STK3405 - Exercise 5.1-5.6

A. B. Huseby & K. R. Dahl

Department of Mathematics University of Oslo, Norway **Exercise 5.1:** Let (C, ϕ) be a k-out-of-n system. Prove that all the components of this system have the same Birnbaum measure for structural importance.

SOLUTION: Let $i \in C$ be a component in the system. Then,

$$\begin{array}{rcl} J_{B}^{(i)} & = & \frac{1}{2^{n-1}} \sum_{(\cdot_i, \mathbf{x})} (\phi(\mathbf{1}_i, \mathbf{x}) - \phi(\mathbf{0}_i, \mathbf{x})) \\ \phi(\mathbf{1}_i, \mathbf{x}) - \phi(\mathbf{0}_i, \mathbf{x}) & = & \left\{ \begin{array}{ll} \mathbf{1} & \text{if } k-1 \text{ other components function} \\ \mathbf{0} & \text{otherwise.} \end{array} \right. \end{array}$$

So we sum over all $\mathbf{x} \in \mathbb{R}^{n-1}$ such that k-1 components function.

The number of ways to choose e.g., k - 1 out of n - 1 is

$$\frac{(n-1)!}{(k-1)!(n-1-k+1)!} = \frac{(n-1)!}{(k-1)!(n-k)!}$$

So,

$$J_B^{(i)} = \frac{1}{2^{n-1}} \frac{(n-1)!}{(k-1)!(n-k)!}$$
 for all $i \in C$

Note that there is no *i*-dependency, so all components have the same Birnbaum measure for structural importance.

Exercise 5.2: Compute $J_B^{(i)}$ for the components of the bridge structure and compare their structural importance.

SOLUTION:

Structural importance of component 3: Critical path vectors for component 3;

(1,0,1,0,1),(0,1,1,1,0); 2 critical path vectors.

Hence,

$$J_B^{(3)}=\frac{2}{2^{5-1}}=\frac{1}{8}.$$

Structural importance of remaining components: For example component 1: Critical path vectors for component 1:

$$(1,1,0,1,0), (1,0,1,1,0), (1,0,0,1,1)$$

 $(1,0,1,1,1), (1,0,1,0,1), (1,0,0,1,0);$ 6 critical path vectors.

Similar for components 2, 4 and 5 as well. Hence,

$$J_B^{(i)} = \frac{6}{2^{5-1}} = \frac{3}{8}$$
 for $i = 1, 2, 4, 5$.

So components 1, 2, 4, 5 have greater structural importance in the bridge structure than component 3 (the bridge).

Exercise 5.3: Let the *i*'th component be in series with the rest of a monotone structure ϕ , while the *j*'th component is not. Prove that

$$J_B^{(i)} > J_B^{(j)}.$$

SOLUTION: Since *i* is in series, all vectors must be critical path vectors for component *i*. This property only holds for components in series. So since *j* is not in series, there must exist some vectors which are not critical path vectors for component *j*. Then, from the definition of the Birnbaum measure of structural importance,

$$J_B^{(i)} > J_B^{(j)}$$
.

Exercise 5.4: Compute $I_B^{(i)}$ for the components of the bridge structure and compare their reliability importance.

SOLUTION: We know

$$h(\mathbf{p}) = p_3(p_1 \coprod p_2)(p_4 \coprod p_5) + (1 - p_3)((p_1p_4) \coprod (p_2p_5))$$

= $p_3(p_1 + p_2 - p_1p_2)(p_4 + p_5 - p_4p_5)$
+ $(1 - p_3)(p_1p_4 + p_2p_5 - p_1p_2p_4p_5).$

Hence,

$$I_B^{(1)} = \frac{\partial h(\mathbf{p})}{\partial p_1} = p_3(1-p_2)(p_4+p_5-p_4p_5) + (1-p_3)(p_4-p_2p_4p_5).$$

$$I_B^{(2)} = \frac{\partial h(\mathbf{p})}{\partial p_2} = p_3(1-p_1)(p_4+p_5-p_4p_5) + (1-p_3)(p_4-p_1p_4p_5).$$

$$I_B^{(3)} = \frac{\partial h(\mathbf{p})}{\partial p_3} = (p_1 + p_2 - p_1 p_2)(p_4 + p_5 - p_4 p_5) - (p_1 p_4 + p_2 p_5 - p_1 p_2 p_4 p_5).$$

$$I_B^{(4)} = \frac{\partial h(\mathbf{p})}{\partial p_4} = p_3(p_1 + p_2 - p_1p_2)(1 - p_5) + (1 - p_3)(p_1 - p_1p_2p_5).$$

$$I_B^{(5)} = \frac{\partial h(\mathbf{p})}{\partial p_5} = p_3(p_1 + p_2 - p_1p_2)(1 - p_4) + (1 - p_3)(p_1 - p_1p_2p_4).$$

If, say, all components have the same reliability, so $p_i = p$, i = 1, ..., 5, then, for i = 1, 2, 4, 5:

$$I_B^{(i)} = p(2p - p^2)(1 - p) + (1 - p)(p - p^3)$$

= $p(1 - p)(1 + 2p - 2p^2)$

and

$$I_B^{(3)} = (2p - p^2)(2p - p^2) - (2p^2 - p^4)$$

= ...
= $2p^2(1 - p + p^2)$

When are these equal? Clearly if p = 0. If $p \neq 0$:

$$p(1-p)(1+2p-2p^2) = 2p^2(1-p+p^2)$$

 $-2p^2-p+1 = 0$

Hence, p = -1 or p = 0.5. Since p is a reliability, p = -1 is not possible. So, we are left with p = 0.5.

Inserting, say
$$p = 0.1$$
, we see that for $p \in [0, 0.5]$, $I_B^{(3)} \le I_B^{(i)}$, $i = 1, 2, 4, 5$. For $p \in (0.5, 1]$, $I_B^{(3)} > I_B^{(i)}$, $i = 1, 2, 4, 5$.

Therefore, the reliability importance of component 3 is smaller for not-so-reliable components, but bigger for more reliable components (w.r.t. the Birnbaum measure).

Exercise 5.5: Assume that the component lifetimes have so-called *proportional hazards*, that is:

$$\bar{F}_i(t) = \exp(-\lambda_i R(t)), \quad \lambda_i > 0, t \ge 0, \quad i = 1, \dots, n,$$

where R is a strictly increasing, differentiable function such that R(0) = 0, and $\lim_{t \to \infty} R(t) = \infty$. Prove that for a series structure, we have:

$$I_{B-P}^{(i)} = I_N^{(i)} = \frac{\lambda_i}{\sum_{j=1}^n \lambda_j}.$$

SOLUTION: Recall that $\bar{F}_i := 1 - F_i$. Note that from the definition of $\bar{F}_i(t)$:

$$f_i(t) = -\frac{d\bar{F}_i(t)}{dt} = \lambda_i R'(t)\bar{F}_i(t)$$

and $I_B^{(i)}(t) = \prod_{j \neq i} \bar{F}_j(t) = \prod_{j \neq i} p_i(t)$ since we are considering a series structure.

Then,

$$I_{B-P}^{(i)} = \int_{0}^{\infty} I_{B}^{(i)}(t) f_{i}(t) dt$$

$$= \int_{0}^{\infty} \prod_{j=1}^{n} \bar{F}_{j}(t) R'(t) \lambda_{i} dt$$

$$= \lambda_{i} \int_{0}^{\infty} e^{-\sum_{j=1}^{n} \lambda_{j} R(t)} R'(t) \lambda_{i} dt$$

$$= \lambda_{i} \left[-\frac{1}{\sum_{j=1}^{n} \lambda_{j}} e^{-\sum_{j=1}^{n} \lambda_{j} R(t)} \right]_{t=0}^{\infty}$$

$$= \frac{\lambda_{i}}{\sum_{j=1}^{n} \lambda_{j}}$$

where we have used that

$$ar{F}_i(0)=1, \text{ so } R(0)=0, \ ar{F}_i(\infty)=0, \text{ so } R(\infty)=\infty.$$

For the Natvig measure,

$$E[Z_i] = \int_0^\infty \bar{F}_i(t)(-\ln \bar{F}_i(t))I_B^{(i)}(t)dt$$

=
$$\int_0^\infty \prod_{j=1}^n \bar{F}_j(t)\lambda_i R(t)dt$$

So,

$$I_{N}^{(i)} = \frac{E[Z_{i}]}{\sum_{k=1}^{n} E[Z_{k}]}$$

$$= \frac{\lambda_{i} \int_{0}^{\infty} \prod_{j=1}^{n} \bar{F}_{j}(t) R(t) dt}{\sum_{k=1}^{n} \lambda_{k} \int_{0}^{\infty} \prod_{j=1}^{n} \bar{F}_{j}(t) R(t) dt}$$

$$= \frac{\lambda_{i}}{\sum_{k=1}^{n} \lambda_{k}}$$

So the Barlow Prochan and Natvig measures are the same in this case. Both rank the reliability importance of the components based on the size of the error rates λ_i . That is, the larger the error rate, the more important the component. This corresponds to the intuition that the poorest component is the most important in the series system.

Exercise 5.6: Assume that the *i*'th component is irrelevant for the system ϕ . Then, what is $I_B^{(i)}(t)$, $I_{B-P}^{(i)}$ and $I_N^{(i)}$?

SOLUTION: By pivot decomposition,

$$I_{B}^{(i)}(t) = \frac{dh(\mathbf{p}(t))}{dp_{i}(t)}$$

$$= h(\mathbf{1}_{i}, \mathbf{p}(t)) - h(\mathbf{0}_{i}, \mathbf{p}(t))$$

$$= E[\phi(\mathbf{1}_{i}, \mathbf{X}(t)) - \phi(\mathbf{0}_{i}, \mathbf{X}(t))]$$

$$= \sum_{(\cdot_{i}, \mathbf{x})} (\phi(\mathbf{1}_{i}, \mathbf{x}(t)) - \phi(\mathbf{0}_{i}, \mathbf{x}(t))) P(\mathbf{X}(t) = \mathbf{x})$$

$$= 0$$

since the i'th component is irrelevant.

Since,

$$\begin{array}{lcl} I_{B-P}^{(i)} & = & \int_0^\infty f_i(t) I_B^{(i)}(t) dt \\ E[Z_i] & = & \int_0^\infty \bar{F}_i(t) (-\ln \bar{F}_i(t)) I_B^{(i)}(t) dt \\ I_N^{(i)} & = & \frac{E[Z_i]}{\sum_{j=1}^n E[Z_j]}, \end{array}$$

it follows that

$$I_{B-P}^{(i)} = I_N^{(i)} = 0.$$

So according to these measures, the reliability importance of an irrelevant component is 0 (which is intuitive).