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Section 3.3

Modules of monotone systems
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Modules of monotone systems

Let A ⊆ C. Then, the complement set of A, i.e., C \ A, is denoted by Ā.
We have the following formal definition of a module:

Definition
Let (C, φ) be a binary monotone system, and A ⊆ C. The monotone
system (A, χ) is a module of (C, φ) if and only if the structure function
φ can be written as:

φ(x) = ψ(χ(xA),x Ā), for all x ∈ {0,1}n,

where ψ is a monotone structure function. The set A is called a
modular set of (C, φ).
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Modules of monotone systems

Definition
A modular decomposition of a monotone system (C, φ) is a set of
modules {(Aj , χj)}rj=1 connected by a binary monotone organisation
structure function ψ. The following conditions must be satisfied:

C =
⋃r

j=1 Aj , and Aj ∩ Ak = ∅ for j 6= k .

φ(x) = ψ[χ1(xA1), . . . , χr (xAr )].

We observe that a modular decomposition is a disjoint partition of the
component set into modules such that the structure function of the
whole system is a function of the structure functions of these modules.
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Modules of monotone systems (cont.)
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Modules: (A1, χ1) and (A2, χ2) where A1 = {1,2} and A2 = {3,4,5}, and:

χ1(X1,X2) = X1 q X2,

χ2(X3,X4,X5) = x3 · (X4 q X4)

ψ(χ1, χ2) = χ1 q χ2
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Section 3.4

Dynamic system analysis
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Dynamic system analysis

Let (C, φ) be a binary monotone system, and introduce for t ≥ 0:

Xi(t) = the state of component i at time t , i ∈ C,

φ(X (t)) = the state of the system at time t .

Xi(t) is a random variable (for any given t).

{Xi(t)}t≥0, is a stochastic process.

φ(X (t)) is a random variable (for any given t).

{φ(X (t))}t≥0 is a stochastic process.

We assume that the stochastic processes {Xi(t), t ≥ 0}ni=1 are
independent.
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Dynamic system analysis (cont.)

We also introduce:

pi(t) = P(Xi(t) = 1) = The reliability of component i at time t ,

h(p(t)) = P(φ(X (t)) = 1) = The reliability of the system at time t .

We assume that the components cannot be repaired and let:

Ti = The lifetime of component i ,

S = The lifetime of the system.

NOTE:

P(Xi(t) = 1) = P(Ti > t), i ∈ C,

P(φ(X (t)) = 1) = P(S > t).
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Dynamic system analysis (cont.)

We denote the cumulative distribution of Ti by Fi , i ∈ C, and the
cumulative distribution of φ by G. We then have the following relations:

pi(t) = P(Xi(t) = 1) = P(Ti > t) = 1− Fi(t) =: F̄i(t), i ∈ C,

h(t) = P(φ(X (t)) = 1) = P(S > t) = 1−G(t) =: Ḡ(t).

NOTE: Determining the lifetime distribution for the system is the same
as finding the reliability of the system at time t , i.e., h(t), for all time
t ≥ 0, and then letting G(t) = 1− h(t).
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Dynamic system analysis (cont.)

Theorem
For a monotone system (C, φ) with minimal path sets P1, . . . ,Pp and
minimal cut sets K1, . . . ,Kk we have:

S =

{
max1≤j≤p mini∈Pj Ti

min1≤j≤k maxi∈Kj Ti

PROOF: The lifetime of the system equals the lifetime of the minimal
path series structure which lives the longest.

The lifetime of a minimal path series structure equals the lifetime of the
shortest living component in this path set.

The second equality can be proved similarly.
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Chapter 4

Exact computation of reliability of binary monotone
systems
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Computational complexity

Let:

n = The size of the problem (e.g., number of components)
t(n) = The worst case running time of the algorithm as a function of n
f (n) = Some known non-negative increasing function of n

The order of the algorithm is said to be O(f (n)) if and only if there
exists a positive constant M and a positive integer n0 such that:

t(n) ≤ Mf (n), for all n ≥ n0.

If f is a polynomial in n, we say that the algorithm is a polynomial time
algorithm, while if f is an exponential function of n, we say that the
algorithm is an exponential time algorithm.
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Computational complexity (cont.)

NP (for nondeterministic polynomial time) is a complexity class
used to describe certain types of problems.

NP contains many important problems, the hardest of which are
called NP-complete problems.

Open question: Is it possible to find a polynomial time algorithm
for solving NP-complete problems. Conjecture: NO.

The class of NP-hard problems is a class of problems that are,
informally, at least as hard as the hardest problems in NP.

The problem of computing the reliability of a binary monotone
system is known to be NP-hard in the general case.
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Computational complexity (cont.)

EXAMPLE: In order to calculate the reliability of k -out-of-n system we
need to do:

2 · (2 + 3 + · · ·+ n) = (n + 2)(n − 1) multiplications

1 + 2 + · · · (n − 1) = n(n−1)
2 additions

Thus, we have:

t(n) = (n + 2)(n − 1) +
n(n − 1)

2

=
3
2

n2 +
1
2

n − 2 ≤ 2n2

This shows that the reliability of a k -out-of-n system can be calculated
in O(n2) time.
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Threshold systems

A threshold system is a binary monotone system (C, φ), where the
structure function has the following form:

φ(x) = I(
n∑

i=1

aixi ≥ b),

where a1, . . . ,an and b are non-negative real numbers, and I(·)
denotes the indicator function, i.e., a function defined for any event A
which is 1 if A is true and zero otherwise.

NOTE: If a1 = · · · = an = 1 and b = k , the threshold system is reduced
to a k -out-of-n system. Thus, threshold systems are a generalisation
of k -out-of-n systems.

It can be shown that calculating the reliability of a threshold system in
general is NP-hard.
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Threshold systems (cont.)

Let (C, φ) a threshold system where a1, . . . ,an and b are positive
integers, and introduce:

Sj =

j∑
i=1

aiXi , j = 1,2, . . . ,n.

By the assumptions it follows that S1, . . . ,Sn are integer valued
stochastic variables.

Thus, the generating function for Sj , i.e., GSj (y) = E [ySj ] is a
polynomial, and the distribution of Sj can be derived directly from the
coefficients of GSj (y), j = 1, . . . ,n.
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Threshold systems (cont.)

We also introduce:

dj =

j∑
i=1

ai , j = 1,2, . . . ,n.

It follows that:

deg(GSj (y)) = dj , j = 1,2, . . . ,n.

Assuming GSj (y) has been calculated, we can find GSj+1(y) as:

GSj+1(y) = GSj (y) ·Gaj+1Xj+1(y)

In the worst case this would require 2(dj + 1) multiplications and dj
additions.
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Threshold systems (cont.)

EXAMPLE: Assume that aj = 2j−1, j = 1, . . . ,n. We then have:

deg(GSj (y)) = dj =

j∑
i=1

2i−1 = 2j − 1, j = 1,2, . . . ,n.

In fact, in this case GSj (y) consists of 2j non-zero terms (including the
constant term)!

Calculating GSj+1(y) from GSj (y) would require 2j+1 multiplications and
2j − 1 additions.

Thus, using generating functions for calculating the reliability of this
threshold system takes O(2n) time.
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Threshold systems (cont.)

EXAMPLE: Assume that aj ≤ A, j = 1, . . . ,n, where A is a fixed
positive integer. We then have:

deg(GSj (y)) = dj ≤
j∑

i=1

A = Aj , j = 1,2, . . . ,n.

Calculating GSj+1(y) from GSj (y) would require at most 2(Aj + 1)
multiplications and Aj additions.

Since A is a fixed constant, it follows that calculating the reliability of
such a threshold system takes O(n2) time.
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