STK3405 - Exercises Chapter 3

A. B. Huseby \& K. R. Dahl

Department of Mathematics
University of Oslo, Norway

Exercise 3.6

Find the minimal path sets and the minimal cut sets of the system in the system below.

Minimal path sets:

$P_{1}=\{1,3,6,8\}, P_{2}=\{1,3,5,7,8\}, P_{3}=\{1,4,5,6,8\}, P_{4}=\{1,4,7,8\}$,
$P_{5}=\{2,3,6,8\}, P_{6}=\{2,3,5,7,8\}, P_{7}=\{2,4,5,6,8\}, P_{8}=\{2,4,7,8\}$.
Minimal cut sets:
$K_{1}=\{1,2\}, K_{2}=\{3,4\}, K_{3}=\{3,5,7\}, K_{4}=\{4,5,6\}, K_{5}=\{6,7\}, K_{6}=\{8\}$.

Exercise 3.6 (cont.)

Find two different expressions for the structure function of this system.

$$
\begin{aligned}
\phi(\boldsymbol{X}) & =\coprod_{j=1}^{8} \prod_{i \in P_{j}} X_{i} \\
\phi(\boldsymbol{X}) & =\prod_{j=1}^{6} \coprod_{i \in K_{j}} X_{i} \\
\phi(\boldsymbol{X}) & =\left(X_{1} \amalg X_{2}\right) \cdot\left[X_{5} \cdot\left(X_{3} \amalg X_{4}\right) \cdot\left(X_{6} \amalg X_{7}\right)\right. \\
& \left.+\left(1-X_{5}\right) \cdot\left(\left(X_{3} X_{6}\right) \amalg\left(X_{4} X_{7}\right)\right)\right] \cdot X_{8}
\end{aligned}
$$

Exercise 3.7

Show that if (C, ϕ) is a bridge structure, then $\left(C^{D}, \phi^{D}\right)$ is a bridge structure as well.

Minimal path sets:
$P_{1}=\{1,4\}, P_{2}=\{1,3,5\}, P_{3}=\{2,3,4\}, P_{4}=\{2,5\}$
Minimal cut sets:
$K_{1}=\{1,2\}, K_{2}=\{1,3,5\}, K_{3}=\{2,3,4\}, K_{4}=\{4,5\}$.

Exercise 3.7 (cont.)

The dual system $\left(C^{D}, \phi^{D}\right)$:

Minimal path sets:
$P_{1}=\left\{1^{D}, 2^{D}\right\}, P_{2}=\left\{1^{D}, 3^{D}, 5^{D}\right\}, P_{3}=\left\{2^{D}, 3^{D}, 4^{D}\right\}, P_{4}=\left\{4^{D}, 5^{D}\right\}$
Minimal cut sets:
$K_{1}=\left\{1^{D}, 4^{D}\right\}, K_{2}=\left\{1^{D}, 3^{D}, 5^{D}\right\}, K_{3}=\left\{2^{D}, 3^{D}, 4^{D}\right\}, K_{4}=\left\{2^{D}, 5^{D}\right\}$.

Exercise 3.8

Let (A, χ) be a module of (C, ϕ). Assume that \boldsymbol{x}_{1} and \boldsymbol{x}_{0} are such that $\chi\left(\boldsymbol{x}_{1}^{A}\right)=1$ and $\chi\left(\boldsymbol{x}_{0}^{A}\right)=0$. Prove that for all $\left({ }^{A}, \boldsymbol{x}^{\bar{A}}\right)$ we have:

$$
\phi\left(\boldsymbol{x}_{1}^{A}, \boldsymbol{x}_{1}^{\bar{A}}\right)=\phi\left(\mathbf{1}^{A}, \boldsymbol{x}_{1}^{\bar{A}}\right) \text { and } \phi\left(\boldsymbol{x}_{0}^{A}, \boldsymbol{x}_{0}^{\bar{A}}\right)=\phi\left(\mathbf{0}^{A}, \boldsymbol{x}_{1}^{\bar{A}}\right) .
$$

PROOF: Let ψ be the organising structure function for ϕ and χ. That is, we have:

$$
\phi(\boldsymbol{x})=\psi\left(\chi\left(\boldsymbol{x}^{A}\right), \boldsymbol{x}^{\bar{A}}\right) \quad \text { for all } \boldsymbol{x} .
$$

Hence, since χ is non-decreasing we have by the assumptions that:

$$
\begin{aligned}
\phi\left(\boldsymbol{x}_{1}\right) & =\psi\left(\chi\left(\boldsymbol{x}_{1}^{A}\right), \boldsymbol{x}_{1}^{\bar{A}}\right)=\psi\left(1, \boldsymbol{x}_{1}^{\bar{A}}\right) \\
& =\psi\left(\chi\left(\mathbf{1}^{A}\right), \boldsymbol{x}_{1}^{\bar{A}}\right)=\phi\left(\mathbf{1}^{A}, \boldsymbol{x}_{1}^{\bar{A}}\right) .
\end{aligned}
$$

Similarly:

$$
\begin{aligned}
\phi\left(\boldsymbol{x}_{0}\right) & =\psi\left(\chi\left(\boldsymbol{x}_{0}^{A}\right), \boldsymbol{x}_{0}^{\bar{A}}\right)=\psi\left(0, \boldsymbol{x}_{0}^{\bar{A}}\right) \\
& =\psi\left(\chi\left(\mathbf{0}^{A}\right), \boldsymbol{x}_{0}^{\bar{A}}\right)=\phi\left(\mathbf{0}^{A}, \boldsymbol{x}_{0}^{\bar{A}}\right) .
\end{aligned}
$$

Exercise 3.9

Find all the modules of the following structure function:

$$
\phi(\boldsymbol{x})=\left(x_{1} \cdot\left(x_{2} \amalg x_{3}\right)\right) \amalg\left(x_{4} \amalg x_{5}\right) .
$$

SOLUTION: (Only non-trivial modules are included here)

- $A_{1}=\{2,3\}, \quad \chi_{1}\left(\boldsymbol{x}^{A_{1}}\right)=x_{2} \amalg x_{3}, \quad \psi_{1}\left(\chi_{1}, \boldsymbol{x}^{\bar{A}_{1}}\right)=\left(x_{1} \cdot \chi_{1}\right) \amalg\left(x_{4} \amalg x_{5}\right)$
- $A_{2}=\{1,2,3\}, \quad \chi_{2}\left(\boldsymbol{x}^{A_{2}}\right)=x_{1}\left(x_{2} \amalg x_{3}\right), \quad \psi_{2}\left(\chi_{2}, \boldsymbol{x}^{\bar{A}_{2}}\right)=\chi_{2} \amalg\left(x_{4} \amalg x_{5}\right)$
- $A_{3}=\{4,5\}, \quad \chi_{3}\left(\boldsymbol{x}^{A_{3}}\right)=x_{4} \amalg x_{5}, \quad \psi_{3}\left(\chi_{3}, \boldsymbol{x}^{\bar{A}_{3}}\right)=\left(x_{1}\left(x_{2} \amalg x_{3}\right)\right) \amalg \chi_{3}$
- $A_{4}=\{1,2,3,4\}, \quad \chi_{4}\left(\boldsymbol{x}^{A_{4}}\right)=\left(x_{1}\left(x_{2} \amalg x_{3}\right)\right) \amalg x_{4}, \quad \psi_{4}\left(\chi_{4}, \boldsymbol{x}^{\bar{A}_{4}}\right)=\chi_{4} \amalg x_{5}$
- $A_{4}=\{1,2,3,5\}, \quad \chi_{5}\left(\boldsymbol{x}^{A_{5}}\right)=\left(x_{1}\left(x_{2} \amalg x_{3}\right)\right) \amalg x_{5}, \quad \psi_{5}\left(\chi_{5}, \boldsymbol{x}^{\bar{A}_{5}}\right)=\chi_{5} \amalg x_{4}$

Exercise 3.10

Let (C, ϕ) be a k-out-of- n system where $1<k<n$, and assume that (A, χ) is a module of (C, ϕ) such that $1<|A|<n$.
We can then find a minimal path set P (i.e., a set where $|P|=k$) such that:

$$
A \backslash P \neq \emptyset \quad \text { and } \quad A \cap P \neq \emptyset \quad \text { and } \quad P \backslash A \neq \emptyset
$$

It then follows that:

$$
\begin{aligned}
& \phi\left(\mathbf{0}^{A \backslash P}, \mathbf{1}^{A \cap P}, \mathbf{1}^{P \backslash A}, \mathbf{0}\right)=\mathbf{1}, \\
& \phi\left(\mathbf{0}^{A \backslash P}, \mathbf{0}^{A \cap P}, \mathbf{1}^{P \backslash A}, \mathbf{0}\right)=0 .
\end{aligned}
$$

If $\chi\left(\mathbf{0}^{A \backslash P}, \mathbf{1}^{A \cap P}\right)=0$, by Exercise 3.8 this implies that:

$$
1=\phi\left(\mathbf{0}^{A \backslash P}, \mathbf{1}^{A \cap P}, \mathbf{1}^{P \backslash A}, \mathbf{0}\right)=\phi\left(\mathbf{0}^{A \backslash P}, \mathbf{0}^{A \cap P}, \mathbf{1}^{P \backslash A}, \mathbf{0}\right)=0 .
$$

That is, we have arrived at a contradiction.

Exercise 3.10 (cont.)

Since $(P \backslash A) \neq \emptyset$ and $A \backslash P \neq \emptyset$, we can find a component $i \in(P \backslash A)$ and a component $j \in(A \backslash P)$.

Since $|(A \cap P) \cup((P \backslash A) \backslash i)|=|P \backslash i|=k-1$, we have:

$$
\phi\left(\mathbf{0}^{A \backslash P}, \mathbf{1}^{A \cap P}, \mathbf{1}^{(P \backslash A) \backslash i}, \mathbf{0}\right)=0 .
$$

Since $|(A \backslash P) \cup(A \cap P) \cup((P \backslash A) \backslash i)| \geq|j \cup(P \backslash i)|=k$, we have:

$$
\phi\left(\mathbf{1}^{A \backslash P}, \mathbf{1}^{A \cap P}, \mathbf{1}^{(P \backslash A) \backslash i}, \mathbf{0}\right)=1 .
$$

If $\chi\left(\mathbf{0}^{A \backslash P}, \mathbf{1}^{A \cap P}\right)=1$, by Exercise 3.8 this implies that:

$$
0=\phi\left(\mathbf{0}^{A \backslash P}, \mathbf{1}^{A \cap P}, \mathbf{1}^{(P \backslash A) \backslash i}, \mathbf{0}\right)=\phi\left(\mathbf{1}^{A \backslash P}, \mathbf{1}^{A \cap P}, \mathbf{1}^{(P \backslash A) \backslash i}, \mathbf{0}\right)=1 .
$$

That is, we have arrived at a contradiction.

Exercise 3.10 (cont.)

Since both $\chi\left(\mathbf{0}^{A \backslash P}, \mathbf{1}^{A \cap P}\right)=0$ and $\chi\left(\mathbf{0}^{A \backslash P}, \mathbf{1}^{A \cap P}\right)=1$ lead to contradictions, we conclude that it is not possible to find any binary function $\chi\left(\boldsymbol{x}^{A}\right)$ such that (A, χ) is a module of (C, ϕ).

Hence, A cannot be a modular set of (C, ϕ).
Since this is true for all sets $A \subseteq C$ such that $1<|A|<n$, we conclude that a k-out-of- n system (C, ϕ) where $1<k<n$ has no non-trivial modules.

