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Modules of monotone systems

Let A C C. Then, the complement set of A, i.e., C\ A, is denoted by A.
We have the following formal definition of a module:

Definition
Let (C, ¢) be a binary monotone system, and A C C. The monotone

system (A, x) is a module of (C, ¢) if and only if the structure function
¢ can be written as:

o(x) = p(x(x?), x?), forall x € {0,1}",

where ¢ is a monotone structure function. The set Ais called a
modular set of (C, ¢).
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Modules of monotone systems

Definition
A modular decomposition of a monotone system (C, ¢) is a set of
modules {(A;, x;) ;:1 connected by a binary monotone organisation
structure function . The following conditions must be satisfied:

@ C=Uj_1A,and AN A, =0 forj#k.

® o(x) = Ul (XM), ... xr (x)].

We observe that a modular decomposition is a disjoint partition of the
component set into modules such that the structure function of the
whole system is a function of the structure functions of these modules.
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Modules of monotone systems (cont.)

Modules: (A1, x1) and (Az, x2) where Ay = {1,2} and A, = {3,4,5}, and:
x1(X1, X2) = Xi 11 X,

x2(Xa, Xa, X5) = X3 - (Xa L1 Xa)

P(x1,x2) = x1 L x2
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Dynamic system analysis

Let (C, ¢) be a binary monotone system, and introduce for t > 0:

Xi(t) = the state of component i attime ¢, i € C,

¢(X(t)) = the state of the system at time t.

@ X;j(t) is a random variable (for any given t).
@ {Xi(t)}t>0, is a stochastic process.
@ ¢(X(t)) is a random variable (for any given t).

@ {o(X(t))}t>0 is a stochastic process.

We assume that the stochastic processes { Xi(t),t > 0}7_, are
independent.

A. B. Huseby & K. R. Dahl (Univ. of Oslo) STK3405 — Week 36b 7/19



Dynamic system analysis (cont.)
We also introduce:
pi(t) = P(Xi(t) = 1) = The reliability of component i at time ¢,
h(p(t)) = P(¢(X(t)) = 1) = The reliability of the system at time t.

We assume that the components cannot be repaired and let:
T; = The lifetime of component i,
S = The lifetime of the system.
NOTE:
P(Xi(t)=1)=P(T; > 1), ieC,
P(o(X(t) =1)=P(S>1t).
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Dynamic system analysis (cont.)

We denote the cumulative distribution of T; by F;, i € C, and the
cumulative distribution of ¢ by G. We then have the following relations:

pi(t) = P(Xi(t) =1)=P(T; > t) =1 - Fj(t) = Fi(t), i€C,
h(t) = P(¢(X(t) =1) = P(S>t)=1- G(t) =: G(t).

NOTE: Determining the lifetime distribution for the system is the same
as finding the reliability of the system at time t, i.e., h(t), for all time
t > 0, and then letting G(t) =1 — h(t).
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Dynamic system analysis (cont.)

Theorem
For a monotone system (C, ¢) with minimal path sets Py, ..., P, and
minimal cut sets Ki, ..., Kx we have:

{max1 <j<p min,-epj T

MiNy <j<k MaXjek; Tj

PROOF: The lifetime of the system equals the lifetime of the minimal
path series structure which lives the longest.

The lifetime of a minimal path series structure equals the lifetime of the
shortest living component in this path set.

The second equality can be proved similarly.
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Chapter 4

Exact computation of reliability of binary monotone
systems
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Computational complexity

Let:

n = The size of the problem (e.g., number of components)
t(n) = The worst case running time of the algorithm as a function of n
f(n) = Some known non-negative increasing function of n

The order of the algorithm is said to be O(f(n)) if and only if there
exists a positive constant M and a positive integer ny such that:

t(n) < Mf(n), for all n > ny.

If f is a polynomial in n, we say that the algorithm is a polynomial time
algorithm, while if f is an exponential function of n, we say that the
algorithm is an exponential time algorithm.
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Computational complexity (cont.)
@ NP (for nondeterministic polynomial time) is a complexity class
used to describe certain types of problems.

@ NP contains many important problems, the hardest of which are
called NP-complete problems.

@ Open question: Is it possible to find a polynomial time algorithm
for solving NP-complete problems. Conjecture: NO.

@ The class of NP-hard problems is a class of problems that are,
informally, at least as hard as the hardest problems in NP.

@ The problem of computing the reliability of a binary monotone
system is known to be NP-hard in the general case.
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Computational complexity (cont.)

EXAMPLE: In order to calculate the reliability of k-out-of-n system we
need to do:

@2 (2+3+---4+n)=(n+2)(n— 1) multiplications
o 14+2+.--(n—1) =201 additions
Thus, we have:

t(n):(n+2)(n—1)+w

32 1 2
=P+ _-n-2<2n
5Tt <

This shows that the reliability of a k-out-of-n system can be calculated
in O(n?) time.
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Threshold systems

A threshold system is a binary monotone system (C, ¢), where the
structure function has the following form:

500) = I(> " ax > b).
i=1

where ay, ..., a, and b are non-negative real numbers, and /(+)
denotes the indicator function, i.e., a function defined for any event A
which is 1 if Ais true and zero otherwise.

NOTE: If a1 = --- = a5, = 1 and b = k, the threshold system is reduced
to a k-out-of-n system. Thus, threshold systems are a generalisation
of k-out-of-n systems.

It can be shown that calculating the reliability of a threshold system in
general is NP-hard.
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Threshold systems (cont.)

Let (C, ¢) a threshold system where ay, ..., a, and b are positive
integers, and introduce:

J
S=> aX, j=12...n
i=1

By the assumptions it follows that Sy, ..., S, are integer valued
stochastic variables.

Thus, the generating function for S, i.e., Gg,(y) = E[yS]is a
polynomial, and the distribution of S; can be derived directly from the
coefficients of Gg (y).j=1,....n.
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Threshold systems (cont.)

We also introduce:

j
g=> a, j=12...n
=1

It follows that:
deg(Gs,(y)) =4, j=1.2,....n
Assuming Gg (y) has been calculated, we can find Gg,, (y) as:
Gs;,,(¥) = Gs(¥) - Ga 1%, (¥)

In the worst case this would require 2(d; + 1) multiplications and d;
additions.
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Threshold systems (cont.)

EXAMPLE: Assume that a; = 2/-1, j = 1,..., n. We then have:

deg(Gs,(¥)) = dj = 22'1: -1, j=1,2,....n

In fact, in this case Gg(y) consists of 2/ non-zero terms (including the
constant term)!

Calculating Gg,, , () from Gg,(y) would require 2/*1 multiplications and
2/ — 1 additions.

Thus, using generating functions for calculating the reliability of this
threshold system takes O(2") time.
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Threshold systems (cont.)

EXAMPLE: Assume that a; < A, j=1,...,n, where Alis a fixed
positive integer. We then have:

j
deg(Gs(y) =d <) A=Aj, j=12....n

i=1

Calculating Gg,,,(y) from Gg,(y) would require at most 2(Aj + 1)
multiplications and Aj additions.

Since A is a fixed constant, it follows that calculating the reliability of
such a threshold system takes O(n?) time.
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