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Section 9.2: Case study - Reliability analysis of a
network for transmission of electronic pulses

We will perform a reliability analysis of a system for transmission of
electronic pulses.

We consider a multistate system: The system is not just functioning or
failed, but the set of possible system states is a set of non-negative
integers.
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The structure function

Let:
Xi(t) = The state of component i at time t ,

and assume that the stochastic processes {Xi(t), t ≥ 0}ni=1 are
independent. The structure function is given by:

φ(t) = φ(X(t)) = The state of the system at time t .

We assume that φ(t) ∈ {φ1, . . . , φk}.

In principle, one can find the distribution of the state of a multistate
system by enumerating all possible component states:

P(φ(t) = φj) =
∑

x

I(φ(x) = φj) · P(X(t) = x), j = 1, . . . , k . (1)

where the indicator function I(φ(x) = φj) is 1 if φ(x) = φj and 0
otherwise.
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Reduce the number of terms

However, we typically need to reduce the number of terms because
the calculations become too time-consuming.

Assume that there exists variables Y1 = Y1(X), . . . ,Ym = Ym(X) such
that φ(t) can be written:

φ(t) = φ(X(t)) = φ(Y(X(t))),

where Y(X(t)) = (Y1(X(t)), . . . ,Ym(X(t))).

Then, the probability distribution of φ can be found from the formula:

P(φ(t) = φj) =
∑

y

I(φ(y) = φj)P(Y(X(t)) = y), j = 1, . . . , k . (2)
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We have to compute P(Y(X(t)) = y) for all y. Hence, if the number of
possible values of Y is large, little is gained by using (2) instead of (1).

In some cases, we can achieve a large reduction in the computational
load by a clever choice of Y1, . . . ,Ym.
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The network for electronic pulses

In particular, this turns out to be the case for the following network:

A

Control room

B

Prod. unit 2

Prod. unit 1

Prod. unit 3

Prod. unit 4

Prod. unit 5

Figure: A network for transmission of electronic pulses.
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The network

The purpose of the system shown in Figure 1 is to ensure
communication between a control room and 5 production units.

In addition to these components, the system consists of a control
room, 5 production units and two connection units called A and B.

Do not consider potential errors in the control room, the production
units and the connection units. Hence, the system consists of n = 52
components.

The number of production units which can be controlled by a
connection unit is bounded by the number of functioning input wires to
the respective connection unit (if all 6 input wires to A are functioning,
then all 5 production units can be controlled via A).
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Identical subsystems

Assume that all of the components are stochastically independent.

Also assume that all of the 12 input wires to the connection units A and
B have the same lifetime distributions and that for any wire between
the control room and a connection unit we have:

P(The wire is functioning at time t) = w(t).

Note: System consist of 5 identical subsystems.

Each of these subsystems consists of 8 components. Assume that all
of these subsystems have the same stochastic properties (same
components have same lifetime distributions).
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The state of the system

Define the state of the system, φ, as:

φ(t) = The number of production units which can be controlled from
the control room at time t .

The set of possible values for φ is {0,1, . . . ,5}.

The components are assumed to be either functioning or failed (the
component states are binary).

The system in Figure 1 is a multi-state system of binary components.

The number of terms in the sum (1) (state enumeration) for computing
the distribution of φ is 252 = 4.504 · 1015. Too time-consuming to
compute!
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Introduce auxiliary variables

By introducing appropriate variables, we can obtain a significant
reduction of terms in (2) compared to (1).

Introduce:

Y1(t) = The number of intact input wires to connection unit A at time t
Y2(t) = The number of intact input wires to connection unit B at time t
Y3(t) = The number of production units connected to A and B at time t
Y4(t) = The number of production units only connected to A at time t
Y5(t) = The number of production units only connected to B at time t .
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System state expressed via the Ys

The state of the system can now be expressed as:

φ(t) = W1(t) + W2(t) + W3(t), (3)

where:

W1(t) = min{Y1(t),Y4(t)}, W2(t) = min{Y2(t),Y5(t)}, (4)

W3(t) = min{(Y1(t)−W1(t)) + (Y2(t)−W2(t)),Y3(t)}.

To derive equation (3): Distribute the Y1(t) functioning input wires to A
and the Y2(t) functioning input wires to B between the 5 production
units such that as many production units as possible are running.
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Derivation of equation (3)

To do so, distribute input wires to the production units which are only
connected to one connection unit: Y4(t) production units only
connected to A and the Y5(t) production units only connected to B.
Hence, W1(t) production units are connected via A and W2(t)
connection units via B.

Now, there are Y1(t)−W1(t) input wires available via A and
Y2(t)−W2(t) input wires available via B. Use these to establish
connection to as many as possible of the Y3(t) remaining production
units. The number of production units which can be reached in this
way is then W3(t).

Note that both Y1(t)−W1(t) an Y2(t)−W2(t) may be 0.

Conclusion: W1(t) + W2(t) + W3(t) is the number of production units
which can be controlled from the control room. Thus, equation (3)
holds.
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We need to find the probability distributions of Y1(t), . . . ,Y5(t).

Y1(t) is a function of the state variables of the wires into A.

Y2(t) is a function of the state variables of the wires into unit B.

The vector (Y3(t),Y4(t),Y5(t)) is a function of state variables of the
other 40 components.

By assumption, the components are independent, so Y1,Y2 and the
vector (Y3(t),Y4(t),Y5(t)) are independent.

Note: Y3(t), Y4(t) and Y5(t) are dependent
(0 ≤ Y3(t) + Y4(t) + Y5(t) ≤ 5 for all t ≥ 0).
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The distribution of Y1(t) and Y2(t)

Both Y1(t) and Y2(t) are sums of 6 independent, identically distributed
binary random variables.

Hence, from standard probability theory, Y1(t) and Y2(t) are binomially
distributed:

P(Yi(t) = y) =
(

6
y

)
[w(t)]y [1− w(t)]6−y , y = 0,1, . . . ,6, i = 1,2,

(5)
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The distribution of (Y3(t),Y4(t),Y5(t))

Consider the probability distribution of (Y3(t),Y4(t),Y5(t)):

Depends on the 5 subsystems for communication between the
connection units and production units.

Each of these subsystems are in on of four states: SAB, SA, SB and S∅,
where:

SAB = The prod. unit can communicate with both connection units
SA = The prod. unit can only communicate with connection unit A
SB = The prod. unit can only communicate with connection unit B
S∅ = The prod. unit cannot communicate with any connection unit.

Since, per assumption, the subsystems are independent with the same
stochastic properties, the probability of being in a state SAB, SA, SB or
S∅ at time t is the same for all the subsystems.
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At time t ,Y3(t),Y4(t) and Y5(t) are the number of production units in
states SAB, SA and SB respectively.

From standard probability theory: For t ≥ 0 the vector
(Y3(t),Y4(t),Y5(t)) is multinomially distributed:

P(Y3(t) = y3 ∩ Y4(t) = y4 ∩ Y5(t) = y5) =
5!

y3!y4!y5!(5− y3 − y4 − y5)!
(6)

· [p3(t)]y3 [p4(t)]y4 [p5(t)]y5 [1− p3(t)− p4(t)− p5(t)]5−y3−y4−y5

where y3 = 0,1, . . . ,5, y4 = 0,1, . . . ,5− y3, y5 = 0,1, . . . ,5− y3 − y4
and p3(t),p4(t),p5(t) are the probabilities of a subsystem being in
states SAB, SA and SB respectively.
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To compute the distribution of φ, all that remains is to find p3(t),p4(t)
and p5(t).

To do so, we study the structure of the subsystems:

A

B

1

2

3

4

5

6

7

8

Prod.
unit

Figure: Subsystem of a network for transmission of electronic pulses.

In the figure, we number the subsystem components from 1-8.
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Denote the corresponding component state variables by X1, . . . ,X8,
and their respective reliabilities by q1, . . . ,q8 (omit the time t to simplify
notation).

Introduce the events:

EA = {The production unit communicates with connection unit A}
EB = {The production unit communicates with connection unit B}.

Then,

p3(t) = P(EA ∩ EB), (7)
p4(t) = P(EA)− P(EA ∩ EB),

p5(t) = P(EB)− P(EA ∩ EB).
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Computing P(EA ∩ EB)

Condition w.r.t. the two bridges in the structure, i.e., components 3 and
6:

P(EA ∩ EB) = P(EA ∩ EB|X3 = 1,X6 = 1)q3q6 (8)
+ P(EA ∩ EB|X3 = 1,X6 = 0)q3(1− q6)

+ P(EA ∩ EB|X3 = 0,X6 = 1)(1− q3)q6

+ P(EA ∩ EB|X3 = 0,X6 = 0)(1− q3)(1− q6).

The four conditional probabilities in (8) can be computed by series-
and parallel reductions (this is left as an exercise). They are given by:

P(EA ∩ EB|X3 = 1,X6 = 1) = q1q2[q4 + q5 − q4q5][q7 + q8 − q7q8],

P(EA ∩ EB|X3 = 1,X6 = 0) = q1q2[q4q7 + q5q8 − q4q5q7q8],

P(EA ∩ EB|X3 = 0,X6 = 1) = q1q2q4q5[q7 + q8 − q7q8],

P(EA ∩ EB|X3 = 0,X6 = 0) = q1q2q4q5q7q8.
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Computing P(EA) and P(EB)

To compute P(EA), component 2 is irrelevant (see the subsystem
figure).

By removing this component, we see that components 3 and 5 are in
series.

After a series reduction, we get a bridge structure connected in series
with component 1. Hence, P(EA) is given by:

P(EA) = q1q6[q4 + q3q5 − q3q4q5][q7 + q8 − q7q8] (9)
+ q1(1− q6)[q4q7 + q3q5q8 − q3q4q5q7q8].

Similarly, P(EB) is given by:

P(EB) = q2q6[q5 + q3q4 − q3q4q5][q7 + q8 − q7q8] (10)
+ q2(1− q6)[q5q8 + q3q4q7 − q3q4q5q7q8].

A. B. Huseby & K. R. Dahl (Univ. of Oslo) STK3405 - Case study: Reliability analysis of a network for transmission of electronic pulses20 / 24



uiobmcrop

Conclusion

By inserting the expressions (8), (9) and (10) into (7), we have all the
probabilities we need in order to calculate the distribution of the
system state φ using equation (2).
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What is gained?

Had two alternatives:

1. State enumeration: Counting all possible states of the 52 binary
state variables of the components in Figure 1.

2. Reduction by introducing auxiliary varibles: Have to enumerate the
possible states of just the five multinary variables Y1, . . .Y5.

To do this: Observe that Y1 and Y2 each attain 7 values in the set
{0,1, . . .6}.

The vector (Y3,Y4,Y5) can attain any value in the set
{(Y3,Y4,Y5) : 0 ≤ Y3 + Y4 + Y5 ≤ 5,0 ≤ Y3,Y4,Y5}.
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Counting the possible states of Y1, . . .Y5

To count the number of values in this set, consider 6 different cases
corresponding to the possible values of Y3, and count the number of
possible values for each case.

Note that if Y3 = y , then Y4 + Y5 ≤ 5− y , y = 0,1, . . . ,5. Hence:

Case 0. Y3 = 0, Y4 + Y5 ≤ 5− 0 = 5 : 21 possible values,
Case 1. Y3 = 1, Y4 + Y5 ≤ 5− 1 = 4 : 15 possible values,
Case 2. Y3 = 2, Y4 + Y5 ≤ 5− 2 = 3 : 10 possible values,
Case 3. Y3 = 3, Y4 + Y5 ≤ 5− 3 = 2 : 6 possible values,
Case 4. Y3 = 4, Y4 + Y5 ≤ 5− 4 = 1 : 3 possible values,
Case 5. Y3 = 5, Y4 + Y5 ≤ 5− 5 = 0 : 1 possible value.
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What is gained? 2744 vs. 4.504 · 1015

Adding this, we see that there are 56 values in total.

Hence, the sum in (2) for computing P(φ(t) = φj) contains
7 · 7 · 56 = 2744 terms (since there are 7 possible values for Y1 and
Y2, as well as 56 possible values for (Y3,Y4,Y5)).

Easy to compute!

Alternative: The 4.504 · 1015 terms of the original method by simply
enumerating the states.

To conclude: By introducing the new variables Y1, . . . ,Y5, the
computational load has been significantly reduced.

When to use this approach? Systems where the structure consists of
many identical components and where there is a strong symmetry.

Difficulty with the method: In practice, we may not find efficient ways to
introduce new variables.
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