STK3405 - Week 34b

A. B. Huseby \& K. R. Dahl

Department of Mathematics
University of Oslo, Norway

Section 2.3

Dual systems

Dual systems

Definition

Let ϕ be a structure function of a binary monotone system of order n. We then define the dual structure function, ϕ^{D} for all $\boldsymbol{y} \in\{0,1\}^{n}$ as:

$$
\phi^{D}(\boldsymbol{y})=1-\phi(\mathbf{1}-\boldsymbol{y}) .
$$

Furthermore, if \boldsymbol{X} is the component state vector of a binary monotone system, we define the dual component state vector \boldsymbol{X}^{D} as:

$$
\boldsymbol{X}^{D}=\left(X_{1}^{D}, \ldots, X_{n}^{D}\right)=\left(1-X_{1}, \ldots, 1-X_{n}\right)=\mathbf{1}-\boldsymbol{X}
$$

Dual systems (cont.)

Note:

- The relation between ϕ and ϕ^{D} is a relation between two functions
- The relation between \boldsymbol{X} and \boldsymbol{X}^{D} is a relation between two stochastic vectors

We also introduce the dual component set $C^{D}=\left\{1^{D}, \ldots, n^{D}\right\}$, where the dual component i^{D} is functioning if the component i is failed, while i^{D} is failed if the component i is functioning.

We have the following relation between the two stochastic variables $\phi(\boldsymbol{X})$ and $\phi^{D}\left(\boldsymbol{X}^{D}\right):$

$$
\phi^{D}\left(\boldsymbol{X}^{D}\right)=1-\phi\left(\mathbf{1}-\boldsymbol{X}^{D}\right)=1-\phi(\boldsymbol{X})
$$

Hence, the dual system is functioning if and only if the original system is failed and vice versa.

Examples of dual systems

Let ϕ be the structure function of a system of order 3 such that:

$$
\phi(\boldsymbol{y})=y_{1} \amalg\left(y_{2} \cdot y_{3}\right),
$$

The dual structure function is then given by:

$$
\begin{aligned}
\phi^{D}(\boldsymbol{y}) & =1-\phi(1-\boldsymbol{y}) \\
& =1-\left(1-y_{1}\right) \amalg\left(\left(1-y_{2}\right) \cdot\left(1-y_{3}\right)\right) \\
& =1-\left[1-\left(1-\left(1-y_{1}\right)\right)\left(1-\left(1-y_{2}\right) \cdot\left(1-y_{3}\right)\right)\right] \\
& =1-\left[1-y_{1} \cdot\left(1-\left(1-y_{2}\right) \cdot\left(1-y_{3}\right)\right)\right] \\
& =y_{1} \cdot\left(y_{2} \amalg y_{3}\right)
\end{aligned}
$$

Examples of dual systems (cont.)

$$
\phi(\boldsymbol{y})=y_{1} \amalg\left(y_{2} \cdot y_{3}\right), \quad \phi^{D}(\boldsymbol{y})=y_{1} \cdot\left(y_{2} \amalg y_{3}\right)
$$

Examples of dual systems (cont.)

Let (C, ϕ) be a series system of order n :

$$
\phi(\boldsymbol{y})=\prod_{i=1}^{n} y_{i}
$$

The dual structure function is then given by:

$$
\begin{aligned}
\phi^{D}(\boldsymbol{y}) & =1-\phi(\mathbf{1}-\boldsymbol{y}) \\
& =1-\prod_{i=1}^{n}\left(1-y_{i}\right)=\coprod_{i=1}^{n} y_{i} .
\end{aligned}
$$

Thus, $\left(C^{D}, \phi^{D}\right)$ is a parallel system of order n.

Examples of dual systems (cont.)

Let (C, ϕ) be a parallel system of order n :

$$
\phi(\boldsymbol{y})=\coprod_{i=1}^{n} y_{i}
$$

The dual structure function is then given by:

$$
\begin{aligned}
\phi^{D}(\boldsymbol{y}) & =1-\phi(\mathbf{1}-\boldsymbol{y})=1-\coprod_{i=1}^{n}\left(1-y_{i}\right) \\
& =1-\left(1-\prod_{i=1}^{n}\left(1-\left(1-y_{i}\right)\right)=\prod_{i=1}^{n} y_{i} .\right.
\end{aligned}
$$

Thus, $\left(C^{D}, \phi^{D}\right)$ is a series system of order n.

Dual systems (cont.)

Theorem

Let ϕ be the structure function of a binary monotone system, and let ϕ^{D} be the corresponding dual structure function. Then we have:

$$
\left(\phi^{D}\right)^{D}=\phi .
$$

That is, the dual of the dual system is equal to the original system.

Proof: For all $\boldsymbol{y} \in\{0,1\}^{n}$ we have:

$$
\begin{aligned}
\left(\phi^{D}\right)^{D}(\boldsymbol{y}) & =1-\phi^{D}(\mathbf{1}-\boldsymbol{y}) \\
& =1-[1-\phi(\mathbf{1}-(\mathbf{1}-\boldsymbol{y}))] \\
& =\phi(\boldsymbol{y})
\end{aligned}
$$

Section 2.4

Reliability of binary monotone systems

Reliability of binary monotone systems

Let (C, ϕ) be a binary monotone system, and let $i \in C$.

$$
p_{i}=P\left(X_{i}=1\right)=\text { The reliability of a component } i
$$

Since the state variable X_{i} is binary, we have for all $i \in C$:

$$
\mathrm{E}\left[X_{i}\right]=0 \cdot P\left(X_{i}=0\right)+1 \cdot P\left(X_{i}=1\right)=P\left(X_{i}=1\right)=p_{i}
$$

Thus, the reliability of component i is equal to the expected value of its component state variable, X_{i}.

Reliability of binary monotone systems (cont.)

$$
h=P(\phi(\boldsymbol{X})=1)=\text { The reliability of the system }
$$

Since ϕ is binary, we have:

$$
\mathrm{E}[\phi(\boldsymbol{X})]=0 \cdot P(\phi(\boldsymbol{X})=0)+1 \cdot P(\phi(\boldsymbol{X})=1)=P(\phi(\boldsymbol{X})=1)=h .
$$

Thus, the reliability of the system is equal to the expected value of the structure function, $\phi(\boldsymbol{X})$.

From this it immediately follows that the reliability of a system, at least in principle, can be calculated as:

$$
h=\mathrm{E}[\phi(\boldsymbol{X})]=\sum_{\boldsymbol{x} \in\{0,1\}^{n}} \phi(\boldsymbol{x}) P(\boldsymbol{X}=\boldsymbol{x})
$$

Independent components

We now focus on the case where the component state variables can be assumed to be independent and introduce $\boldsymbol{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$. We note that:

$$
P\left(X_{i}=x_{i}\right)= \begin{cases}p_{i} & \text { if } x_{i}=1 \\ 1-p_{i} & \text { if } x_{i}=0\end{cases}
$$

Since x_{i} is either 0 or $1, P\left(X_{i}=x_{i}\right)$ can be written in the following more compact form:

$$
P\left(X_{i}=x_{i}\right)=p_{i}^{x_{i}}\left(1-p_{i}\right)^{1-x_{i}}
$$

The reliability function

Thus, when the component state variables are independent, their joint distribution can be written as:

$$
P(\boldsymbol{X}=\boldsymbol{x})=\prod_{i=1}^{n} P\left(X_{i}=x_{i}\right)=\prod_{i=1}^{n} p_{i}^{x_{i}}\left(1-p_{i}\right)^{1-x_{i}}
$$

Hence, we get the following expression for the system reliability:

$$
h=h(\boldsymbol{p})=\mathrm{E}[\phi(\boldsymbol{X})]=\sum_{\boldsymbol{x} \in\{0,1\}^{n}} \phi(\boldsymbol{x}) \prod_{i=1}^{n} p_{i}^{x_{i}}\left(1-p_{i}\right)^{1-x_{i}}
$$

The function $h(\boldsymbol{p})$ is called the reliability function of the system.

Reliability of a series system

Consider a series system of order n. Assuming that the component state variables are independent, the reliability of this system is given by:

$$
h(\boldsymbol{p})=\mathrm{E}[\phi(\boldsymbol{X})]=\mathrm{E}\left[\prod_{i=1}^{n} X_{i}\right]=\prod_{i=1}^{n} \mathrm{E}\left[X_{i}\right]=\prod_{i=1}^{n} p_{i},
$$

where the third equality follows since $X_{1}, X_{2}, \ldots, X_{n}$ are independent.

Reliability of a parallel system

Consider a parallel system of order n. Assuming that the component state variables are independent, the reliability of this system is given by:

$$
\begin{aligned}
h(\boldsymbol{p}) & =\mathrm{E}[\phi(\boldsymbol{X})]=\mathrm{E}\left[\coprod_{i=1}^{n} X_{i}\right]=\mathrm{E}\left[1-\prod_{i=1}^{n}\left(1-X_{i}\right)\right] \\
& =1-\prod_{i=1}^{n}\left(1-E\left[X_{i}\right]\right)=\coprod_{i=1}^{n} \mathrm{E}\left[X_{i}\right]=\coprod_{i=1}^{n} p_{i},
\end{aligned}
$$

where the fourth equality follows since $X_{1}, X_{2}, \ldots, X_{n}$ are independent.

Reliability of a mixed system

Assuming independent component states the system reliability becomes:

$$
\begin{aligned}
h(\boldsymbol{p}) & =\mathrm{E}[\phi(\boldsymbol{X})]=\mathrm{E}\left[\left[\left(X_{1} \cdot X_{2}\right) \amalg X_{3}\right] \cdot X_{4}\right] \\
& =\mathrm{E}\left[\left(X_{1} \cdot X_{2}\right) \amalg X_{3}\right] \cdot \mathrm{E}\left[X_{4}\right] \\
& =\left[\mathrm{E}\left[X_{1} \cdot X_{2}\right] \amalg \mathrm{E}\left[X_{3}\right]\right] \cdot \mathrm{E}\left[X_{4}\right] \\
& =\left[\left(\mathrm{E}\left[X_{1}\right] \cdot \mathrm{E}\left[X_{2}\right]\right) \amalg \mathrm{E}\left[X_{3}\right]\right] \cdot \mathrm{E}\left[X_{4}\right] \\
& =\left[\left(p_{1} \cdot p_{2}\right) \amalg p_{3}\right] \cdot p_{4} .
\end{aligned}
$$

Component level changes vs. system level changes

In the following we define $\boldsymbol{p} \cdot \boldsymbol{p}^{\prime}$ as $\left(p_{1} \cdot p_{1}^{\prime}, \ldots, p_{n} \cdot p_{n}^{\prime}\right)$.

Theorem

Let $h(\boldsymbol{p})$ be the reliability function of a binary monotone system (C, ϕ) of order n. Then for all $\boldsymbol{p}, \boldsymbol{p}^{\prime} \in[0,1]^{n}$ we have:
(i) $h\left(\boldsymbol{p} \amalg \boldsymbol{p}^{\prime}\right) \geq h(\boldsymbol{p}) \amalg h\left(\boldsymbol{p}^{\prime}\right)$,
(ii) $h\left(\boldsymbol{p} \cdot \boldsymbol{p}^{\prime}\right) \leq h(\boldsymbol{p}) \cdot h\left(\boldsymbol{p}^{\prime}\right)$

If (C, ϕ) is coherent, equality holds in (i) for all $\boldsymbol{p}, \boldsymbol{p}^{\prime} \in[0,1]^{n}$ if and only if (C, ϕ) is a parallel system.
If (C, ϕ) is coherent, equality holds in (ii) for all $\boldsymbol{p}, \boldsymbol{p}^{\prime} \in[0,1]^{n}$ if and only if (C, ϕ) is a series system.

Component level vs. system level (cont.)

Proof: Assume that \boldsymbol{X} and \boldsymbol{Y} are two independent component state vectors with corresponding reliability vectors \boldsymbol{p} and \boldsymbol{p}^{\prime} respectively.. We then have:

$$
\begin{aligned}
h\left(\boldsymbol{p} \amalg \boldsymbol{p}^{\prime}\right) & -h(\boldsymbol{p}) \amalg h\left(\boldsymbol{p}^{\prime}\right) \\
& =E[\phi(\boldsymbol{X} \amalg \boldsymbol{Y})]-E[\phi(\boldsymbol{X})] \amalg E[\phi(\boldsymbol{Y})] \\
& =E[\phi(\boldsymbol{X} \amalg \boldsymbol{Y})-\phi(\boldsymbol{X}) \amalg \phi(\boldsymbol{Y})],
\end{aligned}
$$

where the last expectation must be non-negative since by the corresponding result for structure functions we know that:

$$
\phi(\boldsymbol{x} \amalg \boldsymbol{y})-\phi(\boldsymbol{x}) \amalg \phi(\boldsymbol{y}) \geq 0, \quad \text { for all } \boldsymbol{x}, \boldsymbol{y} \in\{0,1\}^{n} .
$$

This completes the proof of (i). The proof of $(i i)$ is similar.

Component level vs. system level (cont.)

We now consider the case where (C, ϕ) is coherent and show that equality in (i) holds for all $\boldsymbol{p}, \boldsymbol{p}^{\prime} \in[0,1]^{n}$ if and only if (C, ϕ) is a parallel system.

Assume that $0<p_{i}<1,0<p_{i}^{\prime}<1$ for $i=1, \ldots, n$. This implies that:

$$
P(\boldsymbol{X}=\boldsymbol{x}, \boldsymbol{Y}=\boldsymbol{y})>0, \text { for all } \boldsymbol{x} \in\{0,1\}^{n} \text { and } \boldsymbol{y} \in\{0,1\}^{n} .
$$

From this it follows that:

$$
E[\phi(\boldsymbol{X} \amalg \boldsymbol{Y})-\phi(\boldsymbol{X}) \amalg \phi(\boldsymbol{Y})]=0
$$

if and only if

$$
\phi(\boldsymbol{x} \amalg \boldsymbol{y})-\phi(\boldsymbol{x}) \amalg \phi(\boldsymbol{y})=0 \text { for all } \boldsymbol{x} \in\{0,1\}^{n} \text { and } \boldsymbol{y} \in\{0,1\}^{n} .
$$

By the corresponding result for structure functions this holds if and only if (C, ϕ) is a parallel system. The other equivalence is proved similarly.

Component level vs. system level (cont.)

Let (C, ϕ) be a system with independent component state variables with $P\left(X_{i}=1\right)=p$ for all $i \in C$, and where $\phi(\boldsymbol{x})=x_{1} \cdot\left(x_{2} \amalg x_{3}\right)$.

We then get that $h(\boldsymbol{p})=h(p)=p \cdot(p \amalg p)=p \cdot\left(p+p-p^{2}\right)=2 p^{2}-p^{3}$. Hence, for all $0 \leq p \leq 1$, we have:

$$
\begin{aligned}
h\left(\boldsymbol{p} \amalg \boldsymbol{p}^{\prime}\right) & =2(p \amalg p)^{2}-(p \amalg p)^{3} \\
& \geq h(\boldsymbol{p}) \amalg h\left(\boldsymbol{p}^{\prime}\right)=\left(2 p^{2}-p^{3}\right) \amalg\left(2 p^{2}-p^{3}\right)
\end{aligned}
$$

Component level vs. system level (cont.)

- Red curve: $h\left(\boldsymbol{p} \amalg \boldsymbol{p}^{\prime}\right)=2(p \amalg p)^{2}-(p \amalg p)^{3}$
- Green curve: $h(\boldsymbol{p}) \amalg h\left(\boldsymbol{p}^{\prime}\right)=\left(2 p^{2}-p^{3}\right) \amalg\left(2 p^{2}-p^{3}\right)$

Component level vs. system level (cont.)

Let (C, ϕ) be a system with independent component state variables with $P\left(X_{i}=1\right)=p$ for all $i \in C$, and where $\phi(\boldsymbol{x})=x_{1} \amalg\left(x_{2} \cdot x_{3}\right)$.
We then get that $h(\boldsymbol{p})=h(p)=p \amalg(p \cdot p)=p \amalg p^{2}=p+p^{2}-p^{3}$.
Hence, for all $0 \leq p \leq 1$, we have:

$$
\begin{aligned}
h\left(\boldsymbol{p} \cdot \boldsymbol{p}^{\prime}\right) & =p^{2}+p^{4}-p^{6} \\
& \leq h(\boldsymbol{p}) \cdot h\left(\boldsymbol{p}^{\prime}\right)=\left(p+p^{2}-p^{3}\right)^{2}
\end{aligned}
$$

Component level vs. system level (cont.)

- Red curve: $h\left(\boldsymbol{p} \cdot \boldsymbol{p}^{\prime}\right)=p^{2}+p^{4}-p^{6}$
- Green curve: $h(\boldsymbol{p}) \cdot h\left(\boldsymbol{p}^{\prime}\right)=\left(p+p^{2}-p^{3}\right)^{2}$

