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Exercise 6.3: Prove the upper bound of Corollary 6.2.8.
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SOLUTION: The upper bound is

h(p) ≤
p∐

j=1

∏
i∈Pj

pi .

To prove this, note that for independent component state variables, the
reliability of the minimal path series structures is

P(ρj(XPj ) = 1) = E [
∏
i∈Pj

Xi ] =
∏
i∈Pj

pi .

Hence,

h(p) ≤
p∐

j=1

P(ρj(XPj ) = 1) =
p∐

j=1

∏
i∈Pj

pi

where the inequality follows from Corollary 6.2.6 (or alternatively, by
using the same proof technique as in this result).
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Exercise 6.4: Prove the upper bound in Corollary 6.2.6 by applying
the lower bound on the dual structure function φD.
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SOLUTION: We know that

max
1≤j≤p

∏
i∈Pj

pi ≤ h.

Applied to the dual structure function φD, we get:

max
1≤j≤pD

∏
i∈PD

j

pD
i ≤ hD.

From the definition of hD,pD
i and the fact that minimal path sets for φ

are minimal cut sets for φD, this is equivalent with

max
1≤j≤k

∏
i∈Kj

(1− pi) ≤ 1− h.
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Hence, using that max{·} = −min{−·} and the definition of the
coproduct,

h ≤ 1−max1≤j≤k
∏

i∈Kj
(1− pi)

= min1≤j≤k (1−
∏

i∈Kj
(1− pi))

= min1≤j≤k
∐

i∈Kj
pi

which is the upper bound of Corollary 6.2.6.
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Exercise 6.5: Prove the upper bound in Corollary 6.2.8 by applying
the lower bound on the dual structure function φD.
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SOLUTION: We know that

k∏
j=1

∐
i∈Kj

pi ≤ h(p).

Applied to the dual structure,

kD∏
j=1

∐
i∈K D

j

pD
i ≤ hD(pD).

By using the definition of hD,pD
i and that minimal path sets of φ are

minimal cut sets of φD, we find that this is equivalent to

p∏
j=1

∐
i∈Pj

(1− pi) ≤ 1− h(p).
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That is,

h(p) ≤ 1−
∏p

j=1
∐

i∈Pj
(1− pi)

= 1−
∏p

j=1(1−
∏

i∈Pj
(1− (1− pj)))

= 1−
∏p

j=1(1−
∏

i∈pj
pi)

=
∐p

j=1
∏

i∈Pj
pi

where we have used the definition of the coproduct and some algebra.
Note that this is the upper bound we wanted to prove, so this
concludes our solution.
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Exercise 6.6: Consider the network in Figure 1 consisting of
independent components with component reliabilities p.

1 2

3 4 5 6

7

S T

Figure: Illustration of the network for Exercise 6.6.
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a) What is the reliability h(p) for this system?
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SOLUTION: We factor w.r.t. component 7:

h(p) = ph(17,p) + (1− p)h(07,p).

If component 7 works (make a drawing!): In this case, components 4
and 5 are in parallel. Hence, we can parallel reduce these two
components to a new component 4’ where p4′ = p

∐
p.

The resulting structure is a bridge structure, so

h(17,p) = p4′(p
∐

p)(p
∐

p) + (1− p4′)(p2 ∐p2)
= . . .

= (p
∐

p)3 + (1− p)2(p2 ∐p2).
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If component 7 doesn’t work (make a drawing!): The resulting
system is an s-p system. In this case, components 3 and 4 are in
series, and so are 5 and 6. Hence, we can series reduce 3 and 4 to a
new component 3’ with reliability p3′ = p2. Similarly, we can series
reduce components 5 and 6 to a new component 5′ with reliability
p5′ = p2. Then, we can parallel reduce 3’ and 1 to a new component 1’
with reliability p1′ = p

∐
p2. Similarly, we can parallel reduce 5’ and 2

to a new component 2’ with reliability p2′ . Then,

h(07,p) = p1′p2′

= (p
∐

p2)2.
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So,

h(p) = p{(p
∐

p)3 + (1− p2)(p2
∐

p2)}+ (1− p)(p
∐

p2)2.
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b) For p ∈ [0,1], write a program to compute the reliability h(p). Plot
h(p).
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SOLUTION:
Please ask via e-mail if you have trouble with this. You should end up
with an S-shaped curve starting at (0,0) and ending in (1,1).
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c) In the same plot, illustrate the bounds from Corollary 6.2.6 and
6.2.8. Comment on the result.
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SOLUTION:
Recall from Corollary 6.2.6 that

max
1≤j≤p

∏
i∈Pj

pi ≤ h ≤ min
1≤j≤k

∐
i∈Kj

pi .

The minimal path and cuts sets are:

Minimal path sets: P1 = {1,2}, P2 = {2,3,4}, P3 = {1,5,6},
P4 = {3,4,5,6}, P5 = {3,6,7}, P6 = {2,3,5,7}, P7 = {1,4,6,7}.

Minimal cut sets: K1 = {1,3}, K2 = {2,6}, K3 = {1,4,7},
K4 = {2,3,4,5}, K5 = {2,5,7}, K6 = {1,4,5,6}.
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So the lower bound is

max
1≤j≤p

∏
i∈Pj

p = max{p2,p3,p4} = p2

since p ∈ [0,1].

Similarly, the upper bound is

min
1≤j≤k

∐
i∈Kj

p = min{1− (1−p)2,1− (1−p)3,1− (1−p)4} = 1− (1−p)2

since p ∈ [0,1].
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From Corollary 6.2.8,

k∏
j=1

∐
i∈Kj

pi ≤ h(p) ≤
p∐

j=1

∏
i∈Pj

pi .

Hence, the lower bound is

k∏
j=1

∐
i∈Kj

p = (1− (1− p)2)2(1− (1− p)3)2(1− (1− p)4)2.

And the upper bound is

p∐
j=1

∏
i∈Pj

p = 1− (1− p2)(1− p3)3(1− p4)3.
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If you plot all of these bounds, you see that the bounds from Corollary
6.2.8 look overall better than those from Corollary 6.2.6. However, they
are not always better: For small p’s, the lower bound from 6.2.6 is
better than that from 6.2.8. For large p’s, the upper bound from 6.2.6 is
better than that from 6.2.8.
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d) Is it possible to improve these bounds further?
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SOLUTION:
To improve the bounds further, one can take the maximum of the two
lower bounds and similarly a minimum of the two upper bounds. This
will still be lower and upper bounds, respectively, but these new bounds
will be better than those from Corollary 6.2.6 and Corollary 6.2.8.
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