# STK3405 - Case study: Transmission of electronic pulses 

A. B. Huseby \& K. R. Dahl

Department of Mathematics
University of Oslo, Norway

## Section 9.2: Case study - Reliability analysis of a network for transmission of electronic pulses

We will perform a reliability analysis of a system for transmission of electronic pulses.

We consider a multistate system: The system is not just functioning or failed, but the set of possible system states is a set of non-negative integers.

## The structure function

Let:

$$
X_{i}(t)=\text { The state of component } i \text { at time } t
$$

and assume that the stochastic processes $\left\{X_{i}(t), t \geq 0\right\}_{i=1}^{n}$ are independent. The structure function is given by:

$$
\phi(t)=\phi(\mathbf{X}(t))=\text { The state of the system at time } t .
$$

We assume that $\phi(t) \in\left\{\phi_{1}, \ldots, \phi_{k}\right\}$.
In principle, one can find the distribution of the state of a multistate system by enumerating all possible component states:

$$
\begin{equation*}
P\left(\phi(t)=\phi_{j}\right)=\sum_{\mathbf{x}} I\left(\phi(\mathbf{x})=\phi_{j}\right) \cdot P(\mathbf{X}(t)=\mathbf{x}), j=1, \ldots, k \tag{1}
\end{equation*}
$$

where the indicator function $I\left(\phi(\mathbf{x})=\phi_{j}\right)$ is 1 if $\phi(\mathbf{x})=\phi_{j}$ and 0 otherwise.

## Reduce the number of terms

However, we typically need to reduce the number of terms because the calculations become too time-consuming.

Assume that there exists variables $Y_{1}=Y_{1}(\mathbf{X}), \ldots, Y_{m}=Y_{m}(\mathbf{X})$ such that $\phi(t)$ can be written:

$$
\phi(t)=\phi(\mathbf{X}(t))=\phi(\mathbf{Y}(\mathbf{X}(t)))
$$

where $\mathbf{Y}(\mathbf{X}(t))=\left(Y_{1}(\mathbf{X}(t)), \ldots, Y_{m}(\mathbf{X}(t))\right)$.
Then, the probability distribution of $\phi$ can be found from the formula:

$$
\begin{equation*}
P\left(\phi(t)=\phi_{j}\right)=\sum_{\mathbf{y}} I\left(\phi(\mathbf{y})=\phi_{j}\right) P(\mathbf{Y}(\mathbf{X}(t))=\mathbf{y}), j=1, \ldots, k \tag{2}
\end{equation*}
$$

We have to compute $P(\mathbf{Y}(\mathbf{X}(t))=\mathbf{y})$ for all $\mathbf{y}$. Hence, if the number of possible values of $\mathbf{Y}$ is large, little is gained by using (2) instead of (1).

In some cases, we can achieve a large reduction in the computational load by a clever choice of $Y_{1}, \ldots, Y_{m}$.

## The network for electronic pulses

In particular, this turns out to be the case for the following network:


## The network

The purpose of the system shown in Figure 1 is to ensure communication between a control room and 5 production units.

In addition to these components, the system consists of a control room, 5 production units and two connection units called $A$ and $B$.

Do not consider potential errors in the control room, the production units and the connection units. Hence, the system consists of $n=52$ components.

The number of production units which can be controlled by a connection unit is bounded by the number of functioning input wires to the respective connection unit (if all 6 input wires to $A$ are functioning, then all 5 production units can be controlled via $A$ ).

## Identical subsystems

Assume that all of the components are stochastically independent.
Also assume that all of the 12 input wires to the connection units $A$ and $B$ have the same lifetime distributions and that for any wire between the control room and a connection unit we have:
$P($ The wire is functioning at time $t)=w(t)$.
Note: System consist of 5 identical subsystems.
Each of these subsystems consists of 8 components. Assume that all of these subsystems have the same stochastic properties (same components have same lifetime distributions).

## The state of the system

Define the state of the system, $\phi$, as:
$\phi(t)=$ The number of production units which can be controlled from the control room at time $t$.

The set of possible values for $\phi$ is $\{0,1, \ldots, 5\}$.
The components are assumed to be either functioning or failed (the component states are binary).

The system in Figure 1 is a multi-state system of binary components.
The number of terms in the sum (1) (state enumeration) for computing the distribution of $\phi$ is $2^{52}=4.504 \cdot 10^{15}$. Too time-consuming to compute!

## Introduce auxiliary variables

By introducing appropriate variables, we can obtain a significant reduction of terms in (2) compared to (1).

Introduce:
$Y_{1}(t)=$ The number of intact input wires to connection unit $A$ at time $t$
$Y_{2}(t)=$ The number of intact input wires to connection unit $B$ at time $t$
$Y_{3}(t)=$ The number of production units connected to $A$ and $B$ at time $t$
$Y_{4}(t)=$ The number of production units only connected to $A$ at time $t$
$Y_{5}(t)=$ The number of production units only connected to $B$ at time $t$.

## System state expressed via the $Y \mathrm{~s}$

The state of the system can now be expressed as:

$$
\begin{equation*}
\phi(t)=W_{1}(t)+W_{2}(t)+W_{3}(t) \tag{3}
\end{equation*}
$$

where:

$$
\begin{align*}
& W_{1}(t)=\min \left\{Y_{1}(t), Y_{4}(t)\right\}, \quad W_{2}(t)=\min \left\{Y_{2}(t), Y_{5}(t)\right\},  \tag{4}\\
& W_{3}(t)=\min \left\{\left(Y_{1}(t)-W_{1}(t)\right)+\left(Y_{2}(t)-W_{2}(t)\right), Y_{3}(t)\right\} .
\end{align*}
$$

To derive equation (3): Distribute the $Y_{1}(t)$ functioning input wires to $A$ and the $Y_{2}(t)$ functioning input wires to $B$ between the 5 production units such that as many production units as possible are running.

## Derivation of equation (3)

To do so, distribute input wires to the production units which are only connected to one connection unit: $Y_{4}(t)$ production units only connected to $A$ and the $Y_{5}(t)$ production units only connected to $B$. Hence, $W_{1}(t)$ production units are connected via $A$ and $W_{2}(t)$ connection units via $B$.

Now, there are $Y_{1}(t)-W_{1}(t)$ input wires available via $A$ and $Y_{2}(t)-W_{2}(t)$ input wires available via $B$. Use these to establish connection to as many as possible of the $Y_{3}(t)$ remaining production units. The number of production units which can be reached in this way is then $W_{3}(t)$.

Note that both $Y_{1}(t)-W_{1}(t)$ an $Y_{2}(t)-W_{2}(t)$ may be 0 .
Conclusion: $W_{1}(t)+W_{2}(t)+W_{3}(t)$ is the number of production units which can be controlled from the control room. Thus, equation (3) holds.

We need to find the probability distributions of $Y_{1}(t), \ldots, Y_{5}(t)$.
$Y_{1}(t)$ is a function of the state variables of the wires into $A$.
$Y_{2}(t)$ is a function of the state variables of the wires into unit $B$.
The vector $\left(Y_{3}(t), Y_{4}(t), Y_{5}(t)\right)$ is a function of state variables of the other 40 components.

By assumption, the components are independent, so $Y_{1}, Y_{2}$ and the vector $\left(Y_{3}(t), Y_{4}(t), Y_{5}(t)\right)$ are independent.

Note: $Y_{3}(t), Y_{4}(t)$ and $Y_{5}(t)$ are dependent $\left(0 \leq Y_{3}(t)+Y_{4}(t)+Y_{5}(t) \leq 5\right.$ for all $\left.t \geq 0\right)$.

## The distribution of $Y_{1}(t)$ and $Y_{2}(t)$

Both $Y_{1}(t)$ and $Y_{2}(t)$ are sums of 6 independent, identically distributed binary random variables.

Hence, from standard probability theory, $Y_{1}(t)$ and $Y_{2}(t)$ are binomially distributed:

$$
\begin{equation*}
P\left(Y_{i}(t)=y\right)=\binom{6}{y}[w(t)]^{y}[1-w(t)]^{6-y}, \quad y=0,1, \ldots, 6, \quad i=1,2, \tag{5}
\end{equation*}
$$

## The distribution of $\left(Y_{3}(t), Y_{4}(t), Y_{5}(t)\right)$

Consider the probability distribution of $\left(Y_{3}(t), Y_{4}(t), Y_{5}(t)\right)$ :
Depends on the 5 subsystems for communication between the connection units and production units.

Each of these subsystems are in on of four states: $S_{A B}, S_{A}, S_{B}$ and $S_{\emptyset}$, where:
$S_{A B}=$ The prod. unit can communicate with both connection units $S_{A}=$ The prod. unit can only communicate with connection unit $A$ $S_{B}=$ The prod. unit can only communicate with connection unit $B$ $S_{\emptyset}=$ The prod. unit cannot communicate with any connection unit.

Since, per assumption, the subsystems are independent with the same stochastic properties, the probability of being in a state $S_{A B}, S_{A}, S_{B}$ or $S_{\emptyset}$ at time $t$ is the same for all the subsystems.

At time $t, Y_{3}(t), Y_{4}(t)$ and $Y_{5}(t)$ are the number of production units in states $S_{A B}, S_{A}$ and $S_{B}$ respectively.

From standard probability theory: For $t \geq 0$ the vector $\left(Y_{3}(t), Y_{4}(t), Y_{5}(t)\right)$ is multinomially distributed:

$$
\begin{equation*}
P\left(Y_{3}(t)=y_{3} \cap Y_{4}(t)=y_{4} \cap Y_{5}(t)=y_{5}\right)=\frac{5!}{y_{3}!y_{4}!y_{5}!\left(5-y_{3}-y_{4}-y_{5}\right)!} \tag{6}
\end{equation*}
$$

$$
\cdot\left[p_{3}(t)\right]^{y_{3}}\left[p_{4}(t)\right]^{y_{4}}\left[p_{5}(t)\right]^{y_{5}}\left[1-p_{3}(t)-p_{4}(t)-p_{5}(t)\right]^{5-y_{3}-y_{4}-y_{5}}
$$

where $y_{3}=0,1, \ldots, 5, y_{4}=0,1, \ldots, 5-y_{3}, y_{5}=0,1, \ldots, 5-y_{3}-y_{4}$ and $p_{3}(t), p_{4}(t), p_{5}(t)$ are the probabilities of a subsystem being in states $S_{A B}, S_{A}$ and $S_{B}$ respectively.

To compute the distribution of $\phi$, all that remains is to find $p_{3}(t), p_{4}(t)$ and $p_{5}(t)$.

To do so, we study the structure of the subsystems:


Figure: Subsystem of a network for transmission of electronic pulses.

In the figure, we number the subsystem components from 1-8.

Denote the corresponding component state variables by $X_{1}, \ldots, X_{8}$, and their respective reliabilities by $q_{1}, \ldots, q_{8}$ (omit the time $t$ to simplify notation).

## Introduce the events:

$E_{A}=\{$ The production unit communicates with connection unit $A\}$
$E_{B}=\{$ The production unit communicates with connection unit $B\}$.
Then,

$$
\begin{align*}
& p_{3}(t)=P\left(E_{A} \cap E_{B}\right),  \tag{7}\\
& p_{4}(t)=P\left(E_{A}\right)-P\left(E_{A} \cap E_{B}\right), \\
& p_{5}(t)=P\left(E_{B}\right)-P\left(E_{A} \cap E_{B}\right) .
\end{align*}
$$

## Computing $P\left(E_{A} \cap E_{B}\right)$

Condition w.r.t. the two bridges in the structure, i.e., components 3 and 6:

$$
\begin{align*}
P\left(E_{A} \cap E_{B}\right) & =P\left(E_{A} \cap E_{B} \mid X_{3}=1, X_{6}=1\right) q_{3} q_{6}  \tag{8}\\
& +P\left(E_{A} \cap E_{B} \mid X_{3}=1, x_{6}=0\right) q_{3}\left(1-q_{6}\right) \\
& +P\left(E_{A} \cap E_{B} \mid X_{3}=0, X_{6}=1\right)\left(1-q_{3}\right) q_{6} \\
& +P\left(E_{A} \cap E_{B} \mid X_{3}=0, x_{6}=0\right)\left(1-q_{3}\right)\left(1-q_{6}\right) .
\end{align*}
$$

The four conditional probabilities in (8) can be computed by seriesand parallel reductions (this is left as an exercise). They are given by:

$$
\begin{aligned}
& P\left(E_{A} \cap E_{B} \mid X_{3}=1, X_{6}=1\right)=q_{1} q_{2}\left[q_{4}+q_{5}-q_{4} q_{5}\right]\left[q_{7}+q_{8}-q_{7} q_{8}\right] \\
& P\left(E_{A} \cap E_{B} \mid X_{3}=1, X_{6}=0\right)=q_{1} q_{2}\left[q_{4} q_{7}+q_{5} q_{8}-q_{4} q_{5} q_{7} q_{8}\right] \\
& P\left(E_{A} \cap E_{B} \mid X_{3}=0, X_{6}=1\right)=q_{1} q_{2} q_{4} q_{5}\left[q_{7}+q_{8}-q_{7} q_{8}\right], \\
& P\left(E_{A} \cap E_{B} \mid X_{3}=0, X_{6}=0\right)=q_{1} q_{2} q_{4} q_{5} q_{7} q_{8}
\end{aligned}
$$

## Computing $P\left(E_{A}\right)$ and $P\left(E_{B}\right)$

To compute $P\left(E_{A}\right)$, component 2 is irrelevant (see the subsystem figure).

By removing this component, we see that components 3 and 5 are in series.

After a series reduction, we get a bridge structure connected in series with component 1 . Hence, $P\left(E_{A}\right)$ is given by:

$$
\begin{align*}
P\left(E_{A}\right) & =q_{1} q_{6}\left[q_{4}+q_{3} q_{5}-q_{3} q_{4} q_{5}\right]\left[q_{7}+q_{8}-q_{7} q_{8}\right]  \tag{9}\\
& +q_{1}\left(1-q_{6}\right)\left[q_{4} q_{7}+q_{3} q_{5} q_{8}-q_{3} q_{4} q_{5} q_{7} q_{8}\right] .
\end{align*}
$$

Similarly, $P\left(E_{B}\right)$ is given by:

$$
\begin{align*}
P\left(E_{B}\right) & =q_{2} q_{6}\left[q_{5}+q_{3} q_{4}-q_{3} q_{4} q_{5}\right]\left[q_{7}+q_{8}-q_{7} q_{8}\right]  \tag{10}\\
& +q_{2}\left(1-q_{6}\right)\left[q_{5} q_{8}+q_{3} q_{4} q_{7}-q_{3} q_{4} q_{5} q_{7} q_{8}\right] .
\end{align*}
$$

## Conclusion

By inserting the expressions (8), (9) and (10) into (7), we have all the probabilities we need in order to calculate the distribution of the system state $\phi$ using equation (2).

## What is gained?

Had two alternatives:

1. State enumeration: Counting all possible states of the 52 binary state variables of the components in Figure 1.
2. Reduction by introducing auxiliary varibles: Have to enumerate the possible states of just the five multinary variables $Y_{1}, \ldots Y_{5}$.
To do this: Observe that $Y_{1}$ and $Y_{2}$ each attain 7 values in the set $\{0,1, \ldots 6\}$.
The vector $\left(Y_{3}, Y_{4}, Y_{5}\right)$ can attain any value in the set $\left\{\left(Y_{3}, Y_{4}, Y_{5}\right): 0 \leq Y_{3}+Y_{4}+Y_{5} \leq 5,0 \leq Y_{3}, Y_{4}, Y_{5}\right\}$.

## Counting the possible states of $Y_{1}, \ldots Y_{5}$

To count the number of values in this set, consider 6 different cases corresponding to the possible values of $Y_{3}$, and count the number of possible values for each case.

Note that if $Y_{3}=y$, then $Y_{4}+Y_{5} \leq 5-y, y=0,1, \ldots, 5$. Hence:
Case 0. $\quad Y_{3}=0, \quad Y_{4}+Y_{5} \leq 5-0=5: \quad 21$ possible values,
Case 1. $\quad Y_{3}=1, \quad Y_{4}+Y_{5} \leq 5-1=4$ : 15 possible values,
Case 2. $\quad Y_{3}=2, \quad Y_{4}+Y_{5} \leq 5-2=3$ : $\quad 10$ possible values,
Case 3. $\quad Y_{3}=3, \quad Y_{4}+Y_{5} \leq 5-3=2: \quad 6$ possible values,
Case 4. $\quad Y_{3}=4, \quad Y_{4}+Y_{5} \leq 5-4=1: \quad 3$ possible values,
Case 5. $\quad Y_{3}=5, \quad Y_{4}+Y_{5} \leq 5-5=0: \quad 1$ possible value.

## What is gained? 2744 vs. $4.504 \cdot 10^{15}$

Adding this, we see that there are 56 values in total.
Hence, the sum in (2) for computing $P\left(\phi(t)=\phi_{j}\right)$ contains
$7 \cdot 7 \cdot 56=2744$ terms (since there are 7 possible values for $Y_{1}$ and
$Y_{2}$, as well as 56 possible values for ( $\left.Y_{3}, Y_{4}, Y_{5}\right)$ ).
Easy to compute!
Alternative: The $4.504 \cdot 10^{15}$ terms of the original method by simply enumerating the states.

To conclude: By introducing the new variables $Y_{1}, \ldots, Y_{5}$, the computational load has been significantly reduced.

When to use this approach? Systems where the structure consists of many identical components and where there is a strong symmetry.

Difficulty with the method: In practice, we may not find efficient ways to introduce new variables.

