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Overview

@ System analysis:
e Binary monotone systems
o Coherent systems
o Reliability of binary monotone systems
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@ Basic reliability calculation methods
e Pivotal decompositions (conditioning)
e Path and cut sets
e Modules of monotone systems
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Overview

@ Exact computation of reliability
State space enumeration

The multiplication method

The inclusion-exclusion methods
Network reliability
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Overview (cont.)

@ Structural and reliability importance:
e Structural importance of a component
o Reliability importance of a component
o Time-independent measures
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Overview (cont.)

@ Association and reliability bounds

@ Associated random variables
@ Bounds on the system reliability
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Overview (cont.)

@ Conditional Monte Carlo methods
e Monte Carlo simulation and conditioning
e Conditioning on the sum
o Identical component reliabilities
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Overview (cont.)

@ Discrete event simulation:
o Pure jump processes
e Binary monotone systems of repairable components
e Simulating repairable systems
e Estimating availability and importance
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Overview (cont.)

@ Applications

o Case study: Fishing boat engines
e Case study: Transmission of electronic pulses
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Binary monotone systems

@ A systemis some technological unit consisting of a finite set of
components which are operating together

@ A binary system has only two possible states: functioning or failed.
Moreover, each component is either functioning or failed as well

@ A binary monotone system is a binary system such that repairing
a component does not make the system worse, and breaking a
component does not make system better
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Binary monotone systems (cont.)

We consider a binary system of n components, 1,...,n, and introduce
the component state variable X; denoting the state of component i,
i=1,...,n, defined as:

X 1 if the ith component is functioning
" 10 otherwise.

Furtermore, we introduce the variable ¢ representing the state of the
system, defined as:

1 if the system is functioning
¢ = .
0 otherwise.
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Binary monotone systems (cont.)

The variables X;, i = 1,...,nand ¢ are said to be binary, since they
only have two possible values, 0 and 1.

The state of the system is assumed to be uniquely determined by the
state of the components. Thus, we may write ¢ as:

¢:¢(X):¢(X1ax27"-7xn)

The function ¢ : {0,1}"” — {0, 1} is called the structure function of the
system.
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Binary monotone systems (cont.)

Definition
A binary monotone system is an ordered pair (C, ¢), where:
C ={1,...,n}is the component set and ¢ is the structure function.

The structure function ¢ is non-decreasing in each argument.

The number of components, n, is referred to as the order of the
system.
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Trivial systems

NOTE: According to the definition binary monotone systems includes
systems where the structure function is constant, i.e., systems where:

#(x) =1forall x € {0,1}"

or
¢(x) =0forall x € {0,1}"

We will refer to such systems as ftrivial systems.

Some textbooks exclude trivial systems from the class of monotone systems.
We have chosen not to do so in order to have a class which is closed with
respect to conditioning.
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Trivial systems (cont.)

Theorem
Let (C, ¢) be a non-trivial binary monotone system.
Then ¢(0) = 0 and ¢(1) = 1.

Proof: Since (C, ¢) is assumed to be non-trivial, there exists at least
one vector X such that ¢(xp) = 0 and another vector x; such that

o(x1) =1.
Since (C, ¢) is monotone, it follows that:
0 < 6(0) < ¢(xo) =0
1= 9(x;) < 6(1) < 1
Hence, we conclude that ¢#(0) = 0 and ¢(1) = 1
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Reliability block diagrams

In a reliability block diagram components are drawn as circles and connected
by lines. The system is functioning if and only it is possible to find a way
through the diagram passing only functioning components.

) )
N N
1 2

)
N4
3

Note: In order to represent arbitrarily binary monotone systems, we allow
components to occur in multiple places in the block diagram. Thus, a

reliability block diagram should not necessarily be interpreted as a picture of N
a physical system.

3
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A series system
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Figure: A reliability block diagram of a series system.
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A parallel system
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Figure: A reliability block diagram of a parallel system.
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A 2-out-of-3 system

M) M)
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2 3 3
Figure: A reliability block diagram of a 2-out-of-3 system.

For a 2-out-of-3 system to fail 2 out of 3 components must fail. There
are 3 possible subsets of components which contains 2 components:

{1’2}7 {173}’ {273}' @
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A 2-out-of-4 system
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Figure: A reliability block diagram of a 2-out-of-4 system.

For a 2-out-of-4 system to fail 3 out of 4 components must fail. There
are 4 possible subsets of components which contains 3 components:
{1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}.
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The structure function of a series system
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Figure: A reliability block diagram of a series system.
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The structure function of a series system (cont.)

From the reliability block diagram we see that the series system is
functioning if and only if all of its components are functioning, i.e., if
andonlyif Xy =1and--- and X, = 1.

Hence, the state of the system can be expressed as a function of the
component state variables as follows:

n
¢(X)=X1-X2~-Xn=HXi
i=1

Alternatively, the structure function of a series system can be written

as:
&(X) =min{Xq,..., Xn}

since min{Xy,..., Xp} =1ifandonlyif X; =1and--- and X, =1.
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The coproduct operator
For any ay, ao, ..., a, we define:

ajllap=1-(1-a)(1 - a),
Ha,—1—H 1 —a,-).
i=1
Note: If a1, a0, ...,a, € {0,1}, we have:

ailla=1-(1-a)(1 —a) =max{ay, a},

Ha,_1—H (1 — a)) = max{ay,...,an}.
i=1
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The coproduct operator (cont.)

Proof:

alla, =1 —(1 —81)(1 —82):0
if and only if

(1 —81)(1 —ag) =1

Hence, a; ITa, = 0ifandonly if ay = 0 and a, = 0.
Equivalently, a; ITa, =1 ifandonlyifa; =1 or a, = 1.

Hence, a; IT a, = max{ay, a»}.
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The coproduct operator (cont.)

n n
[Ta=1-]J0-a)=0
i=1 i=1

if and only if

n

[[(1-a)=1

i=1

Hence, [[[_;a =0ifand onlyifa; =0and--- and a, = 0.

Equivalently, []7_, a;=1ifand onlyifa; =1 or--- ora, = 1.

Hence, [[I_; a = max{ai,...,an}.
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The structure function of a parallel system
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Figure: A reliability block diagram of a parallel system.

o =3 = = =
A. B. Huseby & K. R. Dahl (Univ. of Oslo) STK3405 — Week 34a



The structure function of a parallel system (cont.)

From the reliability block diagram we see that the parallel system is
functioning if and only if at least one of its components are functioning,
i.e,ifandonlyif Xy =1or--- or X, =1.

Hence, the state of the system can be expressed as a function of the
component state variables as follows:

n
S(X) =X I X T X, = [[ X
i=1

Alternatively, the structure function of a parallel system can be written

as.
o(X) = max{X, .., Xa}

since max{Xi,...,Xp} =1ifandonlyif Xy =1or--- or X, =1.
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The structure function of a mixed system
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It is easy to verify that the structure function of this system is:

A(X) = [(X1 - Xo) T X3] - X4
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The structure function of a 2-out-of-3 system

M M) M
-/ / -/
1 1 2

M M) M
-/ / -/
2 3 3

It is easy to verify that the structure function of this system is:

P(X) = (Xi I X2)(Xy 1T X3) (X2 1T X3)
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Coherent systems
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Coherent systems

Every component of a binary monotone system should have some
impact on the system state. More precisely, if i is a component in a
system, there should ideally exist at least some state of the rest of the
system where the system state depends on the state of component /.

Notation:
(1, %)= (X1, ..., Xi—1, 1, Xis 1, - -, Xn)
(0, ) =(Xx1,...,Xi—1,0, Xj11, ..., Xn)
iy X) = (X1, -y Xi—1y 5y Xig Ay« - 5 Xn)-
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Coherent systems (cont.)

Note: If X is a binary variable, then X" = X forn=1,2,....

The coproduct of two variables:

XX =1—(1-X)(1 = X)
=1-(1-X1 = X2+ X1.X2)
=114+ X1+ X — X1 X
= X1+ X2 = X1 Xz
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Coherent systems (cont.)

Definition
Let (C, ¢) be a binary monotone system, and let i € C. The component i is
said to be relevant for the system (C, ¢) if:

0 = ¢(0;, x) < ¢(1;,x) = 1 for some (-}, x).
If this is not the case, component i is said to be irrelevant for the system.

A binary monotone system (C, ¢) is coherent if all its components are
relevant.

Note that a coherent system is obviously non-trivial as well, since in a trivial
system all components are irrelevant.
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An incoherent system

M)
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The structure function of this system is:
H(X)=(XT T X2) - Xz
= (X1 + Xo — X1X2) - Xo

=X Xo + X2 — Xy X2

=X X+ Xo = XiXo =Xz



Conditionally irrelevant components

M) M)
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The structure function of this system is:
O(X) = [(X1 - X2) T X3] - X4
= (X1 Xo+ Xz — X1 XoX3) - Xy
Given that component 2 is failed, i.e., Xo = 0, we get:
#(02,X) = X3 - Xy

Thus, component 1 is conditionally irrelevant given that component 2 is failedﬁi
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Conditionally irrelevant components (cont.)
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The structure function of this system is:
O(X) = [(X1 - X2) 1T Xa] - X4
= (XiXa + X3 — X1 X2 X3) - Xy
Given that component 3 is functioning, i.e., X3 = 1, we get:
(13, X) = (X1 Xo +1 =X X) - Xa = X

Thus, components 1 and 2 are conditionally irrelevant given that component 3;-
is functioning.
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The best and worst systems

Theorem

Let (C, ¢) be a non-trivial binary monotone system of order n. Then for all

x € {0,1}" we have:
n

ﬁXi < o(x) < HXi-
i—1

i=1

Proof:
If TT; xi = 0, then [T, x; < ¢(x) since ¢(x) € {0,1} for all x € {0,1}".

If TT7_, x; = 1, we have x = 1. Hence, ¢(x) = ¢(1) = 1 since (C, ¢) is
non-trivial

Thus, the inequality is valid in this case as well. This completes the proof of
the left-hand inequality.

The right-hand inequality is proved in a similar way.
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The product and coproduct operators for vectors

Consider two vectors x = (xy,...,xp) and ¥ = (¥1,...,¥n)-

For our purpose the product and coproduct operators for vectors are
defined as follows:

X-Yy=(X1-Y1,X2-Y2,...,Xn" ¥n),

xIy=(x1 Oy, xo My, ..., xp I yp).
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Component level changes vs. system level changes

Theorem

Let (C, ¢) be a binary monotone system of order n. Then for all binary
vectors x, y we have:

(1) o(xy) = ¢(x) L o(y),
(ii) o(x-y) < o(x)- ().

Moreover, assume that (C, ¢) is coherent. Then equality holds in (i) for
allx,y € {0,1}" ifand only if (C, ¢) is a parallel system. Similarly,

equality holds in (ii) for all x,y € {0,1}" if and only if (C, ¢) is a series
system.

Interpretation: Components in parallel are better than systems in
parallel. Components in series are worse than systems in series.

A. B. Huseby & K. R. Dahl (Univ. of Oslo) STK3405 — Week 34a 40/45



Component level vs. system level (cont.)

Proof: Since ¢ is non-decreasing and x; [T y; > x; fori =1,...,n, it
follows that:
(X1 y) > ¢(x).

Similarly, we see that
P(x1Ly) = ¢(y).

Hence,

¢(x 11y) > max{¢(x), o(y)} = ¢(x) L o(y).
This proves ().

The proof of (if) is similar.
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Component level vs. system level (cont.)

We then prove that equality holds in (/) for all binary vectors x, y if and
only if (C, ¢) is a parallel system.

If (C, ¢) is a parallel system, it follows that:

p(xy) =1L (x1y)= 1rgiagxn{ max{x;, y;}}

= max { max x; gggxnyi} = ¢(x) (),

which proves the "if"-part of the equivalence.
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Component level vs. system level (cont.)

Assume conversely that ¢(x 11 y) = ¢(x) 11 ¢(y) for all binary vectors x, y.

Since (C, ¢) is coherent it follows that for any i € C there exists a vector (-, X)
such that:
¢(1i,x) =1 and ¢(0;, x) = 0.

For this particular vector (-;, x) we have:
1=9¢(1;,x) = ¢((1,,0) I (0;, X))
= ¢(1;,0) 1L ¢(0;, X) = ¢(1;,0) 110
= ¢(1;,0).

This implies that component i is in parallel with the rest of the system. Since
this holds for any i € C, we conclude that the system is a parallel system.
This proves the "only if"-part of the equivalence.

The other equivalence is proved similarly.
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Component level vs. system level (cont.)

Example: A series system of two components.

For all binary vectors x = (xq,x2) and y = (¥4, y2) we have:

(X1 yy) - (X2 I y2) > (X1 - x2) L (y1 - y2).
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Component level vs. system level (cont.)

We have:
(X1 I y1) - (X2 I y)
=X +y1—xiy1)- (e + Y — X)) :

(X1 - X2) IL (Y1 - Y2) = X1 X2 + V1Yo — X1 X2)/1 Y.

From this it can be shown that:

(xa yr)- (e W y2) — (X1 - x) (Y1 - y2) = -+~
=x1(1 = x)(1 = y1)y2 + (1 = x1)x2y1(1 = y2) > 0.
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