (F2))P (K2) + (1− P (K4))P (F2)]
)

= 0.50666.

To conclude, we see from equations (9.3) and (9.8) that when we are not careful
with taking the system structure into account in the correct way, the two systems
are (almost) equally reliable. However, if we do the reliability analysis in the
correct way, considering the actual structure of the system, we find from equa-
tions (9.5) and (9.10) that the two-engine system is actually more reliable than
the one-engine system (which was the system that was approved by Fiskeritek-
nologisk Forskningsinstitutt). Intuitively, this is actually quite obvious, since in
the two-engine system, both engines can be used for both running the propeller
and supplying power. In the one-engine system, the auxiliary engine is just an
irrelevant component.
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9.2 Case study: Reliability analysis of a network
for transmission of electronic pulses

In this case study, we will perform a reliability analysis of a system for trans-
mission of electronic pulses. This system consists of several identical parts. As
we shall see, this property can be utilized in order to simplify the calculations.

In this case study twe consider a multistate system. This means that the
system is not just functioning or failed. Instead the set of possible system
states is a set of non-negative integers. This approach provides a more detailed
description of the system. As before, we let:

Xi(t) = The state of component i at time t,

and assume that the stochastic processes {Xi(t), t ≥ 0}ni=1 are independent.
The structure function is given by:

φ(t) = φ(X(t)) = The state of the system at time t.

We assume that φ(t) ∈ {φ1, . . . , φk}. In principle, one can find the distribu-
tion of the state of a multistate system by using the approach introduced in
Section 4.1, i.e., by enumerating all possible component states:

P (φ(t) = φj) =
∑
x
I(φ(x) = φj) · P (X(t) = x), j = 1, . . . , k. (9.11)

where the indicator function I(φ(x) = φj) is 1 if φ(x) = φj and 0 otherwise.
However, as in Section 4.1, we typically need to reduce the number of terms in
this sum because the calculations quickly become too time-consuming. We now
assume that there exists variables Y1 = Y1(X), . . . , Ym = Ym(X) such that φ(t)
can be written:

φ(t) = φ(X(t)) = φ(Y(X(t))),

where Y(X(t)) = (Y1(X(t)), . . . , Ym(X(t))). In this case, the probability distri-
bution of φ can be found from the formula:

P (φ(t) = φj) =
∑
y
I(φ(y) = φj)P (Y(X(t)) = y), j = 1, . . . , k. (9.12)

In order to use (9.12) to compute the system reliability, we have to compute
P (Y(X(t)) = y) for all y. Hence, if the number of possible values of Y is
large, little is gained by using (9.12) instead of (9.11). In some cases, however,
we can achieve a large reduction in the computational load by a clever choice
of Y1, . . . , Ym. In particular, this turns out to be the case for the network in
Figure 9.5.

The purpose of the system shown in Figure 9.5 is to ensure communication
between a control room and 5 production units. In Figure 9.5 the components
in the system are represented by blue circles. In addition to these components,
the system consists of a control room, 5 production units and two connection
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A

Control room

B

Prod. unit 2

Prod. unit 1

Prod. unit 3

Prod. unit 4

Prod. unit 5

Figure 9.5: A network for transmission of electronic pulses.

units called A and B. To simplify the example somewhat, we will not consider
potential errors in the control room, the production units and the connection
units. Hence, the system consists of n = 52 components.

Each of the connection units, A and B, receive signals from the control room
via 6 input wires. The number of production units which can be controlled by
a connection unit is bounded by the number of functioning input wires to the
respective connection unit. That is, if only 3 of the input wires to connection
unit A are functioning, A can control at most 3 production units. If all 6 of
the input wires to A are functioning, then all of the 5 production units can be
controlled via connection unit A.

We assume that all of the components are stochastically independent, and
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we also assume that all of the 12 input wires to the connection units A and B
have the same lifetime distributions. In particular, we assume that for any wire
between the control room and a connection unit we have:

P (The wire is functioning at time t) = w(t).

We observe that the part of the system which ensures communication between
the connection units A and B and the production units consists of 5 identical
subsystems. Each of these subsystems consists of 8 components. We assume
that all of these subsystems have the same stochastic properties, in the sense
that the corresponding components in the different subsystems have the same
lifetime distributions.

Now, we define the state of the system, represented by the function φ, as:

φ(t) = The number of production units which can be controlled from
the control room at time t.

Thus, the set of possible values for φ is {0, 1, . . . , 5}. The components are
assumed to be either functioning or failed, so the component states are binary.
Hence, the system in Figure 9.5 is a multistate system of binary components.
The number of terms in the sum (9.11) for computing the distribution of φ
is 252 = 4.504 · 1015, so finding this by enumerating all of the states is very
time-consuming. However, by introducing appropriate variables, we can obtain
a significant reduction of terms in (9.12) compared to (9.11). More specifically,
we introduce the following variables:

Y1(t) = The number of intact input wires to connection unit A at time t
Y2(t) = The number of intact input wires to connection unit B at time t
Y3(t) = The number of production units connected to A and B at time t
Y4(t) = The number of production units only connected to A at time t
Y5(t) = The number of production units only connected to B at time t.

The state of the system can now be expressed as:

φ(t) = W1(t) +W2(t) +W3(t), (9.13)

where:

W1(t) = min{Y1(t), Y4(t)}, W2(t) = min{Y2(t), Y5(t)}, (9.14)

W3(t) = min{(Y1(t)−W1(t)) + (Y2(t)−W2(t)), Y3(t)}.

In order to derive equation (9.13), we distribute the Y1(t) functioning input
wires to A and the Y2(t) functioning input wires to B between the 5 production
units in such a way that as many production units as possible are running. To
do this, we first distribute input wires to the production units which are only
connected to one connection unit, i.e., the Y4(t) production units only connected
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to A and the Y5(t) production units only connected to B. In this way, we
establish connection with W1(t) production units via A and W2(t) connection
units via B. When this is done, there are Y1(t) −W1(t) input wires available
via connection unit A, and Y2(t)−W2(t) input wires available via B. These are
then used to establish connection to as many as possible of the Y3(t) remaining
production units. The number of production units which can be reached in this
way is then W3(t). Note that both Y1(t) −W1(t) an Y2(t) −W2(t) may be 0.
We conclude that W1(t) + W2(t) + W3(t) is the number of production units
which can be controlled from the control room. Thus, equation (9.13) is indeed
correct.

Next, we need to find the probability distributions of Y1(t), . . . , Y5(t). Note
that Y1(t) is a function of the state variables of the wires into connection unit
A, Y2(t) is a function of the state variables of the wires into connection unit B,
while the vector (Y3(t), Y4(t), Y5(t)) is a function of state variables of the other 40
components. Since we have assumed that the components are independent, this
implies that Y1, Y2 and the vector (Y3(t), Y4(t), Y5(t)) are independent. Note,
however that Y3(t), Y4(t) and Y5(t) are dependent. In fact we have 0 ≤ Y3(t) +
Y4(t) + Y5(t) ≤ 5 for all t ≥ 0.

Both Y1(t) and Y2(t) are sums of 6 independent, identically distributed bi-
nary random variables. Hence, from standard probability theory, Y1(t) and
Y2(t) are binomially distributed:

P (Yi(t) = y) =

(
6

y

)
[w(t)]y[1− w(t)]6−y, y = 0, 1, . . . , 6, i = 1, 2, (9.15)

We then consider the probability distribution of (Y3(t), Y4(t), Y5(t)). This
depends on the 5 subsystems which ensure communication between the connec-
tion units and the production units. Each of these subsystems can be in one
out of four possible states, denoted SAB , SA, SB and S∅, where we define:

SAB = The prod. unit can communicate with both connection units (9.16)
SA = The prod. unit can only communicate with connection unit A
SB = The prod. unit can only communicate with connection unit B
S∅ = The prod. unit cannot communicate with any connection unit.

Furthermore, we have assumed that the subsystems are independent and that
each of the subsystems have the same stochastic properties. This implies that
the probability of being in either of the four states SAB , SA, SB or S∅ at a given
time t is the same for all the subsystems.

We observe that at time t the variables Y3(t), Y4(t) and Y5(t) are the number
of production units in states SAB , SA and SB respectively. It follows from
standard probability theory that for t ≥ 0 the vector (Y3(t), Y4(t), Y5(t)) is
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multinomially distributed,. That is, we have:

P (Y3(t) = y3 ∩ Y4(t) = y4 ∩ Y5(t) = y5) =
5!

y3!y4!y5!(5− y3 − y4 − y5)!
(9.17)

· [p3(t)]y3 [p4(t)]y4 [p5(t)]y5 [1− p3(t)− p4(t)− p5(t)]5−y3−y4−y5

where y3 = 0, 1, . . . , 5, y4 = 0, 1, . . . , 5 − y3, y5 = 0, 1, . . . , 5 − y3 − y4 and
p3(t), p4(t), p5(t) are the probabilities of a subsystem being in states SAB , SA
and SB respectively.

In order to compute the distribution of φ, all that remains is to find p3(t), p4(t)
and p5(t). To do so, we study the structure of the subsystems, as shown in Fig-
ure 9.6, more closely.

A

B

1

2

3

4

5

6

7

8

Prod.
unit

Figure 9.6: Subsystem of a network for transmission of electronic pulses.

In Figure 9.6, we have numbered the components of the subsystem under
consideration from 1 through 8. We denote the corresponding component state
variables by X1, . . . , X8, and their respective reliabilities by q1, . . . , q8, where we
have simplified the notation by omitting the time t. Moreover, we introduce the
events:

EA = {The production unit communicates with connection unit A}
EB = {The production unit communicates with connection unit B},

and observe that

p3(t) = P (EA ∩ EB), (9.18)
p4(t) = P (EA)− P (EA ∩ EB),

p5(t) = P (EB)− P (EA ∩ EB).
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Computing P (EA ∩ EB)

To find this probability, we condition with respect to the two bridges in the
structure, i.e., components 3 and 6, and get:

P (EA ∩ EB) = P (EA ∩ EB |X3 = 1, X6 = 1)q3q6 (9.19)
+ P (EA ∩ EB |X3 = 1, X6 = 0)q3(1− q6)

+ P (EA ∩ EB |X3 = 0, X6 = 1)(1− q3)q6

+ P (EA ∩ EB |X3 = 0, X6 = 0)(1− q3)(1− q6).

The four conditional probabilities in (9.19) can be computed by series- and
parallel reductions (this is left as an exercise). They are given by:

P (EA ∩ EB |X3 = 1, X6 = 1) = q1q2[q4 + q5 − q4q5][q7 + q8 − q7q8], (9.20)
P (EA ∩ EB |X3 = 1, X6 = 0) = q1q2[q4q7 + q5q8 − q4q5q7q8],

P (EA ∩ EB |X3 = 0, X6 = 1) = q1q2q4q5[q7 + q8 − q7q8],

P (EA ∩ EB |X3 = 0, X6 = 0) = q1q2q4q5q7q8.

Computing P (EA) and P (EB)

Note that in order to compute P (EA), component 2 is irrelevant (see Figure 9.6).
If we remove this component, we see that components 3 and 5 are in series.
By series redulction, we end up with a bridge structure (see Example 3.1.2)
connected in series with component 1. Hence, P (EA) is given by the following
(again, see Example 3.1.2):

P (EA) = q1q6[q4 + q3q5 − q3q4q5][q7 + q8 − q7q8] (9.21)
+ q1(1− q6)[q4q7 + q3q5q8 − q3q4q5q7q8].

Similarly, P (EB) is given by:

P (EB) = q2q6[q5 + q3q4 − q3q4q5][q7 + q8 − q7q8] (9.22)
+ q2(1− q6)[q5q8 + q3q4q7 − q3q4q5q7q8].

By inserting the expressions (9.19), (9.21) and (9.22) into (9.18), we have all the
probabilities we need in order to calculate the distribution of the system state
φ using equation (9.12).

What have we gained by this approach? Instead of enumerating all possible
states of the 52 binary state variables of the components in Figure 9.5, we
now have to enumerate the possible states of just the five multinary variables
Y1, . . . Y5. We observe that Y1 and Y2 each attain 7 values in the set {0, 1, . . . 6}.
The vector (Y3, Y4, Y5) can attain any value in the set {(Y3, Y4, Y5) : 0 ≤ Y3 +
Y4 + Y5 ≤ 5, 0 ≤ Y3, Y4, Y5}. In order to count the number of values in this
set, we consider 6 different cases corresponding to the possible values of Y3, and
count the number of possible values for each case, noting that if Y3 = y, then
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Y4 + Y5 ≤ 5− y, y = 0, 1, . . . , 5. Hence, we get:

Case 0. Y3 = 0, Y4 + Y5 ≤ 5− 0 = 5 : 21 possible values, (9.23)
Case 1. Y3 = 1, Y4 + Y5 ≤ 5− 1 = 4 : 15 possible values,
Case 2. Y3 = 2, Y4 + Y5 ≤ 5− 2 = 3 : 10 possible values,
Case 3. Y3 = 3, Y4 + Y5 ≤ 5− 3 = 2 : 6 possible values,
Case 4. Y3 = 4, Y4 + Y5 ≤ 5− 4 = 1 : 3 possible values,
Case 5. Y3 = 5, Y4 + Y5 ≤ 5− 5 = 0 : 1 possible value.

Adding these counts up, we see that there are 56 values in total. Hence, the sum
in (9.12) for computing P (φ(t) = φj) contains 7 ·7 ·56 = 2744 terms (since there
are 7 possible values for Y1 and Y2, as well as 56 possible values for (Y3, Y4, Y5)).
This is very easy to compute, as opposed to the 4.504 ·1015 terms of the original
method by simply enumerating the states. We see that by introducing the new
variables Y1, . . . , Y5, the computational load has been significantly reduced. The
same approach is useful in other systems where the structure consists of many
identical components and where there is a strong symmetry. A difficulty with
the method is that in practice, it may not be possible to find efficient ways to
introduce new variables. However, as there is so much to be gained from the
method when it works, it may be worth spending some time trying to figure out
which variables to introduce.

9.3 Exercises
Exercise 9.2.1:

Use series- and parallel reductions to show that the conditional probabilities
in (9.19) are given by the expressions in (9.20).

Exercise 9.2.2:
Explain why the 6 different values in (9.23) hold true (for example, the only

way Y4 + Y5 ≤ 0 for non-negative integers is for Y4 = 0, Y5 = 0).
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Notations

AC , the complement of a set. See Section 3.3.

:=, marks definitions.

≡, identically equal.

φ(·), the structure function of a binary system. See equation (2.2).

h(·), the reliability function of a binary system. See equation (2.6).

∏n
i=1 ai := a1 · a2 . . . · an, the product.

∐n
i=1 ai := 1

∏n
i=1(1− ai), the ip notation.

∑
y∈{0,1}n . . ., summing over all possible vectors in Rn where all components

are either 0 or 1.

φD, the dual structure function. See Definition 2.3.1.

0, a vector where all components are 0.

1, a vector where all components are 1.
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