STK3405 - Exercise 3.11-3.15

A. B. Huseby \& K. R. Dahl

Department of Mathematics
University of Oslo, Norway

Exercise 3.11

Consider the system shown in the figure below.

Figure: A system suited for modular decomposition.

Exercise 3.11 (cont.)

a) Find the structure function of the system by dividing the system into modules.

SOLUTION: We introduce the modules $\left(A_{1}, \chi_{1}\right)$ and $\left(A_{2}, \chi_{2}\right)$ where:

$$
\begin{aligned}
A_{1} & =\{1,2,3,4,5\} \\
\chi_{1}\left(\mathbf{x}^{A_{1}}\right) & =x_{3}\left(x_{1} \amalg x_{2}\right)\left(x_{4} \amalg x_{5}\right)+\left(1-x_{3}\right)\left(\left(x_{1} x_{4}\right) \amalg\left(x_{2} x_{5}\right)\right) \\
A_{2} & =\{6,7,8\} \\
\chi_{2}\left(\mathbf{x}^{A_{2}}\right) & =x_{6} \amalg x_{7} \amalg x_{8}
\end{aligned}
$$

Since the two modules are connected in series, we get that:

$$
\begin{aligned}
\phi(\mathbf{x}) & =\chi_{1}\left(\mathbf{x}^{A_{1}}\right) \cdot \chi_{2}\left(\mathbf{x}^{A_{2}}\right) \\
& =\left[x_{3}\left(x_{1} \amalg x_{2}\right)\left(x_{4} \amalg x_{5}\right)+\left(1-x_{3}\right)\left(\left(x_{1} x_{4}\right) \amalg\left(x_{2} x_{5}\right)\right)\right] \cdot\left[x_{6} \amalg x_{7} \amalg x_{8}\right]
\end{aligned}
$$

Exercise 3.11 (cont.)

b) Find the structure function of the system without dividing the system into modules.

SOLUTION: There are several ways of doing this. Here, we choose to pivot w.r.t. component 3 (i.e., the brigde):

$$
\phi(\mathbf{x})=x_{3} \phi\left(1_{3}, \mathbf{x}\right)+\left(1-x_{3}\right) \phi\left(0_{3}, \mathbf{x}\right)
$$

Case 1. Component 3 is functioning.
In this case the first system becomes a series of two parallel systems consisting of 1,2 and 4,5 . This is again in series with the parallel connection of $6,7,8$. Hence we get:

$$
\phi\left(1_{3}, \mathbf{x}\right)=\left(x_{1} \amalg x_{2}\right) \cdot\left(x_{4} \amalg x_{5}\right) \cdot\left(x_{6} \amalg x_{7} \amalg x_{8}\right)
$$

Exercise 3.11 (cont.)

Case 2. Component 3 is not functioning. In this case the first system becomes a parallel connection of the series connection of 1,4 and the series connection of 2,5 . This is again is series with the parallel connection of $6,7,8$. Hence we get:

$$
\phi\left(0_{3}, \mathbf{x}\right)=\left(\left(x_{1} x_{4}\right) \amalg\left(x_{2} x_{5}\right)\right) \cdot\left(x_{6} \amalg x_{7} \amalg x_{8}\right)
$$

Combining the two cases we get:

$$
\begin{aligned}
\phi(\mathbf{x}) & =x_{3}\left(x_{1} \amalg x_{2}\right) \cdot\left(x_{4} \amalg x_{5}\right) \cdot\left(x_{6} \amalg x_{7} \amalg x_{8}\right) \\
& +\left(1-x_{3}\right)\left(\left(x_{1} x_{4}\right) \amalg\left(x_{2} x_{5}\right)\right) \cdot\left(x_{6} \amalg x_{7} \amalg x_{8}\right) .
\end{aligned}
$$

Exercise 3.11 (cont.)

c) Compare the computational efforts in a) and b).

SOLUTION: In a) $\phi(\mathbf{x})$ is expressed as:

$$
\phi(\mathbf{x})=\left[x_{3}\left(x_{1} \amalg x_{2}\right)\left(x_{4} \amalg x_{5}\right)+\left(1-x_{3}\right)\left(\left(x_{1} x_{4}\right) \amalg\left(x_{2} x_{5}\right)\right)\right] \cdot\left[x_{6} \amalg x_{7} \amalg x_{8}\right]
$$

In b) $\phi(\mathbf{x})$ is expressed as:

$$
\begin{aligned}
\phi(\mathbf{x}) & =x_{3}\left(x_{1} \amalg x_{2}\right) \cdot\left(x_{4} \amalg x_{5}\right) \cdot\left(x_{6} \amalg x_{7} \amalg x_{8}\right) \\
& +\left(1-x_{3}\right)\left(\left(x_{1} x_{4}\right) \amalg\left(x_{2} x_{5}\right)\right) \cdot\left(x_{6} \amalg x_{7} \amalg x_{8}\right) .
\end{aligned}
$$

The formula obtained via the modular decomposition is easier to compute than the formula obtained with a direct approach since with the latter approach we need to compute ($x_{6} \amalg x_{7} \amalg x_{8}$) twice.

Exercise 3.12

Consider the system shown in the figure below.

Figure: A mixed bridge and parallel system.
a) What is the structure function of this system?

Exercise 3.12 (cont.)

SOLUTION: We see that this is a bridge structure in series with a parallel structure.

Hence, by modular decomposition the structure function becomes:

$$
\phi(\mathbf{x})=\chi_{1}\left(\mathbf{x}^{A_{1}}\right) \cdot \chi_{2}\left(\mathbf{x}^{A_{2}}\right)
$$

where:

$$
\begin{aligned}
A_{1} & =\{1,2,3,4,5\} \\
\chi_{1}\left(\mathbf{x}^{A_{1}}\right) & =x_{3}\left(x_{1} \amalg x_{2}\right)\left(x_{4} \amalg x_{5}\right)+\left(1-x_{3}\right)\left(\left(x_{1} x_{4}\right) \amalg\left(x_{2} x_{5}\right)\right) \\
A_{2} & =\{6,7\} \\
\chi_{2}\left(\mathbf{x}^{A_{2}}\right) & =x_{6} \amalg x_{7}
\end{aligned}
$$

Exercise 3.12 (cont.)

b) Assume that all of the component states are independent, and that $P\left(X_{i}=1\right)=p_{i}, i=1, \ldots, 7$. What is the reliability function of the system?

SOLUTION: Using the independence we get:

$$
\begin{aligned}
h(\mathbf{p})= & E[\phi(\mathbf{X})] \\
= & E\left[\left[X_{3}\left(X_{1} \amalg X_{2}\right)\left(X_{4} \amalg X_{5}\right)+\left(1-X_{3}\right)\left(\left(X_{1} X_{4}\right) \amalg\left(X_{2} X_{5}\right)\right)\right]\left[X_{6} \amalg X_{7}\right]\right] \\
= & {\left[E\left[X_{3}\right] \cdot E\left[X_{1} \amalg X_{2}\right] E\left[X_{4} \amalg X_{5}\right]+\left(1-E\left[X_{3}\right]\right) \cdot E\left[\left(X_{1} X_{4}\right) \amalg\left(X_{2} X_{5}\right)\right]\right] } \\
& \cdot E\left[X_{6} \amalg X_{7}\right] \\
= & {\left[p_{3} \cdot\left(p_{1} \amalg p_{2}\right)\left(p_{4} \amalg p_{5}\right)+\left(1-p_{3}\right) \cdot\left(\left(p_{1} p_{4}\right) \amalg\left(p_{2} p_{5}\right)\right)\right] \cdot\left(p_{6} \amalg p_{7}\right) }
\end{aligned}
$$

Exercise 3.13

NOTE: In this undirected network system component 7 is not an edge. Here component 7 should be interpreted as a node. This must be taken into account when we do a pivotal decomposition with respect to component 7 .

Exercise 3.13 (cont.)

a) What is the structure function of this system?

SOLUTION: We start out by decomposing the system into two modules $\left(A_{1}, \chi_{1}\right)$ and $\left(A_{2}, \chi_{2}\right)$ where $A_{1}=\{1,2,3,4\}$ and $A_{2}=\{5,6,7,8,9\}$.

Since the first module is a parallel connection of the series connection of 1,2 and the series connection 3,4 , we get:

$$
\chi_{1}\left(\mathbf{x}^{A_{1}}\right)=\left(x_{1} x_{2}\right) \amalg\left(x_{3} x_{4}\right)
$$

To find $\chi_{2}\left(\mathbf{x}^{A_{2}}\right)$, we do a pivotal decomposition w.r.t. component 7 :

$$
\chi_{2}\left(\mathbf{x}^{A_{2}}\right)=x_{7} \chi_{2}\left(1_{7}, \mathbf{x}^{A_{2}}\right)+\left(1-x_{7}\right) \chi_{2}\left(0_{7}, \mathbf{x}^{A_{2}}\right)
$$

Exercise 3.13 (cont.)

Case 1. Component 7 is functioning.
In this case components 8 and 9 become irrelevant and this module reduces to a parallel of components 5 and 6:

$$
\chi_{2}\left(1_{7}, \mathbf{x}^{A_{2}}\right)=x_{5} \amalg x_{6}
$$

Exercise 3.13 (cont.)

Case 2. Component 7 is not functioning.
In this case the module becomes a parallel connection of the series connection of 5 and 8 and the series connection of 6 and 9:

$$
\chi_{2}\left(0_{7}, \mathbf{x}^{A_{2}}\right)=\left(\left(x_{5} x_{8}\right) \amalg\left(x_{6} x_{9}\right)\right)
$$

Exercise 3.13 (cont.)

Combining the two cases we get:

$$
\begin{aligned}
\chi_{2}\left(\mathbf{x}^{A_{2}}\right) & =x_{7} \chi_{2}\left(1_{7}, \mathbf{x}^{A_{2}}\right)+\left(1-x_{7}\right) \chi_{2}\left(0_{7}, \mathbf{x}^{A_{2}}\right) \\
& =x_{7}\left(x_{5} \amalg x_{6}\right)+\left(1-x_{7}\right)\left(\left(x_{5} x_{8}\right) \amalg\left(x_{6} x_{9}\right)\right)
\end{aligned}
$$

Exercise 3.13 (cont.)

Finally, since the two modules are in series we get:

$$
\begin{aligned}
\phi(\mathbf{x}) & =\chi_{1}\left(\mathbf{x}^{A_{1}}\right) \cdot \chi_{2}\left(\mathbf{x}^{A_{2}}\right) \\
& =\left[\left(x_{1} x_{2}\right) \amalg\left(x_{3} x_{4}\right)\right] \cdot\left[x_{7}\left(x_{5} \amalg x_{6}\right)+\left(1-x_{7}\right)\left(\left(x_{5} x_{8}\right) \amalg\left(x_{6} x_{9}\right)\right)\right]
\end{aligned}
$$

b) Assume that all of the component states are independent. What is the reliability function of the system?

SOLUTION: By a similar kind of calculation as in Exercise 3.12 b), using the independence assumption repeatedly, we find that:

$$
\begin{aligned}
h(\mathbf{p}) & =E\left[\chi_{1}\left(\mathbf{x}^{A_{1}}\right)\right] \cdot E\left[\chi_{2}\left(\mathbf{x}^{A_{2}}\right)\right] \\
& =E\left[\left(X_{1} X_{2}\right) \amalg\left(X_{3} X_{4}\right)\right] \cdot E\left[X_{7}\left(X_{5} \amalg X_{6}\right)+\left(1-X_{7}\right)\left(\left(X_{5} X_{8}\right) \amalg\left(X_{6} X_{9}\right)\right)\right] \\
& =\left[\left(p_{1} p_{2}\right) \amalg\left(p_{3} p_{4}\right)\right] \cdot\left[p_{7}\left(p_{5} \amalg p_{6}\right)+\left(1-p_{7}\right)\left(\left(p_{5} p_{8}\right) \amalg\left(p_{6} p_{9}\right)\right)\right]
\end{aligned}
$$

Exercise 3.14

Consider a binary monotone system (C, ϕ) with minimal cut sets K_{1}, \ldots, K_{k}, where T_{i} denotes the lifetime of the i th component, $i=1, \ldots, n$, and where S denotes the lifetime of the system. Prove that:

$$
S=\min _{1 \leq j \leq k} \max _{i \in K_{j}} T_{i}
$$

SOLUTION: Let U_{j} denote the liftetime of the j th minimal cut parallel structure. Then U_{j} equals the lifetime of the longest living component in K_{j}. That is, we have:

$$
U_{j}=\max _{i \in K_{j}} T_{i}
$$

Moreover, the lifetime of the system equals the lifetime of the shortest living minimal cut parallel structure. That is, we have:

$$
S=\min _{1 \leq j \leq k} U_{j}=\min _{1 \leq j \leq k} \max _{i \in K_{j}} T_{i}
$$

Exercise 3.15

Consider a binary monotone system (C, ϕ) with minimal path sets P_{1}, \ldots, P_{p} and minimal cut sets K_{1}, \ldots, K_{k} and let f be a non-negative function defined over the positive integers $\{1, \ldots, n\}$. Prove that

$$
\min _{1 \leq j \leq k} \max _{i \in K_{j}} f(i)=\max _{1 \leq j \leq p} \min _{i \in P_{j}} f(i) .
$$

SOLUTION: Since f takes inputs in $C=\{1, \ldots, n\}$ and is non-negative, $f(i)$ can be interpreted as the lifetime of the i th component, i.e., \boldsymbol{T}_{i}. By Theorem 3.4.1 we know that:

$$
\max _{1 \leq j \leq p} \min _{i \in P_{j}} T_{i}=\min _{1 \leq j \leq k} \max _{i \in K_{j}} T_{i}
$$

Hence, by replacing T_{i} by $f(i)$ for all $i \in C$, we get:

$$
\max _{1 \leq j \leq p} \min _{i \in P_{j}} f(i)=\min _{1 \leq j \leq k} \max _{i \in K_{j}} f(i)
$$

which was what we wanted to prove.

