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Abstract

This is a compendium intended for use in the course STK3405 and STK4405
at the Department of Mathematics, University of Oslo, from fall 2017. The
compendium provides the foundation of probability theory needed to com-
pute the reliability of a system, i.e., the probability that a system is function-
ing, when the reliabilities of the components which the system is composed
of are known. Examples of systems are energy systems and networks. In ad-
dition, various examples of the use of risk analysis for industrial applications
are studied. The material is illustrated by different simulation techniques.
This material can serve as an introduction to more advanced studies, but is
also suitable as support literature to studies in other fields and as further
education for realists and engineers.
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Chapter 1
Introduction

The purpose of these notes is to provide the reader with a basic knowledge on the
theoretical foundations of risk- and reliability analysis. In addition, the compendium
covers a wide array of current applications of these fields as well as simulation techniques
and an introduction to software suitable for applying the theory to practical problems.

Today, various aspects of risk- and reliability theory are used in many different sec-
tors. Examples include transport, project planning, time scheduling, energy networks
and aerospace. At the core of all these applications is a need to quantify and control
risk, determine how reliable a system is and how to monitor and maintain systems is the
best way possible. Clever use of the risk- and reliability theory can provide safer and
more efficient systems which are supervised in an optimal way. This leads to financial
savings, well-functioning systems and prevention of accidents.

These notes are suitable for a bachelor or master level course in modern risk- and
reliability theory, but also as further education for practitioners (engineers, risk analysts
etc.).

The structure of the notes is as follows: In Chapter 2 we introduce the theoretical
foundation of system analysis. We define a system of components and study various
kinds of systems. The structure/reliability function of the system is defined based
on component reliabilities. The chapter also includes important defining properties of
systems such as monotonicity, coherency and duality. In Chapter 3 we introduce the
basic tools for calculating reliability, including pivotal decompositions, path and cut sets
as well as modular decompositions. Then, in Chapter 4, we consider different methods
for exact computation of the reliability of systems. In Chapter 5 we introduce various
measures for computing the structural and the reliability importance of the system
components. In some cases, computing the exact reliability is too time-consuming, so
in Chapter 6 we give upper and lower bounds for the system reliabilities. In this chapter,
we also define a specific kind of dependence between the components of a system called
association, and study how this property can be used to derive bounds for the system
reliability without requiring independence of components.

In Chapter 8 we introduce discrete event simulation and show how this is connected

1



2 CHAPTER 1. INTRODUCTION

to the system analysis of Chapter 2.
Finally, in Chapter 9 we present various applications and examples of practical

use of risk- and reliability theory. Some examples include project management and
time scheduling, analyzing a network for the transmission of electronic pulses and a
conditional Monte Carlo approach to system reliability evaluation. The simulation
software Riscue1 is used to analyze these systems.

Throughout the notes, there are various exercises intended to provide the reader with
a deeper understanding of the material. Some of the exercises are more theoretical, some
are oriented towards analyzing smaller systems by hand and other rely on simulation
techniques and use of Riscue.

The notation used in the compendium is summarized in Chapter 10.

Parts of these notes are based on the compendium by Natvig [38] (in Norwegian).
In particular, this is the case for Chapter 2. However, compared to Natvig [38] there
are several new examples, exercises, some new topics are included and some others are
excluded. The presentation has also been reorganized and reworked.

1A free version of Riscue can be downloaded from www.riscue.org



Chapter 2
System analysis

In this chapter, we will introduce the basic concepts of system analysis and reliabil-
ity theory. In contrast to several other books on this topic, for instance Barlow and
Proschan [6] and Natvig [38], we will begin by introducing stochastic systems (i.e., when
the component states are random). The more classical approach is to first consider de-
terministic system analysis (i.e., where the component states are deterministic), and
then move on to the stochastic case. However, as the two are very similar, we go straight
to the general stochastic case, and highlight important aspects of the deterministic case
whenever necessary. This hopefully saves the reader some work and also makes the
presentation more unified. At first, we analyse systems at a particular time. We then
move on to dynamic system analysis where we consider the development of the systems
over time.

2.1 Binary monotone systems

When we use the term system, we think of some technological unit consisting of a finite
set of components which are operating together. A binary system has only two possible
states: functioning or failed. Moreover, each component is either functioning or failed
as well1. We consider a binary system of n components, 1, . . . , n, and introduce the
component state variable Xi denoting the state of component i, i = 1, . . . , n, defined
as:

Xi :=

!
1 if the ith component is functioning
0 otherwise.

(2.1)

1In so-called multistate reliability theory, models where the system and its components have more
than two potential states are considered. Much of the theory for binary systems can be extended to
multistate systems. Still such systems typically are more computationally challenging. See Natvig [39].

3



4 CHAPTER 2. SYSTEM ANALYSIS

Furtermore, we introduce the variable φ representing the state of the system, defined
as:

φ :=

!
1 if the system is functioning
0 otherwise.

(2.2)

The variables Xi, i = 1, . . . , n and φ are said to be binary, since they only have two
possible values, 0 and 1. We use upper case letters for the component state variables
indicating that these variables are stochastic. Specific values of random variables will
be denoted by lower case letters.

The state of the system is assumed to be uniquely determined by the state of the
components. Thus, if X := (X1, X2, . . . , Xn) is the component state vector, we may
express the system state φ as:

φ = φ(X).

The function φ : {0, 1}n → {0, 1} is called the structure function of the system.

Intuitively, repairing a component should not make the system worse, and breaking
a component should not make system better. Mathematically this property implies
that the structure function should be non-decreasing in each argument. This property
is an essential part of the definition of a binary monotone system which can be stated
as follows:

Definition 2.1.1 A binary monotone system is an ordered pair (C,φ), where C =
{1, . . . , n} is the component set and φ is the structure function. The function φ is
assumed to be non-decreasing in each argument. The number of components, n, is
referred to as the order of the system.

Note that according to this definition the class of binary monotone systems includes
systems where the structure function is constant, i.e., systems where either φ(x) = 1
for all x ∈ {0, 1}n or φ(x) = 0 for all x ∈ {0, 1}n. We will refer to such systems as
trivial systems2.

We let 0 denote the vector where all entries are 0, and similarly, let 1 be the vector
where all entries are 1. The following result provides a useful property of non-trivial
systems.

Theorem 2.1.2 Let (C,φ) be a non-trivial binary monotone system. Then φ(0) = 0
and φ(1) = 1.

Proof: Since (C,φ) is assumed to be non-trivial, there exists at least one vector x0 such
that φ(x0) = 0 and another vector x1 such that φ(x1) = 1. Since (C,φ) is assumed to
be monotone, it follows that 0 ≤ φ(0) ≤ φ(x0) = 0 and 1 = φ(x1) ≤ φ(1) ≤ 1. Hence,
we conclude that φ(0) = 0 and φ(1) = 1 □

2Some textbooks exclude trivial systems from the class of monotone systems. We have chosen not
to do so in order to have a class which is closed with respect to conditioning.



2.1. BINARY MONOTONE SYSTEMS 5

In order to describe the logical relation between the components and the system,
we often use a reliability block diagram. In such diagrams components are represented
as circles and connected by lines. The system is functioning if and only it is possible to
find a way from the left-hand side to the right-hand side of the diagram passing only
functioning components. Note that in order to represent arbitrarily complex binary
monotone systems, it is sometimes necessary to allow components to occur multiple
places in the block diagram. In such cases the reliability block diagram should not be
interpreted as a picture of a physical system.

1 4 52 3

Figure 2.1: A reliability block diagram of a series system of order 5 with component
set C = {1, . . . , 5}

Example 2.1.3 Figure 2.1 shows a reliability block diagram of a series system of order
5. From the diagram we see that the series system is functioning if and only if all of its
components are functioning, i.e., if and only if X1 = · · · = X5 = 1. Hence, the state of
the system can be expressed as a function of the component state variables as follows:

φ = X1 ·X2 ·X3 ·X4 ·X5 =
5"

i=1

Xi.

Alternatively, the structure function of the series system can be written as:

φ(X) = min{X1, . . . , X5}

since the minimum of X1, . . . , X5 is 1 if and only if X1 = · · · = X5 = 1.

It may be useful to think of the product operator (·) of binary variables as repre-
senting the logical and-operation. Thus, for the series system to function, components
1 and 2 and · · · and 5 all need to function.

Both the product-expression and the minimum-expression can be extended to series
systems of arbitrary orders. Thus, the structure function of a series system of order n
can be written as:

φ(X) =
n"

i=1

Xi = min
1≤i≤n

Xi.

In order to derive convenient representations of structure functions of other types of
binary monotone system, we also need another operator, called the coproduct operator.
This operator is denoted by the symbol ∐ and defined as follows:
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Notation 2.1.4 For any a1, a2, . . . , an where ai ∈ [0, 1], i = 1, 2, . . . , n, we define:

a1 ∐ a2 := 1− (1− a1)(1− a2),
n#

i=1

ai := 1−
n"

i=1

(1− ai).

It is easy to verify that 1 ∐ 1 = 1 ∐ 0 = 0 ∐ 1 = 1, while 0 ∐ 0 = 0. More generally, if
a1, . . . , an are binary numbers (i.e., either 0 or 1), their coproduct is 1 if ai = 1 for at
least one i, and 0 if ai = 0 for all i.

1

2

Figure 2.2: A parallel system of order 2

Example 2.1.5 Figure 2.2 shows a reliability block diagram of a parallel system of
order 2. We see that the parallel system functions if and only if at least one of its
components is functioning. The structure function of this system can be written as:

φ(X) = X1 ∐X2 = 1− (1−X1) · (1−X2). (2.3)

To see this, note that the only way the system is not functioning is that X1 and X2

are both zero. In this case, the right hand side of (2.3) is clearly 0. For any other
combination of values for X1 and X2, the right hand side of (2.3) is 1.

Alternatively, the structure function of the parallel system can be written as:

φ(X) = max{X1, X2}

since the maximum of X1 and X2 is 0 if and only if X1 = X2 = 0.

From Example 2.1.5 we see that the coproduct-operator, ∐, may be though of as
representing the logical or-operation. Thus, for the above parallel system to function
components 1 or 2 must function.

Both the coproduct-expression and the maximum-expression can be extended to
parallel systems of arbitrary orders. Thus, the structure function of a parallel system
of order n can be written as:

φ(X) =
n#

i=1

Xi = max
1≤i≤n

Xi.
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2.2 Coherent systems
Every component of a binary monotone system should have some impact on the system
state. More precisely, if i is a component in a system, there should ideally exist at least
some state of the rest of the system where the state of component i is crucial for the
system state. Before we formalise this concept further, we introduce some notation:

(1i,x) := (x1, . . . , xi−1, 1, xi+1, . . . , xn),

(0i,x) := (x1, . . . , xi−1, 0, xi+1, . . . , xn),

(·i,x) := (x1, . . . , xi−1, ·, xi+1, . . . , xn).

Definition 2.2.1 Let (C,φ) be a binary monotone system, and let i ∈ C. The compo-
nent i is said to be relevant for the system (C,φ) if:

0 = φ(0i, x) < φ(1i, x) = 1 for some (·i, x).

If this is not the case, component i is said to be irrelevant for the system.

Relevance of components plays a very important role in reliability theory. Based on
this concept we also introduce the following crucial concept.

Definition 2.2.2 A binary monotone system (C,φ) is coherent if all its components
are relevant.

Note that a coherent system is obviously non-trivial as well, since in a trivial system
all components are irrelevant.

One might think that all binary monotone systems we encounter should be coherent.
However, coherency should be viewed a dynamic property. As parts of a system breaks,
some of the remaining components may become irrelevant. Similarly, if we, e.g., as part
of a reliability calculation, condition on the state of a component, the resulting system
may not be coherent.

Finally, depending on how we model a system, we may encounter components which
improve the performance of the system even though they are not relevant according to
our definition.

Example 2.2.3 Figure 2.3 shows a part of a large machine consisting of an electrical
unit and a condensator. The condensator’s job is to prevent the electrical unit from
being broken due to high voltage. Viewed as a component, the condensator is irrelevant.
However, this does not mean that it is not important! The condensator can prolong the
lifetime of the electrical unit, and hence also the lifetime of the whole machine.

Note that for this example, the problem can be avoided by considering the electrical
unit and the condensator as one component instead of two.

We now prove the intuitively reasonable result that within the class of non-trivial
monotone systems, the parallel structure is "the best" while the series system is "the
worst".
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Electrical unit

Condensator

Figure 2.3: A system with an irrelevant component.

Theorem 2.2.4 Let (C,φ) be a non-trivial binary monotone system of order n. Then
for all x ∈ {0, 1}n we have:

n"

i=1

xi ≤ φ(x) ≤
n#

i=1

xi. (2.4)

Proof: We focus on the left-hand inequality. If
$n

i=1 xi = 0, this inequality is trivial
since φ(x) ∈ {0, 1} for all x ∈ {0, 1}n. If on the other hand

$n
i=1 xi = 1, we must

have x = 1. Since (C,φ) is assumed to be non-trivial, it follows by Theorem 2.1.2 that
φ(1) = 1. Thus, the inequality is valid in this case as well. This completes the proof of
the left-hand inequality. The right-hand inequality is proved in a similar fashion and is
left as an exercise. □

By introducing redundancy into a system one could improve the reliability. However,
there are many different ways of doing this. In particular, we may introduce redundancy
at the component level or at the system level. The next result shows that redundancy
at the component level is better than redundancy at the system level. Moreover, the
opposite is true for series connections. In order to prove this result, we introduce the
product and coproduct operators for vectors:

x · y := (x1 · y1, x2 · y2, . . . , xn · yn),
x ∐ y := (x1 ∐ y1, x2 ∐ y2, . . . , xn ∐ yn).

Theorem 2.2.5 Let (C,φ) be a binary monotone system of order n. Then for all
x, y ∈ {0, 1}n we have:

(i) φ(x∐ y) ≥ φ(x)∐ φ(y),

(ii) φ(x · y) ≤ φ(x) · φ(y).

Moreover, assume that (C,φ) is coherent. Then equality holds in (i) for all x, y ∈
{0, 1}n if and only if (C,φ) is a parallel system. Similarly, equality holds in (ii) for all
x, y ∈ {0, 1}n if and only if (C,φ) is a series system.
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Proof: Since φ is non-decreasing and xi ∐ yi ≥ xi for i = 1, . . . , n, it follows that:

φ(x ∐ y) ≥ φ(x).

Similarly, we see that
φ(x ∐ y) ≥ φ(y).

Hence,
φ(x ∐ y) ≥ max{φ(x),φ(y)} = φ(x)∐ φ(y).

This proves (i). The proof of (ii) is similar and is left as an exercise.

We then assume that (C,φ) is coherent. We shall prove the first equivalence, i.e.,
that equality holds in (i) for all x,y ∈ {0, 1}n if and only if (C,φ) is a parallel system.

If (C,φ) is a parallel system, it follows that:

φ(x ∐ y) = ∐n
i=1(xi ∐ yi) = max

1≤i≤n

%
max{xi, yi}

&

= max
%
max
1≤i≤n

xi, max
1≤i≤n

yi
&
= φ(x)∐ φ(y),

which proves the "if"-part of the equivalence.
Assume conversely that φ(x ∐ y) = φ(x) ∐ φ(y) for all x,y ∈ {0, 1}n. Since (C,φ)

is coherent it follows that for any i ∈ C there exists a vector (·i,x) such that:

φ(1i,x) = 1 and φ(0i,x) = 0.

For this particular vector (·i,x) we have:

1 = φ(1i,x) = φ
'
(1i,0)∐ (0i,x)

(

= φ(1i,0)∐ φ(0i,x) = φ(1i,0)∐ 0

= φ(1i,0).

Since φ(0) = 0, it follows that:

φ((xi)i,0) = xi xi = 0, 1; i = 1, . . . , n.

Hence, for any x, we have:

φ(x) = φ
'
((x1)1,0)∐ ((x2)2,0)∐ . . .∐ ((xn)n,0)

(

= φ((x1)1,0)∐ φ((x2)2,0)∐ . . .∐ φ((xn)n,0)

= x1 ∐ x2 ∐ . . .∐ xn =
n#

i=1

xi.

Thus, we have shown that (C,φ) is a parallel system which proves the "only if"-part of
the equivalence. The other equivalence is proved similarly and is left as an exercise. □
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Figure 2.4: A componentwise parallel structure: “better” than systemwise parallel.

Figure 2.5: A systemwise parallel structure: “worse” than componentwise parallel.

Example 2.2.6 To illustrate Theorem 2.2.5, let φ be a series system of order 2. Then
the statement of the theorem is that componentwise connection of the nodes provides a
better result than systemwise connection, i.e.,

(x1 ∐ y1) · (x2 ∐ y2) ≥ (x1 · x2)∐ (y1 · y2).

See Figures 2.4 and 2.5 for an illustration of this result. Here x1 and x2 represent the
states of the circular nodes, while y1 and y2 represent the states of the square nodes.

Assume e.g., that x1 = y2 = 1 while x2 = y1 = 0. Then the componentwise
parallel structure is functioning, while the systemwise parallel structure is failed. By
Theorem 2.2.5 the converse will never hold true. If the systemwise parallel structure is
functioning, the componentwise parallel structure must be functioning as well. Similarly,
if the componentwise parallel structure is failed, then the systemwise parallel structure
must be failed as well.

2.3 Dual systems

In this section we will introduce a concept of duality :



2.3. DUAL SYSTEMS 11

Definition 2.3.1 Let φ be a structure function of a binary monotone system of order
n. We then define the dual structure function, φD for all y ∈ {0, 1}n as3:

φD(y) := 1− φ(1− y).

Furthermore, if X is the component state vector of a binary monotone system, we
define the dual component state vector XD as:

XD := (XD
1 , . . . , XD

n ) = (1−X1, . . . , 1−Xn) = 1−X

Note that the relation between φ and φD should be interpreted as a relation between
two functions, while the relation between X and XD is a relation between two stochastic
vectors. Corresponding to the dual component state vector XD we introduce the dual
component set CD = {1D, . . . , nD}, where it is understood that the dual component
iD is functioning if the component i is failed, while iD is failed if the component i is
functioning.

By combining duality on the component level and on the system level, we see that
we have the following relation between the two stochastic variables φ(X) and φD(XD):

φD(XD) = 1− φ(1 − XD) = 1− φ(X).

Hence, the dual system is functioning if and only if the original system is failed and
vice versa.

Example 2.3.2 Let φ be the structure function of a system of order 3 where:

φ(y) = y1 ∐ (y2 · y3),

The dual structure function is then given by:

φD(y) = 1− φ(1− y)
= 1− (1− y1)∐ ((1− y2) · (1− y3))

= 1− [1− (1− (1− y1))(1− (1− y2) · (1− y3))]

= 1− [1− y1 · (1− (1− y2) · (1− y3))]

= y1 · (y2 ∐ y3)

Example 2.3.3 Let (C,φ) be a series system of order n. That is, φ is given by:

φ(y) =
n"

i=1

yi.

3Note that we use y as argument instead of X here to emphasize that we are describing a relation
between the two binary functions φ and φD. This should not be confused with the relation between
the two random variables φ(X) and φD(XD).
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The dual structure function is then given by:

φD(y) = 1− φ(1− y)

= 1−
n"

i=1

(1− yi)

=
n#

i=1

yi.

Thus, (CD,φD) is a parallel system of order n.

Example 2.3.4 Let (C,φ) be a parallel system of order n. That is, φ is given by:

φ(y) =
n#

i=1

yi.

The dual structure function is then given by:

φD(y) = 1− φ(1− y)

= 1−
n#

i=1

(1− yi)

= 1− (1−
n"

i=1

(1− (1− yi))

=
n"

i=1

yi.

Thus, (CD,φD) is a series system of order n.

We close this section by a result showing that if we take the dual of the dual system,
we get the original system back.

Theorem 2.3.5 Let φ be the structure function of a binary monotone system, and let
φD be the corresponding dual structure function. Then we have:

(φD)D = φ.

That is, the dual of the dual system is equal to the original system.

Proof: For all y ∈ {0, 1}n we have:

(φD)D(y) = 1− φD(1 − y)
= 1− [1− φ(1 − (1 − y))]
= φ(y).

□
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2.4 Reliability of binary monotone systems

If (C,φ) is a binary monotone system, the reliability of a component i ∈ C, denoted
by pi, is defined as the probability that component i is functioning. That is, pi :=
P (Xi = 1), for all i ∈ C. Obviously, a component with high reliability is likely to be
functioning, while a component with low reliability is more likely to fail. Note that
since Xi is binary, we have:

E[Xi] = 0 · P (Xi = 0) + 1 · P (Xi = 1) = P (Xi = 1) = pi, for all i ∈ C. (2.5)

Thus, the reliability of component i is equal to the expected value of its component
state variable, Xi.

Similarly, the reliability of the system, denoted by h, is defined as the probability
that the system is functioning. That is, h := P (φ = 1). Again, since φ is binary, we
have:

E[φ(X)] = 0 · P (φ(X) = 0) + 1 · P (φ(X) = 1) = P (φ(X) = 1) = h. (2.6)

Thus, the reliability of the system is equal to the expected value of the structure func-
tion, φ(X). From this it immediately follows that the reliability of a system, at least in
principle, can be calculated as:

h = E[φ(X)] =
)

x∈{0,1}n
φ(x)P (X = x) (2.7)

In the case where the component state variables are dependent, the system reliability
h will depend on the full joint distribution of the component state vector. Hence, if we
only know the component reliabilities, the best we can do is to establish upper and lower
bounds for h. See Section 6.2 for more on this. In the remaining part of this section
we instead consider the case where the component state variables can be assumed to
be independent. In order to do so we introduce the vector of component reliabilities,
p := (p1, p2, . . . , pn), and note that:

P (Xi = xi) =

!
pi if xi = 1,

1− pi if xi = 0.

Since xi is either 0 or 1, this probability can be written in the following more compact
form:

P (Xi = xi) = pxi
i (1− pi)

1−xi .

If the component state variables X1, X2, . . . , Xn are independent, we can use this in
order to write the joint distribution of X in terms of p as follows:

P (X = x) =
n"

i=1

P (Xi = xi) =
n"

i=1

pxi
i (1− pi)

1−xi . (2.8)
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Thus, when the component state variables are independent, we may insert (2.8) into
(2.7) and get the following expression for the system reliability:

h = E[φ(X)] =
)

x∈{0,1}n
φ(x)

n"

i=1

pxi
i (1− pi)

1−xi (2.9)

Note that in this case the reliability of the system is a function of the component
reliabilities, so we may write

h = h(p). (2.10)

The function h(p) is called the reliability function of the system.

Example 2.4.1 Consider a series system of order n. Assuming that the component
state variables are independent, the reliability of this system is given by:

h(p) = E[φ(X)] = E[
n"

i=1

Xi] =
n"

i=1

E[Xi] =
n"

i=1

pi,

where the third equality follows by using that X1, X2, . . . , Xn are assumed to be inde-
pendent.

Example 2.4.2 Consider a parallel system of order n. Assuming that the component
state variables are independent, the reliability of this system is given by:

h(p) = E[φ(X)] = E[
n#

i=1

Xi] = E[1−
n"

i=1

(1−Xi)]

= 1−
n"

i=1

(1− E[Xi]) =
n#

i=1

E[Xi] =
n#

i=1

pi,

where the fourth equality follows by using that X1, X2, . . . , Xn are assumed to be inde-
pendent.

1 2

4

3

Figure 2.6: A mixed parallel and series system
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Example 2.4.3 The structure function for the system in Figure 2.6 is

φ(X) =
*
(X1 ·X2)∐X3

+
·X4, (2.11)

because for the system to function ((components 1 and 2 must function) or (component
3 must function)) and component 4 must function.

Alternatively, we see that components 1 and 2 are in series implying that the struc-
ture function depends on components 1 and 2 through X1 ·X2. Furthermore, the part of
the system containing components 1, 2 is in parallel with component 3 implying that the
structure function depends on components 1, 2 and 3 through (X1 ·X2) ∐X3. Finally,
the part of the system containing components 1, 2 and 3 is in series with component 4,
implying that the structure function is as in equation (2.11).

Assuming that the component state variables are independent it is easy to verify,
using a similar argument as we used for the structure function, that the reliability of
the system is given by:

h(p) =
*
(p1 · p2)∐ p3

+
· p4.

Theorem 2.2.5 can be extended to reliability functions as well. That is, we have the
following result:

Theorem 2.4.4 Let h(p) be the reliability function of a monotone system (C,φ) of
order n. Then for all p,p′ ∈ [0, 1]n we have:

(i) h(p∐ p′) ≥ h(p)∐ h(p′),

(ii) h(p · p′) ≤ h(p) · h(p′)

If in addition (C,φ) is coherent, equality holds in (i) for all p,p′ ∈ [0, 1]n if and only if
(C,φ) is a parallel system. Similarly, equality holds in (ii) for all p,p′ ∈ [0, 1]n if and
only if (C,φ) is a series system.

Proof: Note that the theorem implicitly assumes independence, since we can write h(p).
Then, for independent X,Y (corresponding to p,p′), we have:

h(p ∐ p′)− h(p)∐ h(p′)

= E[φ(X ∐ Y)]− E[φ(X)]∐ E[φ(Y)]

= E[φ(X ∐ Y)− φ(X)∐ φ(Y)],

where the last expectation must be non-negative since by Theorem 2.2.5 we know that:

φ(x ∐ y)− φ(x)∐ φ(y) ≥ 0,

for all x,y ∈ {0, 1}n. This completes the proof of (i). The proof of (ii) is similar and
is left as an exercise.
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We now show that equality in (i) holds for all p,p′ ∈ [0, 1]n if and only if (C,φ)
is a parallel system. In order to do so, we may choose p and p′ arbitrary such that
0 < pi < 1, 0 < p′i < 1 for i = 1, . . . , n. This implies that:

P (X = x,Y = y) > 0, for all x ∈ {0, 1}n and y ∈ {0, 1}n.

Hence, E[φ(X ∐ Y)− φ(X) ∐ φ(Y)] = 0 if and only if φ(x ∐ y)− φ(x) ∐ φ(y) = 0 for
all x ∈ {0, 1}n and y ∈ {0, 1}n. By Theorem 2.2.5 this holds if and only if (C,φ) is a
parallel system. The other equivalence is proved similarly, and left as an exercise. □

Example 2.4.5 Consider the system (C,φ) of order 3 where:

φ(x) = x1 · (x2 ∐ x3),

and where the component state variables are independent and P (Xi = 1) = p for all
i ∈ C. Then it is easy to verify that h(p) = p · (p∐ p) = 2p2− p3. From Theorem 2.4.4,
it follows that for all 0 ≤ p ≤ 1, we have:

h(p∐ p) = 2(p∐ p)2 − (p∐ p)3

≥ h(p)∐ h(p) = (2p2 − p3)∐ (2p2 − p3)

In Figure 2.7 we have plotted the reliabilities of the two systems as functions of p. We
see that indeed h(p ∐ p) is greater than or equal to h(p) ∐ h(p) for all 0 ≤ p ≤ 1. In
fact the inequality is strict when 0 < p < 1.

0.00 0.20 0.40 0.60 0.80 1.00

1.00

0.80

0.60

0.40

0.20

0.00

Figure 2.7: h(p∐ p) (red curve) versus h(p)∐ h(p) (green curve).

Example 2.4.6 Consider the system (C,φ) of order 3 where:

φ(x) = x1 ∐ (x2 · x3),
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and where the component state variables are independent and P (Xi = 1) = p for all
i ∈ C. In this case h(p) = p ∐ p2 = p + p2 − p3. From Theorem 2.4.4, it follows that
for all 0 ≤ p ≤ 1, we have:

h(p · p) = p2 + p4 − p6

≤ h(p) · h(p) = (p+ p2 − p3)2

In Figure 2.8 we have plotted the reliabilities of the two systems as functions of p. We
see that indeed h(p · p) is less than or equal to h(p) · h(p) for all 0 ≤ p ≤ 1, and that
the inequality is strict when 0 < p < 1.

0.00 0.20 0.40 0.60 0.80 1.00

1.00

0.80

0.60

0.40

0.20

0.00

Figure 2.8: h(p · p) (red curve) versus h(p) · h(p) (green curve).

2.5 k-out-of-n systems
A k-out-of-n system is a binary monotone system (C,φ) where C = {1, . . . , n} which
functions if and only if at least k out of the n components are functioning. Note that an
n-out-of-n system is a series structure, while a 1-out-of-n system is a parallel structure.

We observe that in order to evaluate the structure function of a k-out-of-n system,
we need to count the number of functioning components and check if this number is
greater than or equal to k. The number of functioning components is simply the sum
of the component state variables. Hence, the structure function can be written as:

φ(X) =

!
1 if

,n
i=1 Xi ≥ k

0 otherwise.
(2.12)

In order to evaluate the reliability of a k-out-of-n system it is convenient to introduce
the following random variable:

S =
n)

i=1

Xi.
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Thus, S is the number of functioning components. This implies that:

h = P (φ(X) = 1) = P (S ≥ k), i = 0, 1, . . . , n.

If the component state variables are independent, it is easy to derive the distribution
of S. In particular, if p1 = · · · = pn = p, S is a binomially distributed random variable.
Thus, we have:

P (S = i) =

-
n

i

.
pi(1− p)n−i.

Hence, the reliability of the system is given by:

h(p) = h(p) = P (S ≥ k) =
n)

i=k

-
n

i

.
pi(1− p)n−i

In the general case with unequal component reliabilities, an explicit analytical ex-
pression for the distribution of S is not so easy to derive. Still this distribution can be
calculated efficiently using generating functions. See Exercise 2.3.3.

1

2

2

3

31

Figure 2.9: A reliability block diagram of a 2-out-of-3 system.

1
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2
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1

3

Figure 2.10: An alternative reliability block diagram of a 2-out-of-3 system.

A k-out-of-n system can represented by a reliability block diagram in several ways.
The first type of diagram is shown for a 2-out-of-3 system in Figure 2.9. Here, we
consider a parallel connection of several series structures. Each of the series structures
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corresponds to a minimal way in which a signal can pass through the system, i.e. any
way two out of three components are functioning. The second type of diagram is shown
for the same 2-out-of-3 system in Figure 2.10. In this case, we draw a series connection
of several parallel structures. Each of the parallel structures corresponds to a minimal
way to make the system fail. Again, this happens if any two out of the three components
are not working.

2.6 Exercises
Exercise 2.1: What is the reliability function of a series system of order n where the
component states are assumed to be independent?

Exercise 2.2: Consider the parallel structure of order 2 in Figure 2.2. Assume that
the component states are independent.
a) If you know that p1 = P (X1 = 1) = 0.5 and p2 = P (X2 = 1) = 0.7, what is the
reliability of the parallel system?
b) What is the system reliability if p1 = 0.9 and p2 = 0.1?
c) Can you give an interpretation of these results?

Exercise 2.3: Consider a binary monotone system (C,φ), where the component set is
C = {1, . . . , 4} and where φ is given by:

φ(X) = X1 ·X2 · (X3 ∐X4).

a) Draw a reliability block diagram of this system.
b) Assume that the components in the system are independent. What is the corre-
sponding reliability function?

Exercise 2.4: Consider the system shown in Figure 2.11.

1 2

3

4

5

Figure 2.11: A mixed parallel and series system.

a) What is the structure function of this system?
b) Assume that the components in the system are independent. What is the corre-
sponding reliability function?
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Exercise 2.5: There are 8 different coherent systems of order less than or equal to 3
(not counting permutations in the numbering of components). What are they?
(Hint: Here are a couple to get you started φ(X) = X1 ·X2 ·X3, φ(X) = X1 ∐X2.)

Exercise 2.6: Consider a monotone system (C,φ) of order n, and let A ⊂ C the set
of irrelevant components. Furthermore, let (C \ A,φ′), be a binary monotone system
of order m = n − |A|, where φ′ is a binary non-decreasing function defined for all
m-dimensional binary vectors x ∈ {0, 1}m such that:

φ′(x) = φ(1A,xĀ)

Show that (C \ A,φ′) is coherent.

Exercise 2.7: Prove the right-hand inequality in Theorem 2.2.4.

Exercise 2.8: Prove item (ii) in Theorem 2.2.5 as well as the equivalence which is not
proved in the text.

Exercise 2.9: Prove that the dual structure of a k-out-of-n structure is an (n−k+1)-
out-of-n structure.

Exercise 2.10: Let S be a stochastic variable with values in {0, 1, . . . , n}. We then
define the generating function of S as:

GS(y) = E[yS] =
n)

s=0

ysP (S = s). (2.13)

a) Explain why GS(y) is a polynomial, and give an interpretation of the coefficients of
this polynomial.
b) Let T be another non-negative integer valued stochastic variable with values in
{0, 1, . . . ,m} which is independent of S. Show that:

GS+T (y) = GS(y) ·GT (y). (2.14)

c) Let X1, . . . , Xn be independent binary variables with P (Xi = 1) = pi and P (Xi =
0) = 1− pi = qi, i = 1, . . . , n. Show that:

GXi
(y) = qi + piy, i = 1, . . . , n. (2.15)

d) Introduce:

Sj =

j)

i=1

Xi, j = 1, 2, . . . , n,

and assume that we have computed GSj
(y). Thus, all the coefficients of GSj

(y) are
known at this stage. We then compute:

GSj+1
(y) = GSj

(y) ·GXj+1
(y).
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How many algebraic operations (addition and multiplication) will be needed to complete
this task?
e) Explain how generating functions can be used in order to calculate the reliability of
a k-out-of-n system. What can you say about the order of this algorithm4?

4By the order of an algorithm we mean a suitable function of the size of the problem such that the
number of basic operations needed to complete the calculations grows (approximately) proportionally
to this function. In the context of reliability calculations the size of the problem will typically be the
number of components in the system.
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Chapter 3
Basic reliability calculation methods

In this chapter we will present various methods for simplifying reliability calculations
by structuring the problems in certain ways. The first method involves conditioning
on the state of a given component. This enables us to decompose the system into sim-
pler building blocks. Furthermore, we will see that the structure function of monotone
systems can be represented via its so-called paths and cuts; roughly, this is the compo-
nents which ensure that the system functions or fails. Another useful way to represent
monotone systems is via modules. The idea here is to divide a complicated system into
parts which may then be analysed separately. Finally, we will comment briefly on how
to include time into this framework by looking at dynamic system analysis.

3.1 Pivotal decompositions
Sometimes reliability calculations can be simplified by dividing the problem into two
simpler problems. By considering these simpler problems and combining the results
afterwards, even very complex systems can be analysed successfully. The following
result shows how a structure and reliability function of order n can be expressed via
two corresponding functions of order n − 1. This is called pivotal decomposition, and
allows us to reduce the order of the system at hand. This is particularly useful when
computing the exact system reliability, see Chapter 4:

Theorem 3.1.1 Let (C,φ) be a binary monotone system of order n. Then we have:

φ(x) = xiφ(1i, x) + (1− xi)φ(0i, x), i = 1, 2, . . . , n. (3.1)

Similarly, for the reliability function of a monotone system where the component state
variables are independent, we have

h(p) = pih(1i,p) + (1− pi)h(0i,p), i = 1, 2, . . . , n. (3.2)

Proof: Let i ∈ C. Since xi is binary, we consider two cases: xi = 1 and xi = 0. If
xi = 1, then the right-hand side of (3.1) becomes φ(1i,x). Hence (3.1) holds in this

23
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case. On the other hand, if xi = 0, the right-hand side of (3.1) becomes φ(0i,x), so
(3.1) holds in this case as well. Equation (3.2) is proved by replacing the vector x by
the stochastic vector X in (3.1), and taking the expected value on both sides of this
equation. □

Note that (3.1) and (3.2) can alternatively be written respectively as:

φ(x) = φ(0i,x) + [φ(1i,x)− φ(0i,x)]xi, i = 1, . . . n, (3.3)
h(p) = h(0i,p) + [h(1i,p)− h(0i,p)]pi i = 1, . . . n. (3.4)

From these expressions it follows that φ is a linear function of xi, while h is a linear
function of pi, i = 1, . . . , n. A function which is linear in each argument is said to be
multilinear.

   3

1 4

2 5

Figure 3.1: A bridge structure.

Example 3.1.2 Let (C,φ) be the bridge structure shown in Figure 3.1, where C =
{1, . . . , 5}. In order to derive the structure function of this system, we note that:

φ(13,X) = The state of the system given that component 3 is functioning,
φ(03,X) = The state of the system given that component 3 is failed.

Given that component 3 is functioning, the system becomes a series connection of two
parallel systems, the first one is the parallel system of component 1 and 2, while the
second one is the parallel system of component 4 and 5. Hence, we get that:

φ(13,X) = (X1 ∐X2) · (X4 ∐X5).

If on the other hand, component 3 is failed, the system becomes a parallel connection of
two series systems, the first one is the series system of component 1 and 4, while the
second one is the parallel system of component 2 and 5. From this it follows that:

φ(03,X) = (X1 ·X4)∐ (X2 ·X5).
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By Theorem 3.1.1 it follows that φ can be written as:

φ(X) = X3 · φ(13,X) + (1−X3) · φ(03,X).

Combining all this we get that φ is given by:

φ(X) = X3 · (X1 ∐X2)(X4 ∐X5) + (1−X3) · (X1 ·X4 ∐X2 ·X5). (3.5)

Assuming that the component state variables are independent, we get that:

h(p) = E[φ(X)]

= E[X3(X1 ∐X2)(X4 ∐X5) + (1−X3)(X1X4 ∐X2X5)]

= p3(p1 ∐ p2)(p4 ∐ p5) + (1− p3)(p1p4 ∐ p2p5)

A consequence of Theorem 3.1.1 is that for coherent systems, the reliability function
is strictly increasing if the reliabilities are strictly between 0 and 1:

Theorem 3.1.3 Let h(p) be the reliability function of a binary monotone system (C,φ)
of order n, and assume that 0 < pj < 1 for j ∈ C. If component i is relevant, then
h(p) is strictly increasing in pi.

Proof: From equation (3.2), it follows that

∂h(p)
∂pi

= h(1i,p)− h(0i,p) (3.6)

= E[φ(1i,X)]− E[φ(0i,X)] = E[φ(1i,X)− φ(0i,X)]

=
)

(·i,x)∈{0,1}n−1

/
φ(1i,x)− φ(0i,x)

0
P
'
(·i,X) = (·i,x)

(

Since (C,φ) is a monotone system, φ is non-decreasing in each argument, and hence
all the terms in this sum are non-negative. We then assume that component i is relevant.
That is, there exists (·i,y) such that φ(1i,y) − φ(0i,y) = 1. Moreover, since we have
assumed that 0 < pj < 1 for j ∈ C we have:

P
'
(·i,X) = (·i,y)

(
=

n"

j=1,j ∕=i

p
yj
j (1− pj)

1−yj > 0

Thus, at least one of the terms in the last sum in (3.6) is positive which implies that
∂h(p)
∂pi

> 0.

Hence, we conclude that h(p) is strictly increasing in each pi. □

Note that if (C,φ) is coherent and 0 < pj < 1 for j ∈ C, it follows from Theo-
rem 3.1.3 that h is strictly increasing in each argument, since in this case, all components
are relevant.
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3.2 Representation of binary monotone systems by
paths and cuts

Now, we will look at a way to represent monotone systems via certain subsets of the
component set, called path and cut sets. This turns out to be very useful in order to
compute the exact system reliability, which will be done in Chapter 4.

In the following, we consider deterministic vectors x,y. We say that a vector y is
smaller than another vector x, that is y < x if yi ≤ xi for i = 1, . . . , n and yi < xi for
at least one i.

Notation 3.2.1 For any binary monotone system (C,φ) of order n, and vector x ∈
{0, 1}n the component set C can be divided into two subsets

C0(x) = {i : xi = 0}, C1(x) = {i : xi = 1}.

Thus, if X = x, the subset C1(x) denotes the set of components which are functioning,
while C0(x) denotes the set of components which are failed.

Definition 3.2.2 Let (C,φ) be a binary monotone system.

• A vector x is a path vector if and only if φ(x) = 1. The corresponding path set
is C1(x).

• A minimal path vector is a path vector, x, such that y < x implies that φ(y) = 0.
The corresponding minimal path set is C1(x).

• A vector x is a cut vector if and only if φ(x) = 0. The corresponding cut set is
C0(x).

• A minimal cut vector is a cut vector, x, such that x < y implies that φ(y) = 1.
The corresponding minimal cut set is C0(x).

Thus, a path vector is a vector x1 such that the system is functioning if X = x1.
A cut vector is a vector x0 such that the system is failed if X = x0. A minimal path
vector is a path vector which cannot be decreased in any way and still be a path vector.
Similarly, a minimal cut vector is a cut vector which cannot be increased in any way
and still be a cut vector. A minimal path set is a minimal set of components which
ensures that the system is working if these components are working. A minimal cut
set is a minimal set of components such that if these are sabotaged, the system will be
sabotaged.

Example 3.2.3 Consider the bridge structure in Figure 3.2. To find the minimal path
sets, look at Figure 3.2 and try to locate paths where it is possible to send a signal through
the system. For instance, one such path is through components 1 and 4. Hence, {1, 4}
is a path set. We then see that this set is in fact minimal, because if only components 1
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and 4 are functioning, and one of them fails, the system will fail as well. Similarly, we
can argue for e.g. the path through components 2 and 5. Continuing like this, we find
that the minimal path sets are:

P1 = {1, 4}, P2 = {2, 5}, P3 = {1, 3, 5} and P4 = {2, 3, 4}.

(Verify that these are in fact minimal!)
To find the minimal cut sets, look at Figure 3.2 and see what combination of com-

ponents not functioning will sabotage the whole system. For example, if components 1
and 2 are not functioning, the system is sabotaged because there is no way for a signal
to make it past the initial point. The set {1, 2} is in fact a minimal cut set, because
if all other components are functioning except 1 and 2, and one of them is fixed, the
system will start to function. A similar argument shows that {4, 5} is a minimal cut
set. Continuing in the same way, we find that the minimal cut sets are:

K1 = {1, 2}, K2 = {4, 5}, K3 = {1, 3, 5} and K4 = {2, 3, 4}.

(Make sure you can explain why all of these are minimal cut sets!)

   3

1 4

2 5

Figure 3.2: A bridge structure.

Before we continue with how to represent structures via their minimal paths and
cuts, we need some notation:

Notation 3.2.4 Let A ⊂ C, A = {a1, a2, . . . , ak}, where k is the number of elements
in A. Also, let x be some component state vector. Then, we let xA be the vector where
we select the k components from x corresponding to the components in A, i.e.,

xA = (xa1 , xa2 , . . . , xak).

Now, we are ready to explain how structures can be represented via their minimal
path and cut sets. In order to do so, we consider a binary monotone system (C,φ),
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and let Pj ⊆ C be the jth minimal path set of this system. Then we can define the
following binary monotone system (Pj, ρj), where ρj = ρj(xPj) is given by:

ρj(xPj) =
"

i∈Pj

xi. (3.7)

(Pj, ρj) is referred to as the jth minimal path series structure of the system, j = 1, . . . , p.
From this, we find that:

φ(x) =
p#

j=1

ρj(xPj) =

p#

j=1

"

i∈Pj

xi. (3.8)

That is, the system (C,φ) can be represented as a parallel structure of the minimal
path series structures. See Figure 3.2 for an illustration of how the bridge structure
in Example 3.2.3 can be represented as a parallel structure of its minimal path series
structures. The reason for this is that the system functions if and only if at least one
of the minimal path series structures are functioning.

1

2

4

3

5

4

1 5

32

Figure 3.3: The reliability block diagram of a bridge structure in Example 3.2.3 repre-
sented as a parallel structure of its minimal path series structures.

Similarly, let Kj ⊆ C be the jth minimal cut set of this system. Then we can define
the following binary monotone system (Kj,κj), where κj = κj(xKj) is given by:

κj(xKj) =
#

i∈Kj

xi. (3.9)

(Kj,κj) is referred to as the jth minimal cut parallel structure of the system, j =
1, . . . , k. From this, we find that:

φ(x) =
k"

j=1

κj(xKj) =
k"

j=1

#

i∈Kj

xi. (3.10)
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Figure 3.4: The reliability block diagram of a bridge structure in Example 3.2.3 repre-
sented as a series structure of its minimal cut parallel structures.

That is, the system (C,φ) can be represented as a series structure of the minimal cut
parallel structures. See Figure 3.4. The reason for this is that for the system to be
failed, it suffices for one of the minimal cut parallel structures is failed.

These representations of the structure function are very useful, and will be applied
in Chapter 4 to compute the exact system reliability. However, a major challenge is
that computing the minimal path and cut sets for a large system is computationally
very time consuming. Therefore, it is important to derive fast algorithms for finding
the minimal path and cut sets. This is an important challenge in applied reliability
theory, but beyond the scope of these notes.

The proof of the following theorem is left as an exercise:

Theorem 3.2.5 Let (C,φ) be a binary monotone system, and let (CD,φD) be its dual.
Then the following statements hold:

(i) x is a path vector (alternatively, cut vector) for (C,φ) if and only if xD is a cut
vector (path vector) for (CD,φD).

(ii) A minimal path set (alternatively, cut set) for (C,φ) is a minimal cut set (path
set) for (CD,φD).

3.3 Modules of monotone systems

Sometimes, it is possible to divide a monotone system into subsystems which are anal-
ysed separately before finally analysing how these subsystems are connected.

Let A ⊆ C. Then, the complement set of A, i.e., C \ A, is denoted by Ā. We have
the following formal definition of a module:

Definition 3.3.1 Let (C,φ) be a binary monotone system, and A ⊆ C. The monotone
system (A,χ) is a module of (C,φ) if and only if the structure function φ can be written
as:

φ(x) = ψ(χ(xA), xĀ), for all x ∈ {0, 1}n,

where ψ is a monotone structure function. The set A is called a modular set of (C,φ).
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The structure function χ expresses the state of the module as a function of the states
of the components in the modular set, while ψ expresses how the state of the system
depends on the state of the module as well as on the states of components outside of the
module. You can think of a module as a "large component" which can be circled in and
separated out from the rest of the system. More precisely, a module consists of a subset
of the component set which is such that the structure function of the system depends
on the states of the components within this set only through the structure function of
the module. Thus, in order to determine the state of the system, we only need to know
the state of the module, not the states of the individual components within the module.

Definition 3.3.2 A modular decomposition of a monotone system (C,φ) is a set of
modules {(Aj,χj)}rj=1 connected by a binary monotone organisation structure function
ψ. The following conditions must be satisfied:

(i) C =
1r

j=1 Aj, where Aj ∩ Ak = ∅ for j ∕= k.

(ii) φ(x) = ψ[χ1(xA1), . . . ,χr(xAr)].

We observe that a modular decomposition is a disjoint partition of the component
set into modules such that the structure function of the whole system is a function of
the structure functions of these modules.

1

2

3

4

5

Figure 3.5: A monotone system which can be modularly decomposed.

Example 3.3.3 In order to find a modular decomposition for the system in Figure 3.5,
we can let A1 = {1, 2}, A2 = {3, 4, 5},

χ1(XA1) = X1 ∐X2, χ2(XA2) = X3 ∐X4 ∐X5

and
ψ(χ1(XA1),χ2(XA2)) = χ1(XA1) · χ2(XA2).
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If the component state variables are independent, we may calculate the reliability
of the system in a two-step process. In the first step we compute the reliability of the
modules. Then in the second step we treat the modules as components and compute
the system reliability by using the reliabilities of the modules as input. Thus, whenever
one can identify modules in a system, this can be utilised in order to simplify and speed
up the reliability calculations.

Modular decompositions can also be used in cases where it is not possible to compute
the system reliability exactly as it is too time consuming. In such cases, we may have
to resort to finding upper and lower bounds for the system reliability. It turns out that
modules may be used to improve bounds. We will return to this in Section 6.2.

3.4 Dynamic system analysis
So far, we have only considered components and systems at one specific time. Now, we
will also consider the development over time. Let t ≥ 0, i = 1, . . . , n:

Xi(t) = the state of component i at time t, (3.11)

Here, Xi(t) is a random variable (corresponding to Xi of the previous sections). Hence,
the development of the state of component i over time, {Xi(t)}t≥0, is a stochastic
process. We assume that the stochastic processes {Xi(t), t ≥ 0}ni=1 are independent.
This corresponds to assuming that the components are independent. Also, let

φ(X(t)) = the state of the system at time t. (3.12)

As for the components, φ(X(t)) is a random variable, and the development of the system
state over time, {φ(X(t))}t≥0 is a stochastic process. We also introduce

pi(t) = P (Xi(t) = 1) = the reliability of component i at time t, (3.13)

h(p(t)) = P (φ(X(t) = 1)) = the reliability of the system at time t.

In the following, we do not consider the possibility of repairing components, and let
(for i = 1, . . . , n)

Ti = the lifetime of component i, (3.14)
S = the lifetime of the system.

Now, let Ti have cumulative distribution function Fi, i = 1, . . . , n and S cumulative dis-
tribution function G. We assume that the Fi’s are known, and would like to determine
G. We have the following relations:

pi(t) = P (Xi(t) = 1) = P (Ti > t) = 1− Fi(t) =: F̄i(t), (3.15)

and
G(t) = 1− P (S > t) = P (φ(X(t)) = 0) = 1− h(p(t)). (3.16)

Then we have the following theorem:
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Theorem 3.4.1 For a binary monotone system (C,φ) with minimal path sets P1, . . . , Pp

and minimal cut sets K1, . . . , Kk we have:

S =

!
max1≤j≤p mini∈Pj

Ti

min1≤j≤k maxi∈Kj
Ti

Proof: To prove the first equality: The lifetime of the system equals the lifetime of the
minimal path series structure which lives the longest (from the definition of minimal
path series structures). The lifetime of the longest living minimal path series structure
equals the lifetime of the shortest living component in this path set.

The second equality can be proved similarly. This is left as an exercise.
□

3.5 Exercises

Exercise 3.1: Prove equation (3.2) in another way than what is done in the proof of
Theorem 3.1.1.
(Hint: Condition on the state of component i.)

Exercise 3.2: Prove Theorem 3.2.5.

Exercise 3.3: Find all of the path and cut sets of the brigde structure in Figure 3.2.

Exercise 3.4: Find the representations via the minimal path sets and the minimal cut
sets of the following systems:

(i) The 2-out-of-3 system.

(ii) The 3-out-of-4 system.

(iii) The series system of 3 components.

(iv) The parallel system of 4 components.

Exercise 3.5: Consider a coherent system (C,φ) with minimal path sets P1, . . . , Pp

and minimal cut sets K1, . . . , Kk. Prove that

p2

j=1

Pj = C =
k2

j=1

Kj.

Exercise 3.6: Find the minimal path sets and the minimal cut sets of the system in
Figure 3.6. Find two different expressions for the structure function of this system.
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Figure 3.6: A series connection of a parallel system, a bridge system and a single
component.

Exercise 3.7: Show that if (C,φ) is a bridge system (see Figure 3.1), then (CD,φD)
is a bridge system as well. [Hint : Compare the minimal path and cut sets of (C,φ).]

Exercise 3.8: Let (A,χ) be a module of (C,φ). Assume that x1 and x0 are such that
χ(xA

1 ) = 1 and χ(xA
0 ) = 0. Prove that for all (·A,xĀ) we have:

φ(xA
1 ,x

Ā
1 ) = φ(1A,xĀ

1 ) and φ(xA
0 ,x

Ā
0 ) = φ(0A,xĀ

1 ).

Exercise 3.9: Find all the modules of the following structure function:

φ(x) = (x1(x2 ∐ x3))∐ (x4 ∐ x5).

Exercise 3.10: What are the modules of a k-out-of-n system where 1 < k < n? Give
a reason for your answer.

Does this mean that a k-out-of-n system is well suited for modular decomposition?

Exercise 3.11: Consider the system shown in Figure 3.7.
a) Find the structure function of the system by dividing the system into modules.
b) Find the structure function of the system without dividing the system into mod-

ules.
c) Compare the computational efforts in a) and b).

Exercise 3.12: Consider the system shown in Figure 3.8.
a) What is the structure function of this system?
b) Assume that all of the component states are independent. What is the reliability
function of the system?

Exercise 3.13: Consider the system shown in Figure 3.9.
a) What is the structure function of this system.
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Figure 3.7: A system suited for modular decompostition.

    3 7
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6

Figure 3.8: A mixed bridge and parallel system.

b) Assume that all of the component states are independent. What is the reliability
function of the system?

Exercise 3.14: Prove the second equality of Theorem 3.4.1.

Exercise 3.15: Consider a binary monotone system (C,φ) with minimal path sets
P1, . . . , Pp and minimal cut sets K1, . . . , Kk and let f be a non-negative function defined
over the positive integers {1, . . . , n}. Prove that

min
1≤j≤k

max
i∈Kj

f(i) = max
1≤j≤p

min
i∈Pj

f(i).
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Figure 3.9: A twist on a mixed bridge and parallel system.
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Chapter 4
Exact computation of the reliability of
binary monotone systems

In this chapter, we will look at various methods for computing the exact reliability of
a binary monotone system. In the general case this is a hard problem in the sense that
the running time of all known algorithms grows exponentially in the size of the problem,
i.e., in the order of the system.

If the running time of an algorithm grows approximately proportionally to a positive
function f(n), where n is measuring the size of the problem (i.e, the number of com-
ponents in a binary monotone system), we say that the algorithm is of order O(f(n)).
More formally, let t(n) denote the worst case running time of the algorithm as a func-
tion of the size n. Then the order of the algorithm is O(f(n)) if and only if there exists
a positive constant M and a positive integer n0 such that:

t(n) ≤ Mf(n), for all n ≥ n0.

If f is a polynomial in n, we say that the algorithm is a polynomial time algorithm,
while if f is an exponential function of n, we say that the algorithm is an exponential
time algorithm.

In computational complexity theory, NP (for nondeterministic polynomial time)
is a complexity class used to describe certain types of problems. NP contains many
important problems, the hardest of which are called NP-complete problems. The most
important open question in complexity theory is whether polynomial time algorithms
actually exist for solving NP-complete problems. It is widely believed that this is not
the case. The class of NP-hard problems is a class of problems that are, informally, at
least as hard as the hardest problems in NP. A comprehensive treatment of complexity
is beyond the scope of this book. See Garey and Johnson [17] for more on this.

Unfortunately, the problem of computing the reliability of a binary monotone sys-
tem is known to be NP-hard in the general case. See Rosenthal [47] and Ball [2] for
details. Thus, all known algorithms for analytical reliability calculations typically has
a computational complexity which grows exponentially with the order of the system.

37
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Still for moderately sized systems it is possible to calculate the reliability using standard
methods. Moreover, for certain classes of systems faster algorithms are available.

In Exercise 2.6 we saw that the reliability of a k-out-of-n system can be calculated
in polynomial time using generating functions, even when the components have un-
equal reliability. In fact this particular algorithm is of order O(n2), which is very fast
compared to an exponential time algorithm. From this result one might think that it
would be easy to obtain similar performance for a larger class of systems. The following
example shows that this is not the case.

Example 4.0.1 A threshold system is a binary monotone system (C,φ), where the
structure function has the following form:

φ(x) = I(
n)

i=1

aixi ≥ b),

where a1, . . . , an and b are non-negative real numbers, and I(·) denotes the indicator
function, i.e., a function defined for any event A which is 1 if A is true and zero
otherwise.

We observe that if (C,φ) is a threshold system where a1 = · · · = an = 1 and b = k,
(C,φ) is a k-out-of-n system. Thus, the class of threshold systems is a generalization
of the class of k-out-of-n systems. However, despite the similarity between threshold
systems and k-out-of-n systems, it can be shown that calculating the reliability of a
threshold system is NP-hard. See Winther [55].

In the next sections we present both general algorithms as well as specialized algo-
rithms tailored for certain classes of systems.

4.1 State space enumeration
The idea of this method is simple. We know that the reliability of a binary monotone
system (C,φ) is simply the expected value of φ(X). Thus, by standard probability
theory this can be calculated as:

h = E[φ(X)] =
)

x∈{0,1}n
φ(x)P (X = x) (4.1)

Note that in order to calculate the reliability using (4.1) we must enumerate all possible
states of the component vector (i.e., all x ∈ {0, 1}n). Moreover, if the components are
dependent, we must know the entire joint distribution of X in order to compute the
system reliability using (4.1). As this distribution is usually not known, this method
is unsuitable for the case of dependent components. However, if the components are
independent, we have:

P (X = x) =
n"

i=1

pxi
i (1− pi)

1−xi



4.1. STATE SPACE ENUMERATION 39

Inserting this into equation (4.1) we get:

h(p) =
)

x∈{0,1}n
φ(x)

n"

i=1

pxi
i (1− pi)

1−xi . (4.2)

To compute the system reliability via (4.2), it suffices to know the individual component
reliabilities. However, since we need to enumerate all the possible states of the compo-
nent state vector x, the number of terms in the sum (4.2) is 2n. Thus, this algorithm
is at least of order O(2n). In fact the order may be even greater since we have not
included the work of computing φ(·) for each of the possible states of the component
state vector x. For some structure functions this may also represent a considerable
task.

While the order of the algorithm cannot be changed, there are still ways to improve
the method. Sometimes it is possible to run through the states in a clever order. For
example, if we come across x0 such that φ(x0) = 0, we do not have to include any of the
states x such that x < x0 since φ is non-decreasing (as it is assumed to be monotone),
so φ(x) must be 0 as well. Note also that since φ(0) = 0, the maximum amount of
terms we need to compute in (4.2) is 2n − 1.

Example 4.1.1 Consider a binary monotone system (C,φ) where C = {1, 2, 3}, and
where the structure function φ is given by:

φ(x) = (x1 · x2)∐ x3.

We assume that the component state variables are independent, and that the component
reliabilities are P (Xi = 1) = pi, i = 1, 2, 3. By using (4.2) we find that:

h(p) = φ(0, 0, 0) · (1− p1)(1− p2)(1− p3)

+ φ(1, 0, 0) · p1(1− p2)(1− p3) + · · ·+ φ(1, 1, 1) · p1p2p3

= p1p2(1− p3)

+ (1− p1)(1− p2)p3 + p1(1− p2)p3 + (1− p1)p2p3 + p1p2p3.

Note that the last expression contains just 5 terms, not 23 = 8 terms. The reason for
this is that there are exactly 5 vectors such that φ(x) = 1. The other 3 terms vanish
in the final formula. Moreover, we observe that the last 4 terms have p3 as a common
factor. Thus, the expression for h(p) can be simplified to:

h(p) = p1p2(1− p3)

+ [(1− p1)(1− p2) + p1(1− p2) + (1− p1)p2 + p1p2] · p3
= p1p2(1− p3) + p3

This example shows that the expansion obtained by state space enumeration may not be
the most efficient expression for the reliability function.
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4.2 The multiplication method
The first step of the multiplication method for computing the exact system reliability,
it to find the minimal path sets or alternatively, the minimal cut sets of the system.
Denote these by respectively P1, . . . , Pp and K1, . . . , Kk. Now, from the formula (3.8)
and (3.10), we know that:

φ(X) =

p#

j=1

"

i∈Pj

Xi = 1− [

p"

j=1

(1−
"

i∈Pj

Xi)]

=
k"

j=1

#

i∈Kj

Xi =
k"

j=1

[1−
"

i∈Kj

(1−Xi)].

By expanding either the formula based on the minimal path sets, or the formula based
on the minimal cut sets, and using that Xr

i = Xi, i = 1, . . . , n, r = 1, 2, . . ., we
eventually get an expression of the form:

φ(X) =
)

A⊆C

δ(A)
"

i∈A

Xi (4.3)

where for all A ⊆ C, δ(A) denotes the coefficient of the term associated with
$

i∈A Xi.
The δ-function is called the signed domination function of the structure. The fact that
we end up with an expression of the form (4.3) follows since φ is multilinear (see the
comments after Theorem 3.1.1), and all multilinear functions can be written in this
form.

By taking the expectation on both sides of (4.3), and assuming that the component
state variables are independent, we obtain the following expression:

h(p) = E[φ(X)] =
)

A⊆C

δ(A)
"

i∈A

E[Xi] =
)

A⊆C

δ(A)
"

i∈A

pi (4.4)

As for the state space enumeration method, we again end up with a sum containing
2n terms. Thus, calculating the reliability of the system using (4.4) also has the order
O(2n). In a given case, however, there will typically be far less terms in this expansion
since δ(A) = 0 for many of the sets A.

Note, that when using this method, we also need to determine the signed domination
function before we can use (4.4). It turns out that identifying all the minimal path or
cut sets is another operation which has the order O(2n). Moreover, depending on the
number of minimal path or cut sets, the task of expanding the structure function into
the form (4.3) is yet another complicated task.

The multiplication method can be improved by avoiding identifying the minimal
path or cut sets as well as the multiplication step. In order to explain this, we introduce
the following alternative way of expressing the structure function of a binary monotone
system (C,φ):

φ(B) = φ(1B,0B̄), for all B ⊆ C.
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Thus, for all B ⊆ C, φ(B) denotes the state of the system given that all the components
in the set B are functioning, while all the components in the set B̄ = C \B are failed.
In Huseby [22] the following formula was proved:

δ(A) =
)

B⊆A

(−1)|A|−|B|φ(B), for all A ⊆ C. (4.5)

This formula allows us to compute the signed domination function without using the
minimal path and cut sets. In its most general form the sum in (4.5) still contains
2n terms. Thus, evaluating this formula is yet another complex operation of order 2n.
However, for certain classes of systems (4.5) can be used as basis for deriving simpler
formulas allowing much faster calculations. We will return to this in Section 4.4.

Example 4.2.1 Consider a binary monotone system (C,φ) where C = {1, 2, 3}, and
where the minimal path sets of the system are P1 = {1, 2} and P2 = {1, 3}. Using the
multiplication method we obtain:

φ(X) = (X1X2)∐ (X1X3) = 1− (1−X1X2)(1−X1X3)

= 1− (1−X1X2 −X1X3 +X2
1X2X3)

= X1X2 +X1X3 −X1X2X3,

where we have used that X2
1 = X1. Thus, we see that φ is of the form (4.3), where

δ({1, 2}) = δ({1, 3}) = 1, δ({1, 2, 3}) = −1, while δ(A) = 0 for all other subsets of C.
Note that these coefficients can be obtained using (4.5) as well since:

δ({1, 2}) = (−1)|{1,2}|−|{1,2}|φ({1, 2}) = 1,

δ({1, 3}) = (−1)|{1,3}|−|{1,3}|φ({1, 3}) = 1,

δ({1, 2, 3}) = (−1)|{1,2,3}|−|{1,2}|φ({1, 2}) + (−1)|{1,2,3}|−|{1,3}|φ({1, 2})
+ (−1)|{1,2,3}|−|{1,2,3}|φ({1, 2, 3}) = −1− 1 + 1 = −1.

Having derived the formula for the structure function φ, we immediately obtain the
reliability function:

h(p) = p1p2 + p1p3 − p1p2p3.

4.3 The inclusion-exclusion method

Just like for the multiplication method, the inclusion exclusion method is based on first
finding the minimal path sets and the minimal cut sets of the system. Let these sets
be denoted respectively by P1, . . . , Pp and K1, . . . , Kk. We then introduce the events

Ej = {All of the components in Pj are functioning}, j = 1, . . . , p.
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Since the system is functioning if and only if at least one of the minimal path sets is
functioning, we have:

φ = 1 if and only if
p2

j=1

Ej holds true. (4.6)

Calculating the probability of a union of events can be done by using the well-known
inclusion-exclusion formula. That is we have:

h = P (

p2

j=1

Ej) (4.7)

= P (E1) + P (E2) + · · ·+ P (Ep)

− P (E1 ∩ E2)− P (E1 ∩ E3)− · · ·− P (Ep−1 ∩ Ep)

+ P (E1 ∩ E2 ∩ E3) + · · ·+ P (Ep−2 ∩ Ep−1 ∩ Ep)

· · ·
+ (−1)p−1P (E1 ∩ · · · ∩ Ep).

The initial number of terms in (4.7) is 2p − 1. However, typically many of the terms
can be merged as they correspond to the same component set. Thus, after simplifying
the expression we usually end up with much fewer terms.

Note that an event of form Ei1 ∩ · · · ∩ Eir occurs if and only if all the components
in the set Pi1 ∪ · · ·∪Pir are functioning. Thus, when the component state variables are
independent, we get that:

P (Ei1 ∩ · · · ∩ Eir) =
"

i∈Pi1
∪···∪Pir

pi.

Example 4.3.1 Consider a binary monotone system (C,φ) where C = {1, 2, 3, 4} with
minimal path sets P1 = {1, 2}, P2 = {1, 3}, P3 = {2, 3, 4}. We then let Ej denote
the event that all components in Pj are functioning, j = 1, 2, 3. Assuming that the
component state variables are independent, we then get the following probabilities:

P (E1) = p1p2, P (E2) = p1p3, P (E3) = p2p3p4

P (E1 ∩ E2) = p1p2p3, P (E1 ∩ E3) = P (E2 ∩ E3) = p1p2p3p4

P (E1 ∩ E2 ∩ E3) = p1p2p3p4.

Hence, the reliability of the system is:

h(p) = p1p2 + p1p3 + p2p3p4 − p1p2p3 − 2p1p2p3p4 + p1p2p3p4

= p1p2 + p1p3 + p2p3p4 − p1p2p3 − p1p2p3p4.

We observe that the final expression for the reliability function is exactly the same
as the one we get using the multiplication methods. That is, in both cases we end up
with a formula of the form:

h(p) =
)

A⊆C

δ(A)
"

i∈A

pi,
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where δ denotes the signed domination function. However, the steps we take in order
to get this expression is different.

When using the inclusion-exclusion formula we see that all terms in the expansion
correspond to sets A ⊆ C which are unions of minimal path sets. If Pi1 , . . . , Pir is a
collection of minimal path sets such that:

r2

j=1

Pij = A,

the collection is said to be a formation of the set A. The formation is odd if r is an odd
number, and even if r is an even number. We note that odd formations produce terms
with a coefficient +1 in the inclusion-exclusion formula, while even formations produce
terms with a coefficient −1 in the inclusion-exclusion formula. When we simplify the
expansion, all terms corresponding to formations of the same set are merged. From this
observation it follows that we have the following result:

Theorem 4.3.2 Let (C,φ) be a binary monotone system with minimal path sets P1, . . . , Pp,
and let δ denote the signed domination function of the system. Then for all A ⊆ C we
have:

δ(A) = The number of odd formations of A (4.8)
− The number of even formations of A.

In particular δ(A) = 0 if A is not a union of minimal path sets.

As a corollary we obtain the following result:

Corollary 4.3.3 If (C,φ) is a binary monotone system which is not coherent, then
δ(C) = 0.

The proof is left as an exercise.

A nice feature of the inclusion-exclusion formula is that it can be used to produce
a simple upper bound for the system reliability. Thus, if we skip all higher order terms
and only keep the probabilities of the individual events E1, . . . , Ep, we get:

h ≤
p)

j=1

P (Ej). (4.9)

By including higher order terms, it is possible to obtain both lower bounds and improved
upper bounds as well. However, as we introduce the higher order terms, the total
number of terms in these expansions grows fast. Thus, only the simple bound (4.9)
is considered here. In order to obtain a lower bound we instead use a dual approach.
That is, we consider the minimal cut sets of the system K1, . . . , Kk, and introduce the
events:

Fj = {All the components in Kj are failed}, j = 1, . . . , k.
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Since the system is failed if and only if all the components in at least one cut set are
failed, we have:

1− h = P (
k2

j=1

Fj). (4.10)

The quantity 1 − h is referred to as the unreliability of the system. By the same
argument as we used above, an upper bound on this quantity is given by:

1− h ≤
k)

j=1

P (Fj). (4.11)

By combining (4.9) and (4.11), we see that

1−
k)

j=1

P (Fj) ≤ h ≤
p)

j=1

P (Ej). (4.12)

If the components are independent, (4.12) implies that:

1−
k)

j=1

"

i∈Kj

(1− pi) ≤ h(p) ≤
p)

j=1

"

i∈Pj

pi. (4.13)

In many real life applications the component reliabilities are close to 1. In such cases
the lower bound given in (4.13) turns out to be very good, while the upper bound is
extremely poor. In fact it may easily happen that the upper bound becomes greater
than 1. If on the other hand the component reliabilites are close to 0, the lower bound
may be less than 0, while the upper bound turns out to be very good. In order to avoid
bounds outside of the interval [0, 1], one could replace (4.13) by:

max(1−
k)

j=1

"

i∈Kj

(1− pi), 0) ≤ h(p) ≤ min(

p)

j=1

"

i∈Pj

pi, 1). (4.14)

4.4 Computing the reliability of directed network sys-
tems

For some particular kinds of systems, the multiplication method and the inclusion-
exclusion method can be significantly improved. The most important class of such
systems are Source-to-K terminal systems, or SKT-systems :

Definition 4.4.1 A Source-to-K-terminal-system (SKT-system) is a system defined
relative to a directed network where the system functions if and only if a node S (called
the source) can send information to a given set of K nodes T1, . . . , TK (called the ter-
minals). The components of the system are the directed edges of the network, while the
nodes are assumed to be functioning perfectly with probability one.
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Figure 4.1: An S4T system

Example 4.4.2 Figure 4.1 shows an example of an S4T system with components 1, 2, . . . , 10.
The node S is the source, while the nodes T1, T2, T3, T4 are the terminals.

In the following theorem we recall that any structure function can be written on the
form (4.3).

Theorem 4.4.3 Let φ(X) =
,

A⊆C δ(A)
$

i∈A Xi be the structure function of an SKT
system.

(i) If A can be expressed as a union of minimal path sets, and the subgraph spanned
by A does not contain any directed cycle, we have:

δ(A) = (−1)|A|−v(A)+1

where v(A) denotes the number of nodes in the subgraph spanned by A.

(ii) In the opposite case we have:
δ(A) = 0

Theorem 4.4.3 was first proved by Satyanarayana [48] using Theorem 4.3.2. How-
ever, a simpler proof based on the formula (4.5) is given in Huseby [22].

Prabhakar and Satyanarayana [50] also developed an efficient algorithm for identi-
fying all sets A ⊆ C such that δ(A) ∕= 0 directly, without using the minimal path sets.
By using this algorithm in combination with Theorem 4.4.3, we get a very fast method
for computing the reliability of an SKT system.

Example 4.4.4 Consider the S1T-system shown in Figure 4.2. The component set
C = {1, . . . , 7} consists of the directed edges in the networks. The system is functioning
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Figure 4.2: An S1T system

if the source S can send signals to the terminal T through the network. We assume that
the component state variables are independent and that P (Xi = 1) = pi for i ∈ C.

The minimal path sets of this system are P1 = {1, 4, 6}, P2 = {1, 4, 5, 7}, P3 =
{2, 3, 4, 6} and P4 = {2, 7}. We calculate the reliability of this system by using the
inclusion-exclusion formula (4.7). Since there are 4 minimal path sets, this formula
will consist of 24 − 1 = 15 terms before we simplify:

h(p) = p1p4p6 + p1p4p5p7 + p2p3p4p6 + p2p7

− p1p4p5p6p7 − p1p2p3p4p6 − p1p2p4p6p7

− p1p2p3p4p5p6p7 − p1p2p4p5p7 − p2p3p4p6p7

+ p1p2p3p4p5p6p7 + p1p2p4p5p6p7 + p1p2p3p4p6p7 + p1p2p3p4p5p6p7

− p1p2p3p4p5p6p7.

By merging similar terms we obtain:

h(p) = p1p4p6 + p1p4p5p7 + p2p3p4p6 + p2p7

− p1p4p5p6p7 − p1p2p3p4p6 − p1p2p4p6p7

− p1p2p4p5p7 − p1p2p4p5p7

+ p1p2p4p5p6p7 + p1p2p3p4p6p7.

We observe that δ(A) is either +1, −1 or zero for all A ⊆ C. In particular, since the
network contains a directed cycle {3, 4, 5}, the highest order term will have δ(C) = 0.
Moreover, we can easily verify that the formula for δ(A) given in Theorem 4.4.3 is
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correct:

δ({1, 4, 6}) = (−1)3−4+1 = +1,

δ({1, 4, 5, 7}) = (−1)4−5+1 = +1,

· · · · · ·
δ({1, 4, 5, 6, 7}) = (−1)5−5+1 = −1,

δ({1, 2, 3, 4, 6}) = (−1)5−5+1 = −1,

δ({1, 2, 4, 6, 7}) = (−1)5−5+1 = −1,

· · · · · ·
δ({1, 2, 4, 5, 6, 7}) = (−1)6−5+1 = +1,

δ({1, 2, 3, 4, 6, 7}) = (−1)6−5+1 = +1.

We close this section by noting that SKT-systems are not the only types of systems
where the signed domination is either +1, −1 or zero. In fact this class can be extended
to a much larger class called oriented matroid systems. See Huseby [25] for details.
Moreover, there are also other classes of systems with similar properties:

Example 4.4.5 Let (C,φ) be a linear consecutive 2-out-of-5 system. That is, C =
{1, . . . , 5}, and the minimal path sets are P1 = {1, 2}, P2 = {2, 3}, P3 = {3, 4}, P4 =
{4, 5}. By using e.g., the inclusion-exclusion formula it is easy to see that the reliability
of this system, assuming independent component state variables, is:

h(p) = p1p2 + p2p3 + p3p4 + p4p5

− p1p2p3 − p2p3p4 − p3p4p5 − p1p2p4p5

+ p1p2p3p4p5.

It can be shown that this system is not an SKT-system. The proof is left as an exer-
cise. Still, linear consecutive k-out-of-n systems share the property with SKT-systems
(and the more general class of oriented matroid systems) that the signed domination
function is either +1, −1 or zero for all subsets of the component set. See Calkin et.
al [9].

4.5 Computing the reliability of undirected network
systems

In this section, we will present an algorithm for computing the exact system reliability
called the factoring algorithm. In principle, this algorithm can be applied to any binary
monotone system where the component state variables are independent. However, for
optimal performance we assume that the system can be represented as an undirected
network system, where the components of the system are the edges of the systems,
and where the system is functioning if a set of terminals can communicate through the
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Figure 4.3: An undirected network with components 1, 2, . . . , 7 and terminal nodes S
and T .

network. In an undirected network signals can be sent both ways along the edges, see
Figure 4.3.

The method is based on pivoting (see Theorem 3.1.1) and the following result:

Theorem 4.5.1 Let i, j ∈ C, i ∕= j.

(i) If i and j are connected in series, then h(p) will only depend on pi and pj through
pi · pj. Hence, i and j can be replaced by a single component with reliability
pi · pj without altering the system reliability. Such a reduction is called a series
reduction.

(ii) If i and j are connected in parallel, then h(p) will only depend on pi and pj through
pi ∐ pj. Hence, i and j can be replaced by a single component with reliability
pi∐pj without altering the system reliability. Such a reduction is called a parallel
reduction.

The common term for either series or parallel reductions is s-p-reductions.

Definition 4.5.2 We say that a system is s-p-reducible if there are components in
either series or parallel in the system. If not, the system is said to be s-p-complex. A
system which can be s-p-reduced to a single component is called an s-p-system.

The bridge structure shown in Figure 3.1 is an example of a complex system because
there are no components in series or parallel.

The system in Figure 4.4 is an example of an s-p system because components 1 and
2 (in series) can be replaced with a component 1′ with reliability p1′ = p1 ·p2. Similarly,
components 3 and 4 can be replaced by a component 3′ with reliability p3′ = p3 ∐ p4.
The resulting system is a series structure of components 1′, 3′ and 5. These three
components can be replaced by a single component with reliability p1′ · p3′ · p5, which
is the reliability of the whole system.

The factoring algorithm can be described as follows:
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Figure 4.4: A reliability block diagram of a mixed parallel and series system.

Algorithm 4.5.3 Let (C,φ) be a binary monotone system. Assume that at least one
of its components is relevant. To compute the reliability h(p), proceed as follows:
Step 1: Perform all possible s-p-reductions. Let the reduced system be denoted by
(Cr,φr). Then, (Cr,φr) must also have at least one relevant component (make sure you
understand why).
Step 2: Now, one of the two following cases can happen:

Case 1. (Cr,φr) contains precisely one relevant component with updated reliability
pe. Then, h(p) = pe.

Case 2. (Cr,φr) contains several relevant components. In this case, choose a
component e ∈ Cr and do a pivotal decomposition. That is, compute h(p) by using
Theorem 3.1.1:

h(pCr

) = peh(1e,pCr

) + (1− pe)h(0e,pCr

).

Then, compute h(1e,pCr
) and h(0e,pCr

) by repeated use of the algorithm.

Note that there is a choice involved in Case 2 of Algorithm 4.5.3. In general,
the efficiency of the factoring algorithm depends on the choice of pivoting component.
For the bridge structure in Example 3.1.2, we actually used the factoring algorithm.
There, we chose to pivot with respect to component 3. For this particular system the
choice does not matter. In general, however, it can be shown that when the factoring
algorithm is applied to undirected network systems, one should always pivot such that
both resulting substructures are coherent1. This was first proved by Satyanarayana and
Chang [49], and later generalized to a more abstract class by Huseby [22].

Despite being a very easy and convenient method for reliability calculations, the
factoring algorithm is still of order O(2n). Hence, in that sense it is not significantly
better than e.g., the state space enumeration method. Still, in many cases, it is very
efficient.

1Note that the assumption that the system is an undirected network system is essential here. While
the result can be generalized to a larger class of systems, see Huseby [22], there exists many other types
of systems where this rule is not optimal.
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Figure 4.5: An undirected network system
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Figure 4.6: Subsystems (C \ 4,φ+4) and (C \ 4,φ−4) obtained by pivotal decomposition
with respect to component 4

Example 4.5.4 Consider the undirected network system (C,φ) shown in Figure 4.5.
The component set C = {1, . . . , 7} consists of the undirected edges in the networks. The
system is functioning if the terminals S and T can communicate through the network.
We assume that the component state variables are independent and that P (Xi = 1) = pi
for i ∈ C.

This system is not s-p-reducible, so we need to do a pivotal decomposition. For this
purpose we choose component 4. The resulting subsystems are shown in Figure 4.6,
where the left-hand system, denoted (C \ 4,φ+4) and with reliability h+4, is obtained by
conditioning on that component 4 is functioning, while the right-hand system, denoted
(C \ 4,φ−4) and with reliability h−4, is obtained by conditioning on that component 4 is
failed. The system reliability is then given by:

h = p4 · h+4 + (1− p4) · h−4.

We observe that (C \ 4,φ−4) is s-p-reducible with reliability h−4 given by:

h−4 = [(p1 · p3)∐ p2] · [(p5 · p6)∐ p7].

The subsystem (C \ 4,φ+4) is s-p-reducible as well, but the only possible s-p-reduction
is the parallel reduction of components 3 and 5. The resulting component is denoted 3′
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Figure 4.7: The subsystem ((C \ 4)r, (φ+4)
r) obtained by a parallel reduction of (C \

4,φ+4) with respect to components 3 and 5
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Figure 4.8: Subsystems ((C \4)r \3′, (φ+4)
r
+3′) and ((C \4)r \3′, (φ+4)

r
−3′) obtained from

the subsystem ((C \ 4)r, (φ+4)
r) by a pivotal decomposition with respect to component

3′

and has component reliability p3′ = p3 ∐ p5. The resulting system is shown in Figure
4.7, and is denoted by ((C \ 4)r, (φ+4)

r).
In order to calculate the reliability of this system, we need to do another pivotal

decomposition. This time we choose component 3′. The resulting subsystems, denoted
respectively ((C \ 4)r \ 3′, (φ+4)

r
+3′) and ((C \ 4)r \ 3′, (φ+4)

r
−3′) are shown in Figure 4.8.

Both these subsystems are s-p-reducible, and we get that:

h+4 = (h+4)
r = p3′ · (h+4)

r
+3′ + (1− p3′) · (h+4)

r
−3′ ,

where:

(h+4)
r
+3′ = (p1 ∐ p2) · (p6 ∐ p7)

(h+4)
r
−3′ = (p1 · p6)∐ (p2 · p7)

This completes the calculations.

Note that it is obviously possible to combine all the various expressions in Example
4.5.4 into one unified large formula for the reliability h. However, when implementing
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the factoring algorithm, this is done recursively. This implies that only the resulting
numbers, not the symbolic expressions, are passed backwards through the algorithm.
This is actually an essential point as this saves both time and space.

4.6 Exercises

Exercise 4.1: Consider the bridge structure from Example 3.1.2 with independent
component state variables and reliability function h(p) as given in this example. As-
sume that the reliability of all five components is 0.9. What do the bounds (4.12) reduce
to in this case? Comment on the result.

Exercise 4.2: Draw an example of the following systems:

(i) An S3T system.

(ii) An S5T system.

Exercise 4.3: Consider the S1T system in Figure 4.9.

1

2

5

6

3 4
S T

Figure 4.9: An S1T system.

a) Find the minimal path sets of the system.
b) How many terms will there be in the inclusion-exclusion formula for the reliability

of this system before simplification?
c) How many of these terms will vanish in the final simplified expression?

Exercise 4.4: Show that the linear consecutive 2-out-of-5 system given in Example
4.4.5 cannot be an SKT-system. [Hint: Let δ denote the signed domination function of
the system. Compare δ({1, 2, 3, 4}) and δ({1, 2, 3, 4, 5}) and interpret the result in the
light of Theorem 4.4.3.]
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Exercise 4.5: Compute the reliability function of the undirected network system in
Figure 4.10 which functions if and only if the nodes S and T can communicate through
the network. Use the factoring algorithm.
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Figure 4.10: An undirected network system with components 1, 2, . . . , 8 and terminals
S and T .

Exercise 4.6: Compute the reliability function of the undirected network system in
Figure 4.11 by using the factoring algorithm.
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Figure 4.11: An undirected network system with components 1, 2, . . . , 7 and terminals
S and T .

Since the system is complex, it has to be factored with respect to some component.
Which component? Compare the computational work for different component choices.

Exercise 4.7: Consider the series connection of bridge structures in Figure 4.12.
a) Compute the reliability function of the system by using the factoring algorithm.
b) Instead, compute this by taking the product of the three reliability functions of

the three bridge structures. Compare the computational effort with the one in a).
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Figure 4.12: A series system of bridge structures.

c) How many terms are there in the inclusion-exclusion formula for the reliability
of this system? Comment this result.

Exercise 4.8: Prove Corollary 4.3.3. [Hint : Use the result given in Exercise 3.5.]



Chapter 5
Structural and reliability importance for
components in binary monotone systems

By considering the structure- or reliability function of a binary monotone system, it is
evident that not all the components are equally important for the system to function.
For instance, a component connected in series or parallel with the rest of the system
will typically be more important than the other components in the system. In this
section, we will define various measures for importance of the components in a system.
There are many reasons for considering such measures, but among the most important
ones are the following:

1. A measure of importance can be used to identify components that should be
improved in order to increase the system reliability.

2. A measure of importance can be used to identify components that most likely
have failed, given that the system has failed.

5.1 Structural importance of a component
The measures of importance which we are about to introduce are all based on the notion
of criticality. This is defined as follows:

Definition 5.1.1 Let (C,φ) be a binary monotone system, and let i ∈ C. We say that
component i is critical for the system if:

φ(1i, x) = 1 and φ(0i, x) = 0.

If this is the case, we also say that (·i, x) is a critical vector for component i.

We observe that criticality is strongly related to the notion of relevance. Thus, a
component i in a binary monotone system (C,φ) is relevant if and only if there exists
at least one critical vector for i.

55
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Figure 5.1:

Example 5.1.2 Consider the binary monotone system (C,φ) shown in Figure 5.1,
where C = {1, 2, 3, 4}, and where the structure function is given by:

φ(x) = x1(x2 ∐ x3 ∐ x4)

We start out by considering component 1, and we see that this component is critical if
and only if at least one of the other components are functioning. Thus, there are seven
critical vectors for component 1:

(·, 1, 0, 0), (·, 0, 1, 0), (·, 0, 0, 1)
(·, 1, 1, 0), (·, 1, 0, 1), (·, 0, 1, 1)
(·, 1, 1, 1).

We then compare this to any of the other components, e.g., component 2. For this
component to be critical component 1 must function, while both component 3 and 4
must be failed. Hence, the only critical vector for component 2 is (1, ·, 0, 0).

By Definition 5.1.1 it follows that a component i of a binary monotone system (C,φ)
is critical if and only if:

φ(1i,x)− φ(0i,x) = 1.

Hence, the number of critical vectors for i can be calculated by summing this expression
over all possible vectors (·i,x):

)

(·i,x)

[φ(1i,x)− φ(0i,x)].

Based on this Birnbaum [7] suggested the following measure of structural importance
of a component in a binary monotone system:

Definition 5.1.3 Let (C,φ) be a binary monotone system of order n, and let i ∈ C.
The Birnbaum measure for the structural importance of component i, denoted J

(i)
B , is

defined as:

J
(i)
B :=

1

2n−1

)

(·i,x)

[φ(1i, x)− φ(0i, x)].
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Note that the denominator, 2n−1 is the total number of states for the n − 1 other
components. Thus, J (i)

B can be interpreted as the fraction of all states for the n − 1

other components where component i is critical. By computing J
(i)
B for all of the com-

ponents in a system, we can rank the components based on their respective structural
importance.

Example 5.1.4 Let φ be a 2-out-of-3 system. To compute the structural importance
of component 1, we note that the critical vectors for this component are (·, 1, 0) and
(·, 0, 1). Hence, we have:

J
(1)
B =

2

23−1
=

1

2
.

By similar arguments, we find that:

J
(2)
B = J

(3)
B =

1

2
.

So in a 2-out-of-3 system, all of the components have the same structural importance.
This is intuitively obvious since the structure function is symmetrical with respect to
the components.

Example 5.1.5 Consider the system φ with structure function:

φ(x) = (x1 ∐ x2)x3.

To find the structural importance of component 1, note that the only critical vector for
this component is (·, 0, 1). Hence, we have:

J
(1)
B =

1

23−1
=

1

4
.

Since components 1 and 2 play completely similar roles in the system, it follows that we
must have:

J
(2)
B =

1

4

as well. Thus, components 1 and 2 have the same structural importance. However, this
is not the case for component 3: The critical path vectors for component 3 are (1, 0, ·),
(0, 1, ·) and (1, 1, ·), so:

J
(3)
B =

3

23−1
=

3

4
.

From this, we see that:
J
(1)
B = J

(2)
B < J

(3)
B .

Hence, component 3, which is in series with the rest of the system, is more important
than components 1 and 2.
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5.2 Reliability importance of a component
While structural importance only depends on the structure function of the system,
reliability importance takes into account the joint distribution of the component state
variables as well. Thus, instead of considering the fraction of components state vectors
where a given component is critical, we compute the probability that a given component
is critical. This motivates the following definition introduced by Birnbaum [7]:

Definition 5.2.1 Let (C,φ) be a binary monotone system, and let i ∈ C. Moreover, let
X be the vector of component state variables. The Birnbaum measure for the reliability
importance of component i, denoted I

(i)
B is defined as:

I
(i)
B := P (Component i is critical for the system)

= P (φ(1i,X)− φ(0i,X) = 1).

Since the difference φ(1i,X)− φ(0i,X) is a binary variable, it follows that we may
write:

I
(i)
B = E[φ(1i,X)− φ(0i,X)] = E[φ(1i,X)]− E[φ(0i,X)]. (5.1)

In particular, if the component state variables of the system are independent, and
P (Xi = 1) = pi for i ∈ C, we get that:

I
(i)
B = h(1i,p)− h(0i,p). (5.2)

By using the last identity we can show the following result which is sometimes taken
as the definition of reliability importance in the case of independent components:

Theorem 5.2.2 Let (C,φ) be a binary monotone system where the component state
variables are independent, and P (Xi = 1) = pi for i ∈ C. Then:

I
(i)
B =

∂h(p)
∂pi

, for all i ∈ C.

Proof: By Theorem 3.1.1 we have that:

h(p) = pih(1i,p) + (1− pi)h(0i,p)

By differentiating this identity with respect to pi we get:

∂h(p)
∂pi

= h(1i,p)− h(0i,p).

Hence, the result follows by (5.2). □

We observe that Theorem 5.2.2 shows that the reliability importance of a component
indicates how much the system reliability grows with respect to the reliability of this
component.

Now, we will prove some further properties of the Birnbaum measure.
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Theorem 5.2.3 For a binary monotone system, (C,φ), we always have

0 ≤ I
(i)
B ≤ 1. (5.3)

Assume that the component state variables are independent, and P (Xj = 1) = pj, where
0 < pj < 1 for all j ∈ C. If component i is relevant, we have:

0 < I
(i)
B . (5.4)

Furthermore, if there exists at least one other relevant component, we also have:

I
(i)
B < 1. (5.5)

Proof: We note that (5.3) follows directly from Definition 5.2.1 since the reliability
importance is a probability.

We then assume that the component state variables are independent, and P (Xj =
1) = pj, where 0 < pj < 1 for all j ∈ C. If component i is relevant, we know from
Theorem 3.1.3 that h is strictly increasing in pi. That is, we must have:

∂h(p)
∂pi

> 0.

Combining this with Theorem 5.2.2, we get (5.4).
Finally, we assume that there exists at least one other relevant component, say

k ∈ C. In order to prove that this implies that I
(i)
B < 1, we assume conversely that

I
(i)
B = 1. We will then show that this leads to a contradiction. From this assumption,

it follows by Definition 5.2.1 that :

P (φ(1i,X)− φ(0i,X) = 1) = 1

Since 0 < pj < 1, for all j ∈ C, it follows that P ((·i,X) = (·i,x)) > 0 for all (·i,x).
Hence, we must have that:

φ(1i,x) = 1 and φ(0i,x) = 0 for all (·i,x).

At the same time, since component k is relevant, there exists a vector (·k,y) such that:

φ(1k,y) = 1 and φ(0k,y) = 0.

If yi = 1, it follows that φ(1i, 0k,y) = 0, contradicting that φ(1i,x) = 1 for all (·i,x).
Similarly, if yi = 0, it follows that φ(0i, 1k,y) = 1, contradicting that φ(0i,x) = 0
for all (·i,x). Hence, we conclude that for both possible values of yi we end up with
contradictions. Thus, the only possibility is that I

(i)
B < 1. □

We recall from Section 5.1 that J
(i)
B can be interpreted as the fraction of all states

for the n − 1 other components where component i is critical. By Definition 5.2.1
I
(i)
B is the probability that component i is critical. Thus, J

(i)
B is just a special case

of I(i)B corresponding to the situation where all component state vectors have the same
probability. This occurs when P (Xi = 1) = 1

2
for all i ∈ C. Thus, we have the following

result
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Theorem 5.2.4 Consider a binary monotone system (C,φ) where the component state
variables are independent, and where P (Xi = 1) = 1

2
for all i ∈ C. Then we have:

I
(i)
B = J

(i)
B

We close this section by considering some examples. In all these examples we con-
sider binary monotone systems (C,φ) where C = {1, . . . , n}, where the component state
variables are independent, and where P (Xi = 1) = pi for all i ∈ C. Without loss of
generality we assume that the components are ordered so that:

p1 ≤ p2 ≤ . . . ≤ pn. (5.6)

Example 5.2.5 Let (C,φ) be a series system. Then for all i ∈ C we have:

I
(i)
B =

∂
$n

j=1 pj

∂pi
=

"

j ∕=i

pj.

Hence, by the ordering (5.6), we get that:

I
(1)
B ≥ I

(2)
B ≥ · · · ≥ I

(n)
B .

Thus, in a series system the worst component, i.e., the one with the smallest reliability,
has the greatest reliability importance.

Example 5.2.6 Let (C,φ) be a parallel system. Then for all i ∈ C we have:

I
(i)
B =

∂
3n

j=1 pj

∂pi
=

"

j ∕=i

(1− pj).

Hence, from the ordering (5.6)

I
(1)
B ≤ I

(2)
B ≤ · · · ≤ I

(n)
B .

Thus, in a parallel system the best component, i.e., the one with the greatest reliability,
has the greatest reliability importance.

Example 5.2.7 Let (C,φ) be a 2-out-of-3 system. It is then easy to show that:

h(p) = p1p2 + p1p3 + p2p3 − 2p1p2p3.

This implies that:

I
(1)
B = p2 + p3 − 2p2p3,

I
(2)
B = p1 + p3 − 2p1p3,

I
(3)
B = p1 + p2 − 2p1p2.
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We then consider the function f(p, q) = p + q − 2pq and note that I(1)B = f(p2, p3),
I
(2)
B = f(p1, p3), and I

(3)
B = f(p1, p2). Moreover, the partial derivatives of f are respec-

tively:
∂f

∂p
= 1− 2q,

∂f

∂q
= 1− 2p.

If p, q ≤ 1
2
, f is non-decreasing in p and q. Thus, if p1 ≤ p2 ≤ p3 ≤ 1

2
, we have:

f(p1, p2) ≤ f(p1, p3) ≤ f(p2, p3).

Hence, in this case we have:
I
(3)
B ≤ I

(2)
B ≤ I

(1)
B . (5.7)

If p, q ≥ 1
2
, f is non-increasing in p and q. Thus, if 1

2
≤ p1 ≤ p2 ≤ p3, we have:

f(p2, p3) ≤ f(p1, p3) ≤ f(p1, p2).

Hence, in this case we have:
I
(1)
B ≤ I

(2)
B ≤ I

(3)
B . (5.8)

However, other orderings are possible as well. Assume e.g., that p1 = 1
2
− z, p2 = 1

2

and p3 =
1
2
+ z, where z ∈ (0, 1

2
). In this case we get:

I
(1)
B = (

1

2
) + (

1

2
+ z)− 2 · (1

2
)(
1

2
+ z) =

1

2
,

I
(2)
B = (

1

2
− z) + (

1

2
+ z)− 2 · (1

2
− z)(

1

2
+ z) =

1

2
+ 2z2,

I
(3)
B = (

1

2
− z) + (

1

2
)− 2 · (1

2
− z)(

1

2
) =

1

2
,

Hence in this case we have:
I
(1)
B = I

(3)
B ≤ I

(2)
B . (5.9)

Note that this result holds also if z ∈ (−1
2
, 0) in which case p1 > p2 > p3.

Example 5.2.7 shows that the reliability ordering of the components depends strongly
on how reliable the components are. Thus, predicting the final ranking can often be
difficult if we rely on our intuition only. Still some intuitive explanation can be ob-
tained in special cases. Note e.g., that if p1 ≤ p2 ≤ p3 ≤ 1

2
, the components fail

with a high probability. In this case the system behaves almost like a series system,
which is reflected in (5.7) where the worst component is ranked as the most important
component. Thus, in this case we have the same ordering as in Example 5.2.5. Simi-
larly, if 1

2
≤ p1 ≤ p2 ≤ p3, the components function with a high probability. In this

case the system behaves almost like a parallel system, which is reflected in (5.8) where
the best component is ranked on top. In this case we have the same ordering as in
Example 5.2.6.
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5.3 The Barlow-Proschan measure of reliability im-
portance

One disadvantage of the Birnbaum measure for the reliability importance is that it is
time dependent. In order to avoid this problem, we consider the following measure
introduced by Barlow and Proschan [4]:

Definition 5.3.1 Consider a binary monotone system (C,φ), where the components
are never repaired. Moreover, let Ti denote the lifetime of component i, i ∈ C, and let
S denote the lifetime of the system. Then for all i ∈ C the Barlow-Proschan measure
of the reliability importance of component i is defined as:

I
(i)
B−P := P (Component i fails at the same time as the system)

= P (Ti = S).

Note that if component i fails at the same time as the system, this may be interpreted
as i is the component eventually causing the system to fail.

Before we proceed we need to introduce the concept of absolute continuity. We say
that a real-valued stochastic variable, T has an absolutely continuous distribution if
P (T ∈ A) = 0 for all measurable sets A ⊆ R such that m1(A) = 0, where m1 denotes
the Lebesgue measure1 in R. It can be shown that if T1, . . . , Tn are independent and
absolutely continuously distributed, then the vector T = (T1, . . . , Tn) is absolutely
continuously distributed in Rn. That is, P (T ∈ A) = 0 for all (measurable) sets
A ⊆ Rn such that mn(A) = 0, where mn denotes the Lebesgue measure in Rn. In
particular, if A = {t : ti = tj}, where i ∕= j, then mn(A) = 0. Hence, P (Ti = Tj) = 0
when i ∕= j.

The following theorem uses the concept of absolute continuity in order to obtain
some fundamental properties of the Barlow-Proschan measure.

Theorem 5.3.2 Let (C,φ) be a non-trivial binary monotone system where the com-
ponents are never repaired where C = {1, . . . , n}, and let Ti denote the lifetime of
component i, i = 1, . . . , n, while S denotes the lifetime of the system. Moreover, as-
sume that T1, . . . , Tn are independent, absolutely continuously distributed. Then S is
absolutely continuously distributed as well, and we have:

n)

i=1

I
(i)
B−P = 1.

1The Lebesgue measure in R, denoted m1, is a function defined on the family of all measurable
subsets A of R. If A = [a, b], then m1(A) = b−a. Thus, the Lebesgue measure m1 generalizes the length
of intervals to arbitrary measurable subsets of R. Similarly, the Lebesgue measure in Rn, denoted mn,
is a function defined on the family of all measurable subsets A of Rn. If A = [a1, b1]× · · ·× [an, bn], then
mn(A) =

!n
i=1(bn − an). Thus, the Lebesgue measure mn generalizes the volume of n-dimensional

rectangular sets to arbitrary measurable subsets of Rn.
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Proof: Since we have assumed that the system is non-trivial, we know from Theorem
3.4.1 that the lifetime of the system, S can be expressed as:

S = max
1≤j≤p

min
i∈Pj

Ti, (5.10)

where P1, . . . , Pp are the minimal path sets of the system. This implies that:

P (
n2

i=1

{Ti = S}) = 1. (5.11)

Let A ⊆ R be an arbitrary measurable set such that m1(A) = 0. Since we have assumed
that T1, . . . , Tn are absolutely continuously distributed, we get that:

0 ≤ P (S ∈ A) ≤ P (
n2

i=1

{Ti ∈ A}) ≤
n)

i=1

P (Ti ∈ A) = 0,

which implies that S is absolutely continuously distributed as well.
Since T1, . . . , Tn are absolutely continuously distributed, it follows that the proba-

bility of having two or more components failing at the same time is zero. This implies
e.g., that P ({Ti = S}∩{Tj = S}) = 0 for i ∕= j. Thus, when calculating the probability
of the union of the events {Ti = S}, i = 1, . . . , n, all intersections can be ignored as
they have zero probability of occurring. Hence, by (5.11) we get:

1 = P (
n2

i=1

{Ti = S}) =
n)

i=1

P (Ti = S) =
n)

i=1

I
(i)
B−P ,

where the second equality follows by ignoring all intersections of the events {Ti = S},
i = 1, . . . , n. The last equality follows by the definition of I(i)B−P . Hence, the proof is
complete. □

The next result provides a convenient formula for computing the Barlow-Proschan
measure.

Theorem 5.3.3 Let (C,φ) be a non-trivial binary monotone system where the compo-
nents are never repaired where C = {1, . . . , n}, and let Ti denote the lifetime of com-
ponent i, i = 1, . . . , n. Moreover, assume that T1, . . . , Tn are independent, absolutely
continuously distributed with densities f1, . . . , fn respectively. Then, we have:

I
(i)
B−P =

4 ∞

0

I
(i)
B (t)fi(t)dt,

where I
(i)
B (t) denotes the Birnbaum measure of the reliability importance of component

i at time t, i.e., the probability that component i is critical at time t.
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Proof: From the definitions of the Barlow-Proschan measure and the Birnbaum mea-
sure, it follows that:

I
(i)
B−P = P (Component i fails at the same time as the system)

=

4 ∞

0

P (Component i is critical at time t) · fi(t)dt

=

4 ∞

0

I
(i)
B (t)fi(t)dt.

□

We observe that according to Theorem 5.3.3 the Barlow-Proschan measure, I(i)B−P ,
can be expressed as a weighted average of the Birnbaum measure I

(i)
B (t) with respect

to the component lifetime densities, fi(t). Hence, according to the Barlow-Proschan
measure, the points of times where fi(t) is large are viewed as important. The Barlow-
Proschan measure implies that components with long lifetimes compared to the system
lifetime will have a large reliability importance.

5.4 The Natvig measure of reliability importance

As mentioned, the Barlow-Proschan measure implies that components with long life-
times compared to the system lifetime will have a large reliability importance. An
alternative measure can be defined by instead saying components which greatly reduce
the remaining system lifetime by failing, are the most important components. In order
to reflect this Natvig [37] introduced the following measure:

Definition 5.4.1 Consider a binary monotone structure (C,φ) consisting of n compo-
nents which are not repaired and let

Zi := reduction of remaining lifetime for the system due to comp. i failing.

Then, the Natvig measure for the reliability importance of the i’th component, I(i)N , is
defined by

I
(i)
N =

E[Zi],n
j=1 E[Zj]

where we assume that E[Zi] is finite.

From this definition, we see that 0 ≤ I
(i)
N ≤ 1 and

,n
j=1 E[Zj] = 1. It is shown in

Natvig [38], that E[Zi] can be interpreted as the reduction in remaining system lifetime
due to the i’th component failing. Natvig [38] also shows the following connection
between the Natvig measure and the Birnbaum measure:
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Theorem 5.4.2 Consider a binary monotone structure (C,φ) of n components which
are not repaired, where the state processes of the components {Xi(t), t ≥ 0}ni=1 are
independent and their lifetimes are absolutely continuously distributed. Then,

E[Zi] =

4 ∞

0

F̄i(t)(− ln(F̄i(t)))I
(i)
B (t)dt.

We omit the proof, and refer interested readers to Natvig [38] Theorem 3.4.10. Note
that Theorem 5.4.2 says that E[Zi], which is the building block of the Natvig measure,
is a weighted average of the Birnbaum measure, I(i)B (t) with F̄i(t)(− ln(F̄i(t))) as weight
(recall the definition of F̄i(t) in (3.15)). It is shown in Natvig [38] that this weight is
the improvement of the survival probability of the i’th component at time t by allowing
one repair. Hence, the Natvig measure implies that times where this improvement is
large are of great importance.

There are also other examples of measures of component reliability importance. One
example is the so-called Vesely-Fussell measure, which has been omitted here due to
several critical weaknesses (for instance, if a component fails after the system, it still
contributes to the measure). For more on this, see Natvig [38].

To conclude our review of reliability importance measures, we remark that no mea-
sure can be said to be universally best. They all have strengths and weaknesses, which
are important to be aware of when applying such measures in practice. Note for in-
stance that none of the measures presented in these sections take into consideration the
cost of improving the different components.

5.5 Exercises

Exercise 5.1: Let (C,φ) be a k-out-of-n system. Prove that all the components of this
system have the same Birnbaum measure for structural importance.

Exercise 5.2: Compute J
(i)
B for the components of the bridge structure in Exam-

ple 3.1.2 and compare their structural importance.

Exercise 5.3: Let the i’th component be in series with the rest of a monotone structure
φ, while the j’th component is not. Prove that

J
(i)
B > J

(j)
B .

Exercise 5.4: Compute I(i)B for the components of the bridge structure in Example 3.1.2
and compare their reliability importance.

Exercise 5.5: Assume that the component lifetimes have so-called proportional haz-
ards, that is:

F̄i(t) = exp(−λiR(t)), λi > 0, t ≥ 0, i = 1, . . . , n,
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where R is a strictly increasing, differentiable function such that R(0) = 0, and
limt→∞ R(t) = ∞. Prove that for a series structure, we have:

I
(i)
B−P = I

(i)
N =

λi,n
j=1 λj

.

Exercise 5.6: Assume that the i’th component is irrelevant for the system φ. Then,
what is I

(i)
B (t), I(i)B−P and I

(i)
N ?



Chapter 6
Association and bounds for the system
reliability

In this chapter, we begin by introducing a natural kind of positive dependency between
random variables (for instance component states in a system). This positive depen-
dency is called association. We show that associated random variables have some nice
properties, which can be used in order to derive upper and lower bounds of the reliabil-
ity of a system. As previously mentioned, it is not always possible to derive the exact
reliability of a system due to e.g. computational time or complexity of the system in
question. Nevertheless, we would like to find out something about how reliable a sys-
tem is. This is the purpose of reliability bounds. In Section 6.2, we will derive several
different such bounds, where some assume independence of components, while others
just assume that the component states are associated.

6.1 Associated random variables

So far, we have usually assumed that the components in a system are independent, and
hence that the corresponding random variables are independent. However, in many real-
life situations, this is not the case. Some examples of such dependencies are components
which are exposed to a common source of outer stress (for instance parts of a windmill)
and structures where several components share a common load, so if one component
fails, the load on the other components increases (for instance parts of a bridge or
a house). In this section, we define a concept of non-negative dependence between
random variables called association.

A fairly natural definition of non-negative association is that two random variables
S and T are associated if and only if Cov(S, T ) ≥ 0. Though this definition is intuitive,
the actual definition of association is stricter and applicable to any number of random
variables.

67
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Definition 6.1.1 Let T1, . . . , Tn be random variables, and let T = (T1, . . . , Tn). We
say that T1, . . . , Tn are associated if

Cov(Γ(T),∆(T)) ≥ 0,

for all binary non-decreasing functions Γ and ∆.

Note that according to this definition we only require Cov(Γ(T),∆(T)) ≥ 0 for all
binary non-decreasing functions. This property may seem somewhat strange. It turns
out, however, that association implies the following apparently stronger result:

Theorem 6.1.2 Let T1, . . . , Tn be associated random variables, and f and g functions
which are non-decreasing in each argument such that Cov(f(T), g(T)) exists, i.e.,

E[|f(T)|] < ∞, E[|g(T)|] < ∞, E[|f(T)g(T)|] < ∞.

Then we have:
Cov(f(T), g(T)) ≥ 0.

We skip the proof here and refer to Barlow and Proschan [5] for details.

Associated random variables have some very useful properties. In order to establish
these properties we need the following lemma:

Lemma 6.1.3 Let X, Y and Z be random variables, and assume that Cov(X, Y ) < ∞.
Then we have:

Cov(X, Y ) = E[Cov(X, Y |Z)] + Cov[E(X|Z), E(Y |Z)].

Proof: By the definition of covariance we know that:

Cov(X, Y ) = E(XY )− E(X)E(Y ).

We then apply the law of total expectation and condition with respect to the variable
Z. This yields:

Cov[X, Y ] = E[E(XY |Z)]− E[E(X|Z)]E[E(Y |Z)]

Now we rewrite the first term using the definition of covariance once again:

E[E(XY |Z)] = E[E(XY |Z)− E(X|Z)E(Y |Z)] + E[E(X|Z)E(Y |Z)]
= E[Cov(X, Y |Z)] + E[E(X|Z)E(Y |Z)]

Inserting this in the expression for Cov(X, Y ) we get:

Cov[X, Y ] = E[Cov(X, Y |Z)] + E[E(X|Z)E(Y |Z)]− E[E(X|Z)]E[E(Y |Z)]
= E[Cov(X, Y |Z)] + Cov[E(X|Z), E(Y |Z)],

which concludes the proof of the lemma. □
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Theorem 6.1.4 Associated random variables have the following properties:
(i) Any subset of a set of associated random variables also consists of associated random
variables.
(ii) A single random variable is always associated.
(iii) Non-decreasing functions of associated random variables are associated.
(iv) If two sets of associated random variables are independent, then their union is a
set of associated random variables.

Proof: We note that (i) follows from (iii). However, we can also prove this property
directly. Thus, let T1, . . . , Tn be a set of associated random variables, and let A ⊂
{1, . . . , n}. We would like to prove that {Ti}i∈A is a set of associated random variables.
To do so, let ΓA, ∆A be arbitrary, binary functions which are non-decreasing in all of
their arguments Ti, i ∈ A. We then define:

Γ(T) = ΓA(TA), ∆(T) = ∆A(TA).

From this it follows that:

Cov(ΓA(TA),∆A(TA)) = Cov(Γ(T),∆(T)) ≥ 0,

where the inequality follows from Definition 6.1.1 because we have assumed that T1, . . . , Tn

is a set of associated random variables. Hence, (i) is proved.

To prove (ii) we let T be a random variable, and let Γ,∆ be arbitrary, binary func-
tions which are non-decreasing in T . Then, since Γ,∆ are binary and non-decreasing
in T , there are two possible cases:

Case 1. Γ(T ) ≤ ∆(T ) for all T ,

Case 2. Γ(T ) ≥ ∆(T ) for all T .

We consider Case 1 only, as Case 2 can be handled similarly. Then, we have:

Cov(Γ(T ),∆(T )) = E[Γ(T )∆(T )]− E[Γ(T )]E[∆(T )]

= E[Γ(T )]− E[Γ(T )]E[∆(T )]

= E[Γ(T )](1− E[∆(T )]) ≥ 0,

where the second equality follows from the fact that we are in case 1. This means that
either Γ(T ) = ∆(T ), in which case (since Γ,∆ are binary) E[Γ(T )∆(T )] = E[Γ(T )].
Or, alternatively, Γ(T ) = 0, ∆(T ) = 1, in which case E[Γ(T )∆(T )] = 0 = E[Γ(T )].
The inequality holds because Γ(T ),∆(T ) ∈ {0, 1} for all T . Hence, (ii) is proved as
well.

We now turn to the proof of (iii) and let T1, . . . , Tn be associated, and let T =
(T1, . . . , Tn). Moreover, we let Si = fi(T), i = 1, . . . ,m, where f1, . . . , fm are non-
decreasing functions, and let S = (S1, . . . , Sm). Finally, let Γ = Γ(S) and ∆ = ∆(S)
be binary non-decreasing functions. Then Γ(S) = Γ(f1(T), . . . , fm(T)) and ∆(S) =



70 CHAPTER 6. ASSOCIATION AND RELIABILITY BOUNDS

∆(f1(T), . . . , fm(T)) are non-decreasing functions of T as well. Hence, by Defini-
tion 6.1.1 it follows that:

Cov(Γ(S),∆(S)) = Cov(Γ(f1(T), . . . , fm(T)),∆(f1(T), . . . , fm(T))) ≥ 0.

Hence, we conclude that S1, . . . , Sm are associated as well.

Finally, we prove (iv). Thus, we let X and Y be two vectors of associated random
variables, and assume that X and Y are independent of each other. Moreover, we
assume that Γ = Γ(X,Y) and ∆ = ∆(X,Y) are binary and non-decreasing functions
in both X and Y. Then by Lemma 6.1.3 we have:

Cov(Γ,∆) = E[Cov(Γ,∆|X)] + Cov[E(Γ|X), E(∆|X)]. (6.1)

We then note that for any x, Γ(x,Y) and ∆(x,Y) are binary non-decreasing functions
of Y. Hence, we must have:

Cov(Γ(X,Y),∆(X,Y)|X = x) = Cov(Γ(x,Y),∆(x,Y)) ≥ 0, for all x,

where the equality follows since Y is independent of X, while the inequality follows
since Y is associated. This implies that:

E[Cov(Γ,∆|X)] ≥ 0. (6.2)

Moreover, E[Γ(x,Y)] and E[∆(x,Y)] are non-decreasing (but not necessarily bi-
nary) functions of x. Hence, since X is associated, it follows by Theorem 6.1.2 that:

Cov[E(Γ|X), E(∆|X)] ≥ 0. (6.3)

Note that since Γ and ∆ are binary, we must have that E(Γ|X) ∈ [0, 1] and
E(∆|X) ∈ [0, 1] with probability one. Thus, obviously Cov[E(Γ|X), E(∆|X)] exists.

Combining (6.1), (6.2) and (6.3) implies that:

Cov(Γ,∆) ≥ 0.

Thus, we conclude that (X,Y) is associated. □

Theorem 6.1.5 Let T1, . . . , Tn be independent random variables. Then, they are also
associated.

Proof: The proof is by induction on n. The result obviously holds for n = 1 by Theo-
rem 6.1.4 (ii). Assume that the theorem holds for n = m−1. That is, {T1, . . . , Tm−1} is
a set of associated random variables. Moreover, by Theorem 6.1.4 (ii), {Tm} is associ-
ated as well. By the assumption, these two sets are independent. Hence, it follows from
Theorem 6.1.4 (iv) that their union {T1, . . . , Tm−1, Tm} is a set of associated random
variables. Thus, the result is proved by induction. □

At the completely opposite end of the scale, we have the following result:
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Theorem 6.1.6 Let T1, . . . , Tn be completely positively dependent random variables,
i.e.,

P (T1 = T2 = . . . = Tn) = 1.

Then they are associated.

Proof: Let Γ,∆ be binary functions which are non-decreasing in each argument and let
T = (T1, . . . , Tn) and T1 = (T1, . . . , T1). By the assumption it follows that T and T1

must have the same distribution. Hence, we get that:

Cov(Γ(T),∆(T)) = Cov(Γ(T1),∆(T1)) ≥ 0

where the final inequality follows by Theorem 6.1.4 (ii) and Definition 6.1.1. □

In the next section, we will establish upper and lower bounds for the system relia-
bility. In order to do this, the following theorem is useful:

Theorem 6.1.7 Let X1, . . . , Xn be the associated or independent component state vari-
ables of a monotone system (C,φ). Moreover, let the minimal path series structures of
the system be (P1, ρ1), . . . , (Pp, ρp), where:

ρj(XPj) =
"

i∈Pj

Xi, j = 1, . . . , p. (6.4)

Then, ρ1, . . . , ρp are associated. Similarly, let the minimal cut parallel structures of the
system be (K1,κ1), . . . , (Kk,κk), where:

κj(XKj) =
#

i∈Kj

Xi, j = 1, . . . , k. (6.5)

Then, κ1, . . . ,κk are associated.

Proof: The result follows since ρ1, . . . , ρp in (6.4) and κ1, . . . ,κk in (6.5) are non-
decreasing functions of associated random variables, and hence associated by Theo-
rem 6.1.4, (iii). □

The following result extends Theorem 6.1.4, (iii) to non-increasing functions as well.

Theorem 6.1.8 Let T = (T1, . . . , Tn) be associated, and let:

Ui = gi(T), i = 1, . . . ,m,

where gi, i = 1, . . . ,m are non-increasing functions. Then, U = (U1, . . . , Um) is asso-
ciated.
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Proof: Let Γ,∆ be binary non-decreasing functions, and introduce g(T) = (g1(T), . . . , gm(T)).
Thus, U = g(T). We then introduce

Γ̄(T) = 1− Γ(g(T)) = 1− Γ(U)

∆̄(T) = 1−∆(g(T)) = 1−∆(U)

It follows directly that Γ̄ and ∆̄ are binary and non-decreasing in Ti, i = 1, . . . , n.
Hence, by the assumption that T is associated, it follows that:

Cov(Γ(U),∆(U))) = Cov(1− Γ̄(T), 1− ∆̄(T))

= Cov(1, 1) + Cov(1,−∆̄(T)) + Cov(−Γ̄(T), 1)

+ Cov(−Γ̄(T),−∆̄(T))

= Cov(Γ̄(T), ∆̄(T)) ≥ 0.

Hence, we conclude that U is associated. □

In order to check whether two random variables are associated, the following result
can sometimes be used. It states that for two binary random variables, association and
non-negative covariance are equivalent.

Theorem 6.1.9 Let X and Y be two binary random variables. Then, X and Y are
associated if and only if

Cov(X, Y ) ≥ 0.

Proof: Assume first that X and Y are associated. We may then choose Γ(X, Y ) = X
and ∆(X, Y ) = Y . Since obviously Γ and ∆ are binary and non-decreasing functions,
it follows from Definition 6.1.1 that Cov(X, Y ) = Cov(Γ,∆) ≥ 0.

We then assume conversely that Cov(X, Y ) ≥ 0. If can prove that this implies that
Cov(Γ,∆) ≥ 0 for all binary non-decreasing functions, the result is proved. Since there
are only two variables in this case, X and Y , there are only a very limited number of
choices for Γ and ∆. In fact, the only choices are:

Γ1 ≡ 0, Γ2 = X · Y, Γ3 = X, Γ4 = Y, Γ5 = X ∐ Y, Γ6 ≡ 1.

Moreover, we have the following partial ordering:

Γ1 ≤ Γ2 ≤
5

Γ3

Γ4

6
≤ Γ5 ≤ Γ6.

Assume first that Γ and ∆ from the set {Γ1, . . . ,Γ6} such that Γ(X, Y ) ≤ ∆(X, Y ).
We then have:

Cov(Γ,∆) = E(Γ ·∆)− E(Γ) · E(∆)

= E(Γ)− E(Γ) · E(∆) = E(Γ)[1− E(∆)] ≥ 0.
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The only possibility left is Γ = Γ3 = X and ∆ = Γ4 = Y . However, in this case we get
that:

Cov(Γ,∆) = Cov(X, Y ) ≥ 0,

where the last inequality follows by the assumption. Hence, we conclude that Cov(Γ,∆) ≥
0 for all binary non-decreasing functions, and thus the result is proved. □

6.2 Upper and lower bounds for the reliability of mono-
tone systems

As mentioned, it is often the case that we are unable to compute the exact reliability of a
system. This may be the case for large, complex systems where the computations simply
take too much time, but also for systems where the components are not independent
(recall that we assumed independence of the components throughout Section 4). In this
section, we derive several different upper and lower bounds for the system reliability.
These bounds can be useful whenever computing the exact reliability is impossible or
too computationally costly.

Note that in this section, we will not always assume that the component state
variables are independent. However, to get useful bounds, we still need to assume
something about the dependencies between the components. In most of the results of
this section, this assumption will be that the component state variables are associated
(see Section 6.1).

The following theorem is a key result for deriving reliability bounds.

Theorem 6.2.1 Let T1, . . . , Tn be associated random variables such that 0 ≤ Ti ≤ 1,
i = 1, . . . , n. Then,

E[
n"

i=1

Ti] ≥
n"

i=1

E[Ti] (6.6)

E[
n#

i=1

Ti] ≤
n#

i=1

E[Ti] (6.7)

Proof: We note that since 0 ≤ Ti ≤ 1, both Ti and Si = 1−Ti are non-negative random
variables, i = 1, . . . , n. Hence, the product functions

$n
i=1 Ti and

$n
i=1 Si are both

non-decreasing in each argument.
By using Theorem 6.1.2, we find:

E[
n"

i=1

Ti]− E[T1]E[
n"

i=2

Ti] = Cov(T1,

n"

i=2

Ti) ≥ 0,
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since the product function is non-decreasing in each argument because Ti ≥ 0, i =
2, . . . , n. This implies that:

E[
n"

i=1

Ti] ≥ E[T1]E[
n"

i=2

Ti].

By repeated use of this inequality, we get (6.6).
From Theorem 6.1.8, S1, . . . , Sn are associated random variables. Moreover, 0 ≤

Si ≤ 1, i = 1, . . . , n, so we can apply (6.6) to these variables. From this it follows that:

E[
n#

i=1

Ti] = 1− E[
n"

i=1

(1− Ti)] = 1− E[
n"

i=1

Si]

≤ 1−
n"

i=1

E(Si) = 1−
n"

i=1

(1− E[Ti])

=
n#

i=1

E[Ti],

so (6.7) is proved as well.
□

Theorem 6.2.1 has an important interpretation: If we apply the theorem to the
binary component state variables X1, . . . , Xn, (6.6) says that for a series structure
of associated components, an incorrect assumption of independence will lead to an
underestimation of the system reliability. Correspondingly, (6.7) says that for a parallel
structure, an incorrect assumption of independence between the components will lead to
an overestimation of the system reliability. Clearly, overestimating the system reliability
can have serious consequences in applications, and should be avoided. Since most
systems are not purely series or purely parallel, we conclude that for an arbitrary
structure, we cannot say for certain what the consequences of an incorrect assumption
of independence will be. This means that in any application where we do not know
for sure that the components are independent, simply assuming independence in order
to use one of the methods in Section 4 to compute the exact system reliability can be
dangerous. Fortunately, it is still possible to obtain bounds on the system reliability.

In the next results we interpret Ti, i = 1, . . . , n as the lifetimes of components in a
binary monotone system.

Theorem 6.2.2 Let T1, . . . , Tn be non-negative associated random variables. Then, for
all ti, i = 1, . . . , n:

P [∩n
i=1(Ti > ti)] ≥

n"

i=1

P [Ti > ti], (6.8)

P [∩n
i=1(Ti ≤ ti)] ≥

n"

i=1

P [Ti ≤ ti]. (6.9)
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Proof: Interpreting Ti as the lifetime of the ith component in a binary monotone sys-
tem, we may introduce the corresponding binary component state process {Xi(t)},
i = 1, . . . , n, where:

Xi(t) =

7
8

9
1, t < Ti

0, t ≥ Ti.

In Figure 6.1 we have plotted Xi(t) as a function of t ≥ 0 for a given value of Ti. The
plot shows that Xi(t) is a non-increasing function of t. For a fixed point of time t
we may alternatively view Xi(t) as a function of the lifetime Ti. The resulting plot is
shown in Figure 6.2. From this plot we see that Xi(t) is a non-decreasing function of
Ti. Hence, by Theorem 6.1.4, X1(t), . . . , Xn(t) are associated for all t ≥ 0.

Ti

1

t

X (t)i

Figure 6.1: The binary component state process Xi(t) plotted as a function of the time
t ≥ 0.

Ti

1

t

X (t)i

Figure 6.2: The binary component state process Xi(t) plotted as a function of the
lifetime Ti for a given t ≥ 0.
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Hence, by applying (6.6):

P [∩n
i=1(Ti > ti)] = P [∩n

i=1(Xi(ti) = 1)]

= P [
n"

i=1

Xi(ti) = 1] = E[
n"

i=1

Xi(ti)]

≥
n"

i=1

E[Xi(ti)] =
n"

i=1

P [Xi(ti) = 1]

=
n"

i=1

P [Ti > ti],

so (6.8) is proved. The proof of (6.9) is similar by using (6.7) instead of (6.6) and left
as an exercise to the reader.

□

Note that the left hand side of (6.9) is the joint cumulative distribution of T1, . . . , Tn,
while the right hand side is the corresponding cumulative distribution in the case where
T1, . . . , Tn are independent. As a corollary to Theorem 6.2.2, we have:

Corollary 6.2.3 Let T1, . . . , Tn be non-negative associated random variables. Then:

P ( min
1≤i≤n

Ti > t) ≥
n"

i=1

P (Ti > t), (6.10)

P (max
1≤i≤n

Ti > t) ≤
n#

i=1

P (Ti > t). (6.11)

Proof: This follows from Theorem 6.2.2 by letting ti = t for i = 1, . . . , n. Alternatively,
this can also be proved by applying Theorem 6.2.1 to the binary component states at
time t, since min1≤i≤n Ti is the lifetime of a series system and max1≤i≤n Ti is the lifetime
of a parallel system. □

Now, we are ready to derive our first (crude) bounds of the reliability of a monotone
system. In words, these bounds say that for any monotone system, the reliability is
lower bounded by the reliability of a series system and upper bounded by the reliability
of a parallel system. This corresponds to our previous observation (see the comments
after Theorem 2.2.4) that the series system is the worst non-trivial monotone system,
while the parallel system is the best.

Theorem 6.2.4 Let X1, . . . , Xn be the component state variables of a non-trivial bi-
nary monotone structure (C,φ) with component reliabilities p1, . . . , pn, and assume that
X1, . . . , Xn are associated. Then we have:

n"

i=1

pi ≤ h ≤
n#

i=1

pi.
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Proof: We get:

n"

i=1

pi =
n"

i=1

E[Xi]

≤ E[
n"

i=1

Xi] ≤ E[φ(X)]

≤ E[
n#

i=1

Xi] ≤
n#

i=1

E[Xi]

=
n#

i=1

pi.

Here, the first inequality follows from (6.6), the second and third inequalities from
Theorem 2.2.4 and the fourth inequality follows from (6.7). □

As mentioned, these bounds are very crude, and usually not of much practical use.
Luckily, we are always able to establish better bounds than those of Theorem 6.2.4
by including information about the minimal path and cut sets of the system. These
improved bounds are a corollary to the following result:

Theorem 6.2.5 Consider a monotone structure (C,φ) with minimal path sets P1, . . . , Pp,
and minimal cut sets K1, . . . , Kk. Then we have:

max
1≤j≤p

P [min
i∈Pj

Xi = 1] ≤ h ≤ min
1≤j≤k

P [max
i∈Kj

Xi = 1].

Proof: From (3.8) and (3.10), we get

min
i∈Pr

Xi ≤ max
1≤r≤p

min
i∈Pr

Xi = φ(X) = min
1≤s≤k

max
i∈Ks

Xi ≤ max
i∈Ks

Xi,

for all r = 1, . . . , p and all s = 1, . . . , k. This implies that:

P (min
i∈Pr

Xi = 1) ≤ h ≤ P (max
i∈Ks

Xi = 1)

for all r = 1, . . . , p and all s = 1, . . . , k. This proves the theorem. □

In Theorem 6.2.5, we made no assumptions about the dependence between the
components. In order to obtain an explicit expression for the lower bound, we need to
compute P (mini∈Pr Xi = 1), j = 1, . . . , p. Similarly, to obtain an explicit expression for
the upper bound, we need to compute P (maxi∈Kr Xi = 1), j = 1, . . . , k. This is difficult
without making further assumptions about the joint distribution of the component state
variables. In the following corollary we make the assumption that the component state
variables are associated. This enables us to obtain explicit bounds.
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Corollary 6.2.6 Consider the same monotone system (C,φ) as in Theorem 6.2.5.
Moreover, assume that the component state variables are associated with component
reliabilities p1, . . . , pn. Then we have:

max
1≤j≤p

"

i∈Pj

pi ≤ h ≤ min
1≤j≤k

#

i∈Kj

pi.

Proof: The result follows immediately from Theorem 6.2.5 by using (6.6) and (6.7)
because: "

i∈Pj

pi ≤ E[
"

i∈Pj

Xi] = P [min
i∈Pj

Xi = 1]

and #

i∈Kj

pi ≥ E[
#

i∈Kj

Xi] = P [max
i∈Kj

Xi = 1].

□

The assumptions in Theorem 6.2.4 and Corollary 6.2.6 are the same. However, the
bounds in Corollary 6.2.6 are obviously better than those in Theorem 6.2.4 because:

n"

i=1

pi =
"

i∈Pj

pi
"

i/∈Pj

pi ≤
"

i∈Pj

pi ≤ max
1≤j≤p

"

i∈Pj

pi

since pi ∈ [0, 1] for i = 1, . . . , n. A similar argument proves that the upper bound in
Corollary 6.2.3 is better than the one in Theorem 6.2.4.

If we in addition to the assumptions in Corollary 6.2.6 assume that the components
are independent, we get bounds which are sometimes better than those in Corollary 6.2.6
and sometimes worse. These bounds are a corollary to the following theorem:

Theorem 6.2.7 Let X1, . . . , Xn be the associated component states of a binary mono-
tone system (C,φ) with minimal path series structures (P1, ρ1), . . . , (Pp, ρp)) and mini-
mal cut parallel structures (K1,κ1), . . . , (Kk,κk)). Then,

k"

j=1

P (κj(XKj) = 1) ≤ h ≤
p#

j=1

P (ρj(XPj) = 1). (6.12)

Proof: From the comments after Theorem 6.1.4, it follows from Theorem 6.1.4 (iii)
that the minimal path series structures, and the minimal cut parallel structures, are
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associated. Hence, we get that:

k"

j=1

P (κj(XKj) = 1) ≤ E[
k"

j=1

κj(XKj ]

= h

= E[

p#

j=1

ρj(XPj)]

≤
p#

j=1

P (ρj(XPj) = 1),

where the first inequality follows from (6.6), the first and second equalities follow from
(3.10) and (3.8) respectively and the final inequality follows from (6.7). □

The problem with Theorem 6.2.7 is the same as the problem with Theorem 6.2.5.
Without having explicit expressions for the reliabilities of the path series structures
and cut parallel structures the bounds are difficult to use. However, by assuming
independent component state variables, we can derive the following corollary.

Corollary 6.2.8 Let (C,φ) be a binary monotone system of independent component
states and where the component reliabilities are p1, . . . , pn. Let P1, . . . , Pn and K1, . . . , Kn

be respectively the minimal path and cut sets of the system. Then we have:

k"

j=1

#

i∈Kj

pi ≤ h(p) ≤
p#

j=1

"

i∈Pj

pi. (6.13)

Proof: For independent components, the lower bound in (6.13) is equal to the one in
(6.12) because

P (κj(XKj) = 1) = E[
#

i∈Kj

Xi] =
#

i∈Kj

pi.

The upper bound in (6.13) is proved in the same way. □

We conclude this section with an example.

Example 6.2.9 Consider a 3-out-of-4 system with pi = p, i = 1, 2, 3, 4. We assume
that all the component state variables are independent. We shall compare the bounds
from Corollary 6.2.6 to those from Corollary 6.2.8.

The minimal path sets for a 3-out-of-4 system are:

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4},

and the minimal cut sets are:

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}.
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In the calculations below we will repeatedly use the formula for the reliability of a parallel
system of two components with independent component state variables. Denoting the
reliability of this system by h2, and assuming that the components have reliability q, we
have:

h2(q) = q ∐ q = 1− (1− q)(1− q) = 2q − q2.

We denote the lower and upper bounds in Corollary 6.2.6 by l1(p) and u1(p) respectively.
Since all the components have the same reliability, these bounds are given by:

l1(p) = max
1≤j≤4

"

i∈Pj

p = max
1≤j≤4

p3 = p3,

u1(p) = min
1≤j≤6

#

i∈Kj

p = min
1≤j≤6

h2(p) = 2p− p2.

Similarly, we denote the bounds in Corollary 6.2.8 by l2(p) and u2(p) respectively. Again
since all the components have the same reliability, and since we have assumed that the
component state variables are independent, these bounds are given by:

l2(p) =
6"

j=1

#

i∈Kj

p =
6"

j=1

h2(p) = (2p− p2)6,

u2(p) =
4#

j=1

"

i∈Pj

p = h2(p
3)∐ h2(p

3) = 2(2p3 − p6)− (2p3 − p6)2.

From Section 2.5 we know that the reliability of the 3-out-of-4 system is given by:

h(p) =
4)

i=3

-
4

i

.
pi(1− p)n−i = 4p3(1− p) + p4.

The bounds l1(p), u1(p), l2(p), u2(p), as well as the reliability function h(p), are plotted
in Figure 6.3.

From Figure 6.3, we see that in this case, the bounds from Corollary 6.2.8 are
better than those from Corollary 6.2.6. However, note that the lower bound from Corol-
lary 6.2.6 is actually best for small values of p, while the opposite is true for larger
p-values. Correspondingly, the upper bound from Corollary 6.2.6 is best for large p-
values, while the upper bound from Corollary 6.2.8 is best for smaller values of p.

By defining a new lower bound as the largest of the two lower bounds from Corol-
lary 6.2.6 and Corollary 6.2.8, and a new upper bound as the smallest of the two upper
bounds from the same corollaries, we get a new set of bounds which is better than the
previous ones. It is also possible to improve these bounds further by using a modular
decomposition of the system at hand. We will not go into details on this, but refer to
Natvig [38] for more on this topic.
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Figure 6.3: Illustration of the bounds in Example 6.2.9.

6.3 Exercises
Exercise 6.1: Prove (6.9) of Theorem 6.2.2 by using equation (6.7).

Exercise 6.2: Prove that the upper bound in Corollary 6.2.6 is better than the one in
Theorem 6.2.4.

Exercise 6.3: Prove the upper bound of Corollary 6.2.8.

Exercise 6.4: Prove the upper bound in Corollary 6.2.6 by applying the lower bound
on the dual structure function φD.

Exercise 6.5: Prove the upper bound in Corollary 6.2.8 by applying the lower bound
on the dual structure function φD.

Exercise 6.6: Consider the network in Figure 6.4 consisting of independent compo-
nents with component reliabilities p.

a) What is the reliability h(p) for this system?
b) For p ∈ [0, 1], write a program to compute the reliability h(p). Plot h(p).
c) In the same plot, illustrate the bounds from Corollary 6.2.6 and 6.2.8. Comment

on the result.
d) Is it possible to improve these bounds further?
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Figure 6.4: Illustration of the network for Exercise 6.2.6.



Chapter 7
Computing reliability using conditional
Monte Carlo methods

As a result of the availability of high-speed computers, the use of Monte Carlo methods
have accelerated. In many cases, however, it is necessary to use various clever tricks
in order to make the methods converge faster. In particular this is true in situations
where one needs to estimate something that involves events with very low probabilities.
One such area is system reliability estimation. Since failure events often have very low
probability, a large number of simulations is needed in order to obtain stable results.
Sometimes, however, conditioning can be used to improve the convergence.

7.1 Monte Carlo simulation and conditioning
In the general case the principle of conditioning can be stated as follows: Let X =
(X1, . . . , Xn) be a random vector with a known distribution, and assume that we want
to calculate the expected value of φ = φ(X). We denote this expectation by h. Assume
furthermore that the distribution of φ cannot be derived analytically in polynomial
time with respect to n. Using Monte Carlo simulations, however, we can proceed by
generating a sample of size N , of independent vectors X1, . . . ,XN , all having the same
distribution as X, and then estimate h by the simple Monte Carlo estimate:

ĥMC =
1

N

N)

r=1

φ(Xr). (7.1)

The variance of this estimate is given by:

Var
'
ĥMC

(
=

1

N2

N)

r=1

Var(φ) =
1

N
Var(φ) (7.2)

Now, assume that S = S(X) is some other function whose distribution can be calculated
analytically in polynomial time with respect to n. More specifically, we assume that S

83
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is a discrete variable with values in the set {s1, . . . , sk}. We also introduce:

θj = E[φ | S = sj], j = 1, . . . , k. (7.3)

By the formula for conditional expectation we then have:

h =
k)

j=1

E[φ | S = sj]P (S = sj) =
k)

j=1

θjP (S = sj) (7.4)

Instead of generating N samples from the distribution of X as in (7.1), we divide the
set into k groups, one for each θj, where the j-th group has size Nj, j = 1, . . . , k,
and N1 + · · ·+Nk = N . The data in the j-th group are sampled from the conditional
distribution of X given that S = sj, and are used to estimate the conditional expectation
θj, j = 1, . . . , k. Denoting the data in the j-th group by {Xr,j : r = 1, . . . , Nj}, θj is
estimated by:

θ̂j =
1

Nj

Nj)

r=1

φ(Xr,j), j = 1, . . . , k. (7.5)

The variances of these estimates are:

Var(θ̂j) =
1

N2
j

Nj)

r=1

Var(φ|S = sj) =
1

Nj

Var(φ|S = sj), j = 1, . . . , k. (7.6)

By combining θ̂1, . . . , θ̂k, we get the conditional Monte Carlo estimate:

ĥCMC =
k)

j=1

θ̂jP (S = sj). (7.7)

Since θ̂1, . . . , θ̂k are independent, the variance of the conditional Monte Carlo estimate
is:

Var(ĥCMC) = Var[
k)

j=1

θ̂jP (S = sj)] =
k)

j=1

Var(θ̂j)[P (S = sj)]
2

=
k)

j=1

1

Nj

Var(φ|S = sj)[P (S = sj)]
2.

We observe that the variance of the conditional estimate depends on the choices of
the Nj’s. Ideally we would like Nj to be large if the product of the conditional variance
and the squared probability is large, and small otherwise, as this would yield the most
efficient partition of the total sample with respect to minimizing the total variance. In
practice, however, this is difficult, since the conditional variance is typically not known.
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In order to compare the result with the variance of the original Monte Carlo estimate,
we instead let:

Nj ≈ N · P (S = sj), j = 1, . . . , k,

so that:
k)

j=1

Nj ≈
k)

j=1

N · P (S = sj) = N ·
k)

j=1

P (S = sj) = N.

With this choice we get:

V ar(ĥCMC) ≈
k)

j=1

1

N · P (S = sj)
Var(φ|S = sj)[P (S = sj)]

2 (7.8)

=
1

N

k)

j=1

Var(φ|S = sj)P (S = sj) =
1

N
E[Var(φ|S)]

=
1

N

'
Var(φ)− Var[E(φ|S)]

(
≤ 1

N
Var(φ) = Var(ĥMC).

From the above equation we see that the conditional estimate has smaller variance
than the original Monte Carlo estimate provided that Var[E(φ | S)] is positive. This
quantity can be interpreted as a measure of how much information S contains relative
to φ. Thus, when looking for good choices for S we should look for variables containing
as much information about φ as possible. However, there are some other important
points that need to be considered. First of all S must have a distribution that can be
derived analytically in polynomial time. Next, the number of possible values of S, i.e.,
k, must be polynomially limited by n. Finally, it must be possible to sample efficiently
from the distribution of X given S.

The problem of sampling from conditional distributions has been studied recently by
several authors. Lindqvist and Taraldsen [35] proposes a general method for sampling
from conditional distributions in cases where S is a sufficient statistic. Of special
relevance to the present paper, is Broström and Nilsson [8] who consider the problem of
sampling independent Bernoulli variables given their sum. See also Nilsson [41]. In the
remaining part of this paper we shall focus on applications in reliability theory, where
X typically is a vector of independent Bernoulli variables. In relation to this we shall
derive our own conditional sampling methods.

We now apply the above ideas in the context of system reliability. That is, we assume
that X is a vector of independent Bernoulli variables, interpreted as the component state
vector relative to a system of n components. A component is failed if its state variable
is 0, and functioning if the state variable is 1. The function φ is also assumed to take
values 0, 1, and interpreted as the system state. If φ is 0, the system is failed, and if φ
is 1, the system is functioning. The function φ is referred to as the structure function
of the system, and is assumed to be a nondecreasing function of the component state
vector, X. In general the calculation of φ for a given component state vector depends
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very much on the representation of this function. If e.g., the system is represented as
some sort of communication network its state can usually be evaluated in O(n) time or
better. If on the other hand the system is specified in terms of a list of minimal path
(or cut) sets, the evaluation can be very slow since the number of such sets in the worst
cases grows exponentially with the number of components. For this study, however, we
assume that φ can be calculated in O(n) time for a given component state vector.

There are in general many different choices for the variable S which can be used in
a reliability setting. In the next sections we will consider one possible choice. For other
choices see Huseby et al. [24].

7.2 Conditioning on the sum of the component state
variables

For the remaining part of the paper we focus on the case where S is the sum of all
the component state variables. This approach was taken in in Naustdal [40]. In this
situation the random variable S takes values in the set {0, 1, . . . , n}. Thus, the uncertain
quantities we need to estimate, are:

θs = E[φ|S = s], s = 0, 1, . . . , n. (7.9)

As in the previous section, we need to have an efficient way of sampling from the
conditional distribution of X given S = s, s = 0, 1, . . . , n. In relation to this we need
the partial sums, S1, . . . , Sn, defined as:

Sm =
n)

i=m

Xi, m = 1, . . . , n.

Using these quantities, we can develop the algorithm for sampling from the distribution
of X given S = s. The idea is simply to start out by sampling X1 from the conditional
distribution of X1 | S = s. We then continue by sampling X2 from X2 | S = s, X1 = x1,
where x1 denotes the sampled outcome of X1, and so on. This turns out to be easy
noting that:

P (Xm = xm | X1 = x1, . . . , Xm−1 = xm−1, S = s)

=
P (Xm = xm, S = s | X1 = x1, . . . , Xm−1 = xm−1)

P (S = s | X1 = x1, . . . , Xm−1 = xm−1)

=
P (Xm = xm, Sm+1 = s−

,m
j=1 xj)

P (Sm = s−
,m−1

j=1 xj)

=
pxm
m (1− pm)

1−xmP (Sm+1 = s−
,m

j=1 xj)

P (Sm = s−
,m−1

j=1 xj)
,
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Assuming that the distributions of S1, . . . , Sn are all calculated before running the
simulations, we see that all the necessary conditional probabilities can be calculated
when needed during the simulations without imposing additional computational com-
plexity. Note that we only calculate those conditional probabilities we really need along
the way during the simulations, not the entire set of all possible conditional probabil-
ities corresponding to all possible combinations of values of the Xj’s. Thus, in each
simulation run we calculate n probabilities, one for each Xj. Moreover, each probabil-
ity can be calculated using a fixed number of operations (independent of n). Hence, it
follows that sampling from the conditional distribution of X given S = s, can be done
in O(n) time.

The CMC-algorithm can now be summarized as follows: Divide the N simulations
into (n + 1) groups, one for each θs, where the s-th group has size Ns, s = 0, 1, . . . , n.
The data in the s-th group is sampled from the conditional distribution of X given that
S = s, and is used to estimate the conditional expectation θs, s = 0, 1, . . . , n. Denoting
the data in the s-th group by {Xr, s : r = 1, . . . , Ns}, θs is estimated essentially by
using (7.5), and combined into the CMC-estimate by using (7.7).

A remaining problem is of course how to choose the sample sizes for each of the (n+1)
groups. One possibility is to proceed as we did in Section 1 and let Ns ≈ N ·P (S = s),
s = 0, 1, . . . , n. In this case, however, it is possible to improve the results slightly. As
in the previous section we denote the size of the smallest path set by d, and the size
of the smallest cut set by c. By examining the system, it is often easy to determine d
and c. Given these two numbers it is easy to see that θs = 0 for s < d, and θs = 1
for s > n − c. Moreover, Var(φ | S = s) = 0 for s < d, or s > n − c. Hence, there
is no point in spending simulations on estimating θs for s < d, or s > n − c, so we let
Ns = 0 for s < d, or s > n− c. As a result, we have more simulations to spend on the
remaining quantities.

An extreme situation occurs when the system is a k-out-of-n-system, i.e., when
φ(X) = I(S ≥ k). For such systems d = k, and c = (n − k + 1). In this situation
all the θs’s are known. Specifically, θs = 0 for s < k and θs = 1 for s ≥ k. Thus,
the CMC-estimate is equal to the true value of the reliability, and can be calculated
without doing any simulations at all. The reason for this is of course that in this case
φ depends on X only through S.

For all other nontrivial systems, however, it is easy to see that we always have
that d ≤ n − c. In order to ensure that we get improved results, we assume that
P (d ≤ S ≤ n− c) > 0, and let:

Ns ≈ N · P (S = s)/P (d ≤ S ≤ n− c), s = d, . . . , n− c . (7.10)

Using a similar argument as we did in (7.8) we now get that:

Var(ĥCMC) ≤ P (d ≤ S ≤ n− c)Var(ĥMC) (7.11)

Hence, we see that if d and (n − c) are close, i.e., there are few unknown θs’s, the
variance is reduced considerably.
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7.3 System reliability when all the component state
variables have identical reliabilities

If all the components in the system have the same reliability, i.e., p1 = · · · = pn = p, it
is possible to improve things even further. In this case we note that S has a binomial
distribution. Moreover, the conditional distribution of X given S is given by:

P (X = x | S = s) =
p
!n

i=1 xi(1− p)n−
!n

i=1 xi

'
n
s

(
ps(1− p)n−s

=
1'
n
s

( , (7.12)

for all x such that
,n

i=1 xi = s. From this it follows that:

θs = E[φ | S = s] =
)

{x :
!n

i=1 xi=s}
φ(x)P (X = x | S = s) =

bs'
n
s

( , (7.13)

where bs = the number of path sets with s components, s = 0, . . . , n. Finally, the
system reliability, h, expressed as a function of p, is given by:

h(p) =
n)

s=0

θsP (S = s)

=
n)

s=0

bs'
n
s

(
-
n

s

.
ps(1− p)n−s =

n)

s=0

bsp
s(1− p)n−s.

Note that the unknown quantities, θ0, . . . , θn, do not depend on p. Thus, by esti-
mating these quantities, we get an estimate of the entire h(p)-function for all p ∈ [0, 1].
Moreover, we see that θs can be interpreted as the fraction of path sets of size s among
all sets of size s, for s = 0, 1, . . . , n. Thus, θs can be estimated by sampling random sets
of size s and calculating the frequency of path sets among the sampled sets. It turns
out that this can be done very efficiently as follows:

The idea is to sample sequences of sets of increasing size by sampling from the
component set, C = {1, . . . , n}, without replacements. The only set of size 0 is of
course ∅. If ∅ is a path set, we have a trivial system which is always functioning.
Obviously, θ0 = 1 in this case. Moreover, the reliability of such a system is 1. If ∅ is
not a path set, it follows that θ0 = 0. In both cases we do not need to sample anything
to determine the value of θ0. Thus, we can focus on estimating θ1, . . . , θn by sampling
sets of size s, for s = 1, . . . , n.

Algorithm 7.3.1 Let T = (T1, . . . , Tn) be a vector for storing results from the simula-
tions. Before we start the simulations, this vector is initialised as (0, . . . , 0). Then for
i = 1, . . . , N do:

1. Sample a component from the set C, say component i1, and define A1 = {i1}. If
A1 is a path set, T1 is incremented with 1.
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2. Sample a component from the set C \ A1, say component i2, and define A2 =
{i1, i2}. If A2 is a path set, T2 is incremented with 1.

· · ·

n. Sample the last remaining component, say component in, and define An = C. If
An is a path set, Tn is incremented with 1.

When all the simulations are carried out, the vector T contains the number of observed
path sets of sizes 1, . . . , n. From this we get the resulting estimates of θ1, . . . , θn simply
as:

θs = Ts/N, s = 1, . . . , n.

It is easy to see that sampling components randomly without replacements is equiv-
alent to sampling the components according to a random permutation, (i1, . . . , in), of
the component set {1, . . . , n}. Such a permutation can easily be generated using a
well-known algorithm described in Knuth [33]. This algorithm works as follows:

Assume that we start out with a vector representing an initial arbitrary permutation
of the components, say (i1, . . . , in). One may e.g., simply use (1, . . . , n). We then
generate a random permutation vector by modifying this initial permutation vector by
running through n steps. In the k-th step we consider the element currently being the
k-th element of the vector. We then sample a random index, j, in the interval k, . . . , n,
and let the k-th and the j-th elements switch places in the permutation vector. When
all the n steps are completed, it is easy to see that the resulting vector is indeed a
random permutation, regardless of the initial state of the vector.

By using this algorithm, we are able to generate a complete sequence of n sets in just
O(n) time. However, since all sets in a sequence are derived from the same permutation,
the θs-estimates become correlated. Still, the effect of this is more than compensated
for since each θs-estimate now can be based on all N simulations, compared to just a
subset of size Ns as was the case in the previous section.

When running this algorithm, much of the time is spent on the steps where the
system state is evaluated. Thus, in order to minimize the running time of the algorithm,
one would like to reduce the number of such evaluations. Since A1 ⊂ A2 ⊂ · · · ⊂ An,
it follows by the monotonicity of the structure function, φ, that if Ak is a path set,
then so is Ak+1. Thus, we can stop evaluating the state of the system as soon as we
have generated a path set, since we then know that all the remaining sets will be path
sets as well. Still it is obviously important to carry out the system state evaluations as
efficient as possible. The methodology for doing this may typically depend strongly on
the representation of the given system.

In order to show how this can be done, we consider two different classes of systems.
The first class we consider is the class of threshold systems (see Example 4.0.1), i.e.,
binary monotone systems (C,φ) where the structure function can be written in the
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following form:

φ(X) = I
* n)

i=1

aiXi ≥ b
+
, (7.14)

where a1, . . . , an and b are positive numbers. The ai’s are called the weights associated
with the components, while the number b is called the threshold value. Notice that
if a1 = · · · = an = 1 and b = k, we get a standard k-out-of-n-system. For such
systems it is very easy to carry out all the system state evaluations. To do so we keep
track of the sum of the weights associated with the sampled components. When a new
component is sampled, the sum is updated by adding the weight associated with this
component. When the sum of weights is greater than or equal to the threshold value,
we know that we have generated a path set. Using this method, each system evaluation
is carried out in constant time. Thus, in this case the total computational complexity
of the simulation algorithm is just O(nN), where n is the number of components in the
system, and N is the number of simulations.

The second class is the class of undirected network systems (see Section 4.5). The
components of such a system are the edges of an undirected network. An edge is
functioning if its end-nodes can “communicate” through it. The system is functioning if
a subset of the nodes (with K elements), called the terminals, can communicate through
the network.

If all the edges are functioning, we assume that the network is connected, i.e., all
nodes can communicate with each other. If only a subset of the edges are functioning,
however, the node set is partitioned into a set of equivalence classes such that a pair
of nodes can communicate if and only if they belong to the same equivalence class.
Moreover, the system is functioning if and only if all the terminals belong to the same
equivalence class.

In order to minimize the running time spent on system state evaluation, we maintain
lists of nodes belonging to each equivalence class as we sample the edges. For each list
we also keep track of the number of terminals contained in the list. When a new edge is
sampled, we investigate its end-nodes. If they belong to the same equivalence class, the
system state is not changed. On the other hand, if the end-nodes belong to different
equivalence classes, we merge the two classes and calculate the number of terminals
included in the merged class. When we arrive at an equivalence class containing K
terminals, (i.e., all the terminals), we know that we have generated a path set.

The most time-consuming part of this algorithm is the merging of equivalence
classes. Assuming that the classes are stored as linked lists, the actual merging of
the lists can be done in constant time. However, in order to minimize the time spent
on checking whether or not two nodes belong to the same class, the nodes should be
marked with a reference to its class list. When two classes, say A and B, are merged,
all the nodes in the smallest class, say B must be marked with a reference to the class
list of A instead. Updating such references can be done in O(v) time, where v is the
number of nodes in the network. It should be noted, however, that this is a very pes-
simistic estimate, as in most cases the number of updating operations is much smaller.
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Anyway, the total computational complexity of the simulation algorithm is O(nvN) in
this case.

We close this section by illustrating the effect of the improved method on a specific
example. The system we consider is the 2-terminal undirected network system illus-
trated in Figure 7.1. We assume that all the 7 components have the same reliability p,
and estimate the system reliability h(p) for all p ∈ [0, 1]. Moreover, we let N = 100.
With so few iterations it is easier to see how much better the conditional Monte Carlo
method is compared to crude Monte Carlo method.

1

2

3

4

5 6

7
S T

Figure 7.1: A 2-terminal undirected network system

For the conditional Monte Carlo method we know that we get an estimate of the
entire h(p)-function by estimating the fractions θ1, . . . , θn. For the crude Monte Carlo
estimate one possible approach is to proceed by obtaining estimates of h(p) for each indi-
vidual value of p. This would imply that we would need N = 100 iterations for each cho-
sen value of p. Thus, with a suitable resolution of p-values, say p ∈ {0.01, 0.02, . . . , 1.00}
we need 100N = 10000 samples. Fortunately, it is possible to avoid this issue. In order
to do so, the following sampling method can be used. In the jth iteration we generate
uniformly distributed random variables U1j, . . . , U7j. For a given value of p ∈ [0, 1] we
then define:

Xij(p) = I(Uij ≤ p), i = 1, . . . , 7, j = 1, . . . N,

where I(Uij ≤ p) = 1 if Uij ≤ p and zero otherwise. This implies that:

P (Xij(p) = 1) = P (Uij ≤ p) = p, i = 1, . . . , 7, j = 1, . . . N.

We denote the structure function of the system by φ. Moreover, we denote the jth
sampled component state vector, expressed as a function of the common component
reliability p, by Xj(p) = (X1,j(p), . . . , X7,j(p)), j = 1, . . . , N . We can then estimate
h(p) as follows:

ĥ(p) =
1

N

N)

j=1

φ(Xj(p)).
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By varying p in the interval [1, 0], we obtain an estimate of h(p) for all p. Hence, we
can use the same sample of uniformly distributed variables to obtain an estimate of the
system reliability for each value of p. Thus, we only need N = 100 samples for this
method as well, which saves us a lot of time. Moreover, it is easy to see that Xj(p)
is a non-decreasing function of p for all j. Hence, since φ is a non-decreasing function
of Xj, the estimated curve, ĥ(p), is non-decreasing as well, a property which the true
function h(p) also has.

Using a program called CMCsim1 we can run the conditional Monte Carlo simu-
lations. This program has an intuitive graphical user interface, and can be used to
estimate reliability and component importance of any undirected network system.

In Figure 7.2 we have plotted the two estimates for h(p) along with the true relia-
bility function. The red curve is the crude Monte Carlo estimate, the green curve is the
conditional Monte Carlo curve, while the blue curve represents the true reliability func-
tion. As we can see, the green and the blue curves are almost identical. Thus, even with
as few as N = 100 iterations, we get a very precise estimate of the entire h(p)-function.
The crude Monte Carlo estimate is far more irregular and deviates considerably from
the true curve.

1CMCsim is a java program developed at the Department of Mathematics, University of Oslo. The
program is freely available at http://www.riscue.org/cmcsim/.
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Figure 7.2: System reliability as a function of the common component reliability p.
Crude Monte Carlo estimate (red curve), conditional Monte Carlo estimate (green
curve) and true reliability (blue curve).
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Chapter 8
Discrete event simulation

Discrete event models are typically used in simulation studies to model and analyze
pure jump processes. For an extensive introduction to discrete event models we refer
to Glasserman [18]. See also Klebaner [32]. A discrete event model can be viewed
as a system consisting of a collection of stochastic processes, where the states of the
individual processes change as results of various kinds of events occurring at random
points of time. Between these events the states of the processes are assumed to be con-
stant. We refer to the processes included in the collection, as the elementary processes
of the system. In our context we always assume that each event only affects one of the
elementary processes.

Asymptotic system availability and component criticality, can easily be estimated
by running a single discrete event simulation on the system over a sufficiently long time
horizon, or by working directly on the stationary component availabilities. Sometimes,
however, one needs to estimate how these properties evolve over time. In such cases it is
necessary to run many simulations to obtain stable availability and criticality estimates.
One possible approach to this problem is to sample the system state at fixed points of
time, and then use the mean values of the states at these points as curve estimates.
With this approach all information about the process between the sampling points is
thrown away. In the present paper we propose an alternative sampling procedure where
we utilize process data between the sampling points as well. This simulation method is
particularly useful when estimating various kinds of component importance measures
for repairable systems.

8.1 Pure jump processes

In this section we formalize the consept of a pure jump process. Thus, let {S(t)} be a
stochastic process where S(t) denotes the state of the process at time t ≥ 0. Moreover,
we let T1 < T2 < · · · denote the points of time of the events affecting the process, and
let T0 = 0. Following Klebaner [32] a pure jump process is a process where S(t), can

95
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be written as:

S(t) = S(0) +
∞)

j=1

I(Tj ≤ t)Jj, t ≥ 0, (8.1)

where I(·) denotes the indicator function, and Jj denotes the change in the state (pos-
itive or negative) of the process at time Tj. The representation (8.1) implies that
the state function S(t) is piecewise constant and right-continuous in t, with jumps at
T1 < T2 < · · · . In particular, for k = 0, 1, . . ., we have:

S(t) = S(0) +
k)

j=1

Jj = S(Tk), for all t ∈ [Tk, Tk+1). (8.2)

Thus, in order to keep track of how the process evolves and update the value of the
state function, only the points of time where the events happen need to be considered.
This property is convenient during simulations.

The infinite sum in (8.1) indicates that the number of events occurring in the in-
terval [0, t] is unbounded. The possibility of having an infinite number of events in
[0, t], however, may cause various technical difficulties. In particular, this may cause
simulations to break down since an infinite number of events need to be generated and
handled. See Glasserman [19] for a further discussion of this issue. To avoid these
difficulties, we always assume that the number of events occurring in any finite interval
is finite with probability one. A pure jump process satisfying this assumption is said
to be regular. Note, however, that the regularity assumption does not imply the exis-
tence of a fixed number N < ∞ such that the number of events in the interval [0, t] is
bounded by N with probability one. The number of events in [0, t] will typically be a
random variable with a distribution that ranges over all non-negative integers. When
the simulation procedure is chosen, this must be taken into account.

We now present a few basic results on regularity of pure jump processes which we
need later. We consider a pure jump process {S(t)} with jumps at T1 < T2 < · · · . We
also introduce the times between the events defined as:

∆j = Tj − Tj−1, j = 1, 2, . . . . (8.3)

Using these quantities the event times can be expressed as:

Tk =
k)

j=1

∆j, k = 1, 2, . . . . (8.4)

Obviously, the process {S(t)} is regular if and only if T∞ = ∞ almost surely.
Thus, it follows that a necessary and sufficient criterion for regularity is that the series,∞

j=1 ∆j is divergent with probability one. This condition can often be verified using
the following simple result:



8.1. PURE JUMP PROCESSES 97

Proposition 8.1.1 Let {S(t)} be a pure jump process with jumps at T1 < T2 < · · · .
Moreover, we let T0 = 0 and introduce the non-negative random variables ∆j = Tj −
Tj−1, j = 1, 2, . . . . Assume then that the sequence {∆j} contains an infinite subsequence
{∆kj} of independent, identically distributed random variables such that E[∆kj ] = d >
0. Then S is regular.

Proof: By the strong law of large numbers it follows that:

P ( lim
n→∞

n−1

n)

j=1

∆kj = d) = 1.

This implies that the series
,∞

j=1 ∆kj is divergent with probability one. Hence, since
obviously

,∞
j=1 ∆kj ≤

,∞
j=1 ∆j, the result follows. □

The regularity property implies that the set of points where the process jumps
almost surely does not have any accumulation points. The following result utilizes this
to show the existence of left limits of the state function of a regular pure jump process.

Proposition 8.1.2 Let {S(t)} be a regular pure jump process with jumps at T1 < T2 <
· · · . Then limt→s− S(t) exists for every s > 0 with probability one.

Proof: Let 0 ≤ t < s < ∞. We then consider the set T = {Tj : t ≤ Tj < s}∪{t}. Since
S is assumed to be regular, the number of elements in T is finite with probability one.
Moreover, T is non-empty since t ∈ T . Thus, this set contains a maximal element,
which we denote by t′. Moreover, since every element in T is less than s, then so is t′.
From this it follows that the interval (t′, s) is nonempty. At the same time (t′, s) does
not contain any jumps, so S(t) is constant throughout this interval. Hence, limt→s− S(t)
exists. Since s was arbitrary chosen, this holds for any s > 0. □

Regularity is also of importance when considering the integral of a pure jump pro-
cess:

Proposition 8.1.3 Let {S(t)} be a regular pure jump process with jumps at T1 < T2 <
· · · , and let 0 ≤ u < v < ∞. Assume that {Tj : u < Tj < v} = {T (1), . . . , T (k)}, where
T (1) < · · · < T (k). Moreover, we let T (0) = u and T (k+1) = v. Then we have:

4 v

u

S(t)dt =
k)

j=0

S(T (j))(T (j+1) − T (j)).

Proof: We first note that since S is assumed to be regular, the number of elements
in the set {Tj : u < Tj < v} is finite with probability one. Thus, this set can almost
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surely be written in the form {T (1), . . . , T (k)}, for some suitable k < ∞. Since S is right-
continuous and piecewise constant, it follows that S(t) = S(T (j)) for all t ∈ [T (j), T (j+1)),
j = 0, 1, . . . , k. Thus, we have:

4 T (j+1)

T (j)

S(t)dt = S(T (j))(T (j+1) − T (j)), j = 0, 1, . . . , k.

The result then follows by adding up the contributions to the integral from each of the
k + 1 intervals [T (0), T (1)), . . . , [T (k), T (k+1)) □

We then consider a system consisting of a collection of n regular pure jump processes,
S1, . . . , Sn. The state of the system is then typically expressed as a function of the states
of the elementary processes. It is easy to see that the system state also evolves as a
regular pure jump process. That is, we have:

Proposition 8.1.4 Let {S1(t)}, . . . , {Sn(t)} be n regular pure jump processes, and let
H(t) = H(S(t)), where S(t) = (S1(t) . . . , Sn(t)), t ≥ 0. Then {H(t)} is a regular
pure jump process as well. That is, H(t) = H(S(t)) is piecewise constant and right-
continuous in t, and the number of jumps in any finite interval is finite with probability
one.

Proof: Let Ti be the set of time points corresponding to the jumps of the process
Si, i = 1, . . . , n, and let T be the set of time points corresponding to the jumps of the
process {H(t)}. Since the state value of H cannot change unless there is a change in the
state value of at least one of the elementary processes, it follows that T ⊆ (T1∪· · ·∪Tn).
Thus, H(t) is piecewise constant and right-continuous in t. Moreover, for any finite
interval [t, s] we also have:

T ∩ [t, s] ⊆ [(T1 ∩ [t, s]) ∪ · · · ∪ (Tn ∩ [t, s])].

Since by regularity (Ti ∩ [t, s]) is finite for i = 1, . . . , n, it follows that T ∩ [t, s] is finite
as well. Hence, we conclude that {H(t)} is regular. □

8.2 Binary monotone system of repairable components
As we shall see, stationary statistical properties of a pure jump process, can often
be calculated by working directly on the stationary probability distributions of the
elementary processes. Sometimes, however, one needs to estimate how the expected
value of the process evolves over time. In such cases it is often necessary to use some
sort of Monte Carlo simulation method.

In order to illustrate how this can be done we consider a binary monotone system
(C,φ) of n repairable components. The elementary processes are the component state
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processes, denoted {X1(t)}, . . . , {Xn(t)}, where Xi(t) represents the state of component
i at time t ≥ 0, i = 1, . . . , n. That is, Xi(t) = 1 if component i is functioning at time t,
and zero otherwise, i = 1, . . . , n. We also introduce the component state vector at time
t ≥ 0, X(t) = (X1(t), . . . , Xn(t)). Thus, φ = φ(X(t)) = 1 if the system is functioning
at time t and zero otherwise.

We now introduce the lifetimes and repair times for the components. That is, for
i = 1, . . . , n and j = 1, 2, . . . we let:

Uij = The jth lifetime of the ith component. (8.5)
Dij = The jth repair time of the ith component. (8.6)

We assume that Uij has an absolutely continuous distribution Fi with a positive mean
value µi < ∞, while Dij has an absolutely continuous distribution Gi with a positive
mean value νi < ∞, i = 1, . . . , n, j = 1, 2, . . .. All lifetimes and repair times are
assumed to be independent. Thus, in particular the component states X1(t), . . . , Xn(t)
are independent for each t ≥ 0.

We then introduce the availability of the ith component at time t, denoted Ai(t),
as the probability that the component is functioning at time t. That is, for i = 1, . . . , n
we have:

Ai(t) = Pr(Xi(t) = 1) = E[Xi(t)].

It can then be shown (see Barlow and Proschan [5]) that the corresponding stationary
availabilities can be expressed as:

Ai = lim
t→∞

Ai(t) =
µi

µi + νi
, i = 1, . . . , n. (8.7)

Introduce A(t) = (A1(t), . . . , An(t)) and A = (A1, . . . , An). The system availability at
time t is given by:

Aφ(t) = Pr(φ(X(t)) = 1) = E[φ(X(t))] = h(A(t)),

where h is the system’s reliability function. The corresponding stationary availability
is given by:

Aφ = lim
t→∞

Aφ(t) = h(A). (8.8)

We now extend Definition 5.1.1 to repairable components in the obvious way by stating
that component i is critical at time t if:

ψi(X(t)) = φ(1i,X(t))− φ(0i,X(t)) = 1. (8.9)

We will refer to ψi(X(t)) as the criticality state of component i at time t. Moreover, we
extend Definition 5.2.1 to this context by defining the Birnbaum measure of importance
of a repairable component i at time t, as the probability that component i is critical at
time t. This is denoted I

(i)
B (t) and given by:

I
(i)
B (t) = Pr(ψi(X(t)) = 1) = E[ψi(X(t))] (8.10)

= h(1i,A(t))− h(0i,A(t)).
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The corresponding stationary measure is given by:

I
(i)
B = lim

t→∞
I
(i)
B (t) = h(1i,A)− h(0i,A). (8.11)

8.3 Simulating repairable systems
Discrete event simulation is a very well established technique for analyzing systems of
pure jump processes with applications in many different areas such as queueing and
inventory systems and reliability. For an introduction to this field see Banks et al. [3].

As in the previous section we consider a binary monotone system (C,φ) with com-
ponent state processes, denoted {X1(t)}, . . . , {Xn(t)}. The events affecting the ith
component are denoted by Ei1, Ei2, . . ., listed in chronological order, i = 1, . . . , n. Since
we assumed that all lifetimes and repair times have absolutely continuous distributions,
all these events happen at distinct points of time almost surely. We let Ti1 < Ti2, . . . be
the corresponding points of time for these events. We also let Ti0 = 0, i = 1, . . . , n. As
in (8.1) the component state processes can then be expressed as:

Xi(t) = Xi(0) +
∞)

j=1

I(Tij ≤ t)Jij, t ≥ 0,i = 1, . . . , n, (8.12)

where the jumps Jij are either −1 if Eij is a failure event, or +1 if Eij is a repair
event. We assume that all components start out by being functioning. Thus, we have
Xi(0) = 1, and Jij = (−1)j, for i = 1, . . . , n and j = 1, 2, . . .. Finally, for i = 1, . . . , n
we introduce the times between the events defined as:

∆ij = Tij − Tij−1, i = 1, . . . , n,j = 1, 2, . . . . (8.13)

Then for i = 1, . . . , n we have:

∆i1 = Ui1, ∆i2 = Di1, ∆i3 = Ui2, . . . (8.14)

Since Ui1, Ui2, . . . are independent and identically distributed with positive mean value
µi, it follows by Proposition 8.1.1 that Xi is a regular pure jump process, i = 1, . . . , n.
Hence, by Proposition 8.1.4 the system state φ = φ(X) as well as the criticality states
ψ1(X), . . . ,ψn(X) are regular pure jump processes.

At the system level the event set is the union of all the component event sets. Let
E(1), E(2), . . . denote these events sorted with respect to their respective points of time,
and let T (1) < T (2) < · · · be the corresponding points of time. Note that since we
assumed that all lifetimes and repair times have absolutely continuous distributions,
each system event corresponds almost surely to a unique component event.

In order to simulate such a system, we use an object oriented approach where the
components as well as the system are represented as objects. The component objects
are equipped with methods for generating failure and repair events according to their
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respective life- and repair time distributions. The system object determines the state
of the system as a function of the component states. To keep track of the events
and process them in the correct order, they are organized in a dynamic queue sorted
with respect to the points of time of the events. The component processes place their
upcoming events into the queue where they stay until they are processed.

More specifically, at time zero each component starts out by being functioning, and
places its first failure event into the queue. As soon as all these failure events have been
placed into the queue, the first event in the queue is processed. That is, the system
time is set to the time of the first event, and the event is taken out of the queue and
passed on to the component responsible for handling this event. The component then
updates its state, generates a new event, in this case a repair event, which is placed
into queue, and notifies the system about its new state so that the system state can be
updated as well. Then the next event in the queue is processed in the same fashion,
and so forth until the system time reaches a certain predefined point of time. Note that
since the component events are generated as part of the event processing, the number
of events in the queue stays constant.

Although the system state and component states stay constant between events, it
may still be of interest to log the state values at predefined points of time. In order to
facilitate this, we introduce yet another type of event, called a sampling event. Such
sampling events will typically be spread out evenly on the timeline. Thus, if e1, e2, . . .
denote the sampling events, and t1 < t2 < · · · are the corresponding points of time, we
would typically have tj = j ·∆ for some suitable number ∆ > 0.

The sampling events will be placed into the queue in the same way as for the ordinary
events. As a sampling event is processed, the next sampling event will be placed into
the queue. Thus, at any time only one sampling event needs to be in the queue.

In principle one must update the system state every time there is a change in
the component states. For large complex systems, these updates may slow down the
simulations considerably. Thus, whenever possible one should avoid computing the
system state. Fortunately, since the structure function of a binary monotone system is
non-decreasing in each argument, it is possible to reduce the updating to a minimum.
To explain this in detail, we consider the event Eij affecting component i. Let Tij be
the corresponding point of time, and let X(T−

ij ) denote the value of the component
state vector immediately before Eij occurs, i.e., X(T−

ij ) = limt→T−
ij

X(t). Note that by
Proposition 8.1.2 these limits exist since the component state processes are regular.

If Eij is a failure event of component i, i.e., Xi(T
−
ij ) = 1 and Xi(Tij) = 0, then the

event cannot change the system state if the system is already failed, i.e., φ(X(T−
ij )) = 0.

Similarly, if Eij is a repair event of component i, i.e., Xi(T
−
ij ) = 0 and Xi(Tij) = 1,

this event cannot change the system state if the system is already functioning, i.e.,
φ(X(T−

ij )) = 1. Thus, we see that we only need to recalculate the system state whenever:

φ(X(T−
ij )) ∕= Xi(Tij). (8.15)

Hence, the number of times we need to recalculate the system state is drastically re-
duced.
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In cases where we keep track of the criticality state of each of the components, we
can simplify the calculations even further by noting that the system state is changed as
a result of the event Eij if and only if component i is critical at the time of the event.
Moreover, if i is critical, and Eij is a failure event, it follows that the system fails as a
result of this event, i.e., φ(X(Tij)) = 0. If on the other hand i is critical, and Eij is a
repair event, it follows that the system becomes functioning as a result of this event,
i.e., φ(X(Tij)) = 1. Thus, we see that in this setup all the calculations we need to carry
out, are related to the updating of the criticality states.

A similar technique can be used when updating the criticality states of the compo-
nents. Thus, we consider the event Eij affecting the state of component i. We first note
that the criticality state function of component i, ψi(X(t)) = φ(1i,X(t)) − φ(0i,X(t))
does not depend on the state of component i. Thus, the event Eij does not have any
impact on the criticality state of i. However, Eij may still change the criticality state of
other components in the system even when the system state remains unchanged. Thus,
let k ∕= i be another component, and consider its criticality state function ψk(X(Tij)).

If Xk(Tij) = 1 and φ(X(Tij)) = 0, it follows that:

φ(1k,X(Tij)) = φ(0k,X(Tij)) = 0. (8.16)

Thus, in this case we must have ψk(X(Tij)) = 0. On the other hand, if Xk(Tij) = 0
and φ(X(Tij)) = 1, it follows that:

φ(1k,X(Tij)) = φ(0k,X(Tij)) = 1. (8.17)

Thus, we must have ψk(X(Tij)) = 0 in this case as well. Hence, we see that a necessary
condition for component k to be critical at time Tij is that:

φ(X(Tij)) = Xk(Tij). (8.18)

Utilizing these observations reduces the need to recalculate the criticality states.

8.4 Estimating availability and importance
Stationary availability and importance measures are typically easy to derive. If the
system under consideration is not too complex, these quantities can be calculated ana-
lytically using (8.7), (8.8) and (8.11). For larger complex systems one may estimate the
availability and importance using Monte Carlo simulations. A fast simulation algorithm
for this is provided in [?]. Alternatively, estimates can be obtained by running a single
discrete event simulation on the system over a sufficiently long time horizon.

Here, however, we focus on the problem of estimating the system availability Aφ(t)

and the component importance measures I(1)B (t), . . . , I
(n)
B (t) as functions of t. Ideally we

would like to estimate these quantities for any t ≥ 0. For practical purposes, however,
we have to limit the estimation to a finite set of points. More specifically, we will
estimate Aφ(t) for t ∈ {t1, . . . , tN}, i.e., the set of the N first sampling points. For the
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points of time between the sampling points, we just use linear interpolation to obtain
the curve estimate.

A simple approach to this problem is to run M simulations on the system, where
each simulation covers the time interval [0, tN ]. In each simulation we sample the values
of φ and ψ1, . . . ,ψn at each sampling point t1, . . . , tN . We denote the sth simulated value
of the component state vector process at time t ≥ 0 by Xs(t), s = 1, . . . ,M , and obtain
the following estimates for j = 1, . . . , N :

Âφ(tj) =
1

M

M)

s=1

φ(Xs(tj)), (8.19)

Î
(i)
B (tj) =

1

M

M)

s=1

ψi(Xs(tj)). (8.20)

We will refer to these estimates as pointwise estimates. It is easy to see that for
j = 1, . . . , N , Âφ(tj) and Î

(i)
B (tj) are unbiased and strongly consistent estimates of

Aφ(tj) and I
(i)
B (tj) respectively. In order to estimate Aφ(t) and I

(i)
B (t) between the

sampling points, one may use interpolation. Using a sufficiently high sampling rate,
i.e., a small value of ∆, a satisfactory estimate of the full curve can be obtained. Still,
all information about the process between the sampling points is thrown away.

We now present an alternative approach where we utilize process data between the
sampling points as well. As above we assume that the system is simulated M times
over the interval [0, tN ], and let Xs(t) denote the sth simulated value of the component
state vector process at time t ≥ 0, s = 1, . . . ,M . Then let E

(1)
s , E

(2)
s , . . . denote the

events in the interval [0, tN ] in the sth simulation, including sampling events at times
t1, . . . , tN , and let T (1)

s < T
(2)
s < · · · be the corresponding points of time, s = 1, . . . ,M .

In this case we also include an extra sampling event in each simulation at time t0 = 0,
denoted E

(0)
s , and let T

(0)
s = 0, s = 1, . . . ,M .

The idea now is to use average simulated availability and criticalities from each in-
terval [tj−1, tj), j = 1, . . . , N as respective estimates for the availability and criticalities
at the midpoints of these intervals. By using Proposition 8.1.3, we obtain the following
estimates for j = 1, . . . , N :

Ãφ(t̄j) =
1

M

M)

s=1

1

∆

)

k∈Esj

φ(Xs(T
(k)
s ))(T (k+1)

s − T (k)
s ), (8.21)

Ĩ
(i)
B (t̄j) =

1

M

M)

s=1

1

∆

)

k∈Esj

ψi(Xs(T
(k)
s ))(T (k+1)

s − T (k)
s ), (8.22)

where Esj denotes the index set of the events in [tj−1, tj) in the sth simulation, and
where we have introduced the interval midpoints t̄j = (tj−1 + tj)/2, j = 1, . . . , N . We
will refer to these estimates as interval estimates.

By Proposition 8.1.3, it follows that for j = 1, . . . , N , Ãφ(t̄j) and Ĩ
(i)
B (t̄j) are un-

biased and strongly consistent estimates of the corresponding average availability and
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criticality in the intervals [tj−1, tj) respectively. By choosing ∆ so that the availabili-
ties and criticalities are relatively stable within each interval, the interval estimates are
approximately unbiased estimates for Aφ(t̄j) and I

(i)
B (t̄j) as well. In fact the resulting

interval estimates tend to stabilize much faster than the pointwise estimates. In order
to estimate Aφ(t) and I

(i)
B (t) between the interval midpoints, one may again use inter-

polation. Note that since all process information is used in the estimates, satisfactory
curve estimates can be obtained for a much higher value of ∆ than the one needed for
the pointwise estimates.

In order to illustrate this we consider a simple bridge system shown in Figure 8.1.
The components of this system are the five edges in the graph, labeled 1, . . . , 5. The
system is functioning if the source node s can communicate with the terminal node t
through the graph. All the components in the system have exponential lifetime and
repair time distributions with mean values 1 time unit. The objective of the simulation
is to estimate Aφ(t) and I

(1)
B (t), . . . , I

(5)
B (t) for t ∈ [0, tN ], where tN = 1000.

Figure 8.1: A bridge system.

All the simulations were carried out using a program called Eventcue1. This program
has an intuitive graphical user interface, and can be used to estimate availability and
criticality of any undirected network system.

Since all the lifetimes and repair times are exponentially distributed with the same
mean, it is easy to derive explicit analytical expressions for the component availabilities.
To see this, we consider the ith component at a given point of time t and introduce
Ni(t) as the number of failure and repair events affecting component i in [0, t]. With
times between events being independent and exponentially distributed with mean 1 it
follows that Ni(t) has a Poisson distribution with mean t. Moreover, component i is
functioning at time t if and only if Ni(t) is even. Thus, the ith component availability

1Eventcue is a java program developed at the Department of Mathematics, University of Oslo. The
program is freely available at http://www.riscue.org/eventcue/.
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at time t is given by:

Ai(t) =
∞)

k=0

Pr(Ni(t) = 2k) =
∞)

k=0

t2k

(2k)!
e−t. (8.23)

Using (8.23) one can verify numerically that all the component availabilities converge
very fast towards their common stationary value, 0.5. As a result of this the system
availability, Aφ(t), converges very fast towards its stationary value, 0.5, as well. In
fact, for t > 20, numerical calculations show that |Aφ(t)− 0.5| < 10−15. Similarly, the
Birnbaum measures of importance converges so that for t > 20, |I(i)B (t)−0.375| < 10−15,
i = 1, 2, 4, 5, while |I(3)B (t)− 0.125| < 10−15. Thus, for t > 20 the true values of all the
curves are approximately constant. This makes it easy to evaluate and compare the
quality of the different Monte Carlo estimates in this particular case.

Figure 8.2: Interval estimate (black curve) and pointwise estimate (gray curve) of the
availability curve.

Figure 8.2 and Figure 8.3 show respectively the availability curve and the criticality
curve of component 1. The black curves are obtained using the interval estimates, while
the gray curves show the corresponding pointwise estimate curves. In all cases we have
used M = 1000 simulations and N = 100 sample points.

The plots clearly show the difference between the two methods. The black interval
estimate curves are much more stable, and thus much closer to the true curve values,
compared to the gray pointwise estimates.

One may think that increasing the number of sampling points would make the
pointwise curve estimate better as more information is sampled. However, it turns out
that the main effect of this is that the curve jumps more and more up and down. In
fact with shorter intervals between sampling points the interval estimate becomes more
unstable as well, and in the limit where the interval lengths go to zero, the two methods
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Figure 8.3: Interval estimate (black curve) and pointwise estimate (gray curve) of the
importance curve.

Table 8.1: Standard deviations for the pointwise curve estimates
M 2000 4000 6000 8000
St.dev. 0.0121 0.0076 0.0062 0.0054

become equivalent. The only effective way of stabilizing the results for the pointwise
curve estimate is to increase the number of simulations, i.e., M .

In Table 8.1 we have listed estimated standard deviations for pointwise curve esti-
mates for different values of M . We see that the standard deviation shows a steady
decline as M increases. The corresponding numbers for M = 1000 are 0.0055 for the
interval curve estimate and 0.0148 for the pointwise estimate. Thus, in this particular
case we see that to obtain a pointwise curve estimate with a comparable stability to
the interval curve estimate, one needs about eight times as many simulations.

For the interval curve estimate it is possible to obtain an even smoother curve simply
by increasing ∆. Still, in general ∆ should not be made too large, as this could produce
a curve where important effects are obscured. Thus, in order to obtain optimal results,
one should try out different values for ∆, and balance smoothness against the need of
capturing significant oscillation properties of the curve.

Now, if smoothness is important, it is of course possible to apply some standard
smoothing technique, such as moving averages or exponential smoothing, to the point-
wise curve estimate. While such post-smoothing would clearly make the curve smoother,
this technique does not add any new information to the estimate. The main advantage
with the interval curve estimates is that such estimates actually use information about
all events. Especially in cases where events occur at a very high rate, this turns out to
be a great advantage.



Chapter 9
Applications

In this chapter, we study two different applications of the theory presented in the
previous chapters. In Section 9.1, we show how to perform a reliability analysis of two
different kinds of fishing boat engines, while in Section 9.2, we compute the reliability
of a network for transmission of electronic pulses.

9.1 Case study: Reliability analysis and comparison
of two fishing boat engines

This section is based on a collaboration from 1977 between Bent Natvig and what was
then called Fiskeriteknologisk Forkningsinstitutt (the Norwegian department of fishery
technology and research).

We will perform a reliability analysis and comparison of two different engines for
fishing boats. In the following, we say that the boat engine is functioning if and only if
the propeller and the power supply are functioning.

In 1977, Fiskeriteknologisk Forskningsinstitutt only approved one of the two engines
we will study. The critical parts of this engine are a propulsion engine, an auxiliary
engine and a hydraulic operated clutch. In Natvig [38], you can find a detailed illus-
tration of the engine. We omit the details, and instead focus on the parts which are
essential to our reliability analysis.

We define the following fault-events which may happen in this engine:

F1 : The propulsion engine fails (9.1)
K1 : The hydraulic clutch fails
H1 : The auxiliary engine fails

Corresponding to the engine, we can make a fault tree to illustrate what may cause
engine failure. This fault tree is shown in Figure 9.1.

The "OR" part of the fault tree means that at least one of the faults under the
"OR" must occur for for the above fault to occur. For instance, in order for there to
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System error

OR

No propeller No power supply

OR AND

F1 K1 F1 H1

Figure 9.1: Fault tree for the first boat engine.

be a system failure, either the propeller is not functioning or there is no power supply.
Correspondingly, the "AND" means that both of the faults under the "AND" must
occur for the fault to occur. That is, in order for there to be no power supply, both
F1 and H1 must happen. A more detailed description of fault trees can be found in
Barlow and Proschan [5].

The auxiliary engine is only used when the boat is at harbour, while the propulsion
engine and the clutch are used while the boat is running at sea. The time at sea
per year is 3000 hours, while the harbour time is 2000 hours. Hence, the run time
for the propulsion engine and the clutch is 3000 hours, while the run time for the
auxiliary engine is 2000 hours (per year). We assume that the lifetime distributions of
the components are exponential. Due to the memoryless property of the exponential
distribution and the fact that we are considering mechanical components, this may be
unrealistic. The Weibull distribution (which takes aging of components into account)
would be preferable. However, to simplify, we assume exponential lifetimes.

Det Norske Veritas supplied point estimates for the failure rates, measured in failures
per hour run. For a diesel engine (such as the propulsion engine and the auxiliary
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engine), this failure rate is estimated to be 2.96 · 10−4. For a magnetic clutch, the
estimate is 3.88 · 10−5, while for a mechanic clutch it is 6.0 · 10−6 (we will use this later
in the section). Due to lack of data for hydraulic clutches, the error estimate for the
magnetic clutch was used as an approximation.

Based on this, we can compute the following estimates for the probability of the
basic fault events in (9.1) happening in one year:

P (F1) = 1− exp(−2.96 · 10−4 · 3000) = 0.58852, (9.2)
P (K1) = 1− exp(−3.88 · 10−5 · 3000) = 0.10988,

P (H1) = 1− exp(−2.96 · 10−4 · 2000) = 0.44678.

This gives the following estimates:

P (propeller failure in a year) = 1− (1− P (F1)) · (1− P (K1)) = 0.63373,

P (no power supply in a year) = P (H1) · P (F1) = 0.26294.

From this, Fiskeriteknologisk Forskningsinstitutt concluded that:

P (system failure in a year) = 1− (1− 0.63373)(1− 0.26294) = 0.73004. (9.3)

However, this method is incorrect because it does not take into account the dependence
which the basic fault F1 creates in the fault tree because it occurs twice. In order to
derive the correct reliability (or equivalently, the probability of system failure within a
year), we introduce the following binary variables:

X1 =

!
1 if F1 does not occur within a year
0 otherwise

(9.4)

X2 =

!
1 if K1 does not occur within a year
0 otherwise

X3 =

!
1 if H1 does not occur within a year
0 otherwise

The fault tree 9.1 is equivalent to reliability block diagram shown in Figure 9.2. In
the reliability block diagram component 1 with state variable X1 corresponds to the
propulsion engine, component 2 with state variable X2 corresponds to the clutch, while
component 3 with state variable X3 corresponds to the auxiliary engine.

From Figure 9.2, we see that component 3, i.e., the auxiliary engine, is an irrelevant
component. It does not matter whether the auxiliary engine is working for the system
to be working. This can also be seen by deriving the structure function of the system
in Figure 9.2:

φ1(X) = X1X2(1− (1−X1)(1−X3))

= X1X2 +X1X2X3 −X1X2X3

= X1X2.
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1 2

1

3

Figure 9.2: System equivalent to the fault tree.

Hence, we get the following correct estimate of the probability of system error within
a year.

P (System failure within a year) (9.5)
= P (φ1(X) = 0) = 1− P (φ1(X) = 1)

= 1− (1− P (F1))(1− P (K1)) = 0.63373

By comparing this to the estimate in equation (9.3), we see that Fiskeriteknologisk
Forskningsinstutt ended up with a failure probability which is larger than the actual
one.

As mentioned in the beginning of the section, we would like to perform a reliability
analysis for two different engines, and compare them. Let us now turn to the second
engine, which is a two-engine system consisting of right and left propulsion engines,
right and left hydraulic clutches and a mechanical clutch. Again, we will omit a detailed
illustration of the system (this can be found in Natvig [38], Figure 5.1.4). Instead, we
focus on the corresponding fault tree shown in Figure 9.3 consisting of the following
basic fault-events:

F2 : Error in the left propulsion engine (9.6)
K2 : Error on left hydraulic clutch
F3 : Error in the right propulsion engine
K3 : Error on right hydraulic clutch
K4 : Error on mechanical clutch

For this system, both left and right engines are used at sea. At the harbour, only
the right engine is used (this runs the generator which produces power when docking).
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Hence, the run time per year for the right engine is 5000 hours, and for the mechanical
clutch it is 2000 hours (this is only used when docking). For the left propulsion engine
and the two hydraulic clutches, the run time per year is 3000 hours, as they are only
used at sea.

System error

OR

No propeller No power supply

AND AND

OR OR OR F2

No power supply

F2 K2 F3 K3 F3 K4

Figure 9.3: Fault tree for the second boat engine.

Based on the point estimates from Det Norske Veritas (see the comments before
equation (9.2)), we compute the following estimates for the probabilities of the basic
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fault-events:

P (F2) = P (F1) = 0.58852, (9.7)
P (K2) = P (K3) = P (K1) = 0.10988,

P (F3) = 1− exp(−2.96 · 10−4 · 5000) = 0.77236,

P (K4) = 1− exp(−6 · 10−6 · 2000) = 0.01192.

This leads to the following estimates:

P (propeller failure in a year)
= [1− (1− P (F2))(1− P (K2))][1− (1− P (F3))(1− P (K3))]

= 0.63372 · 0.79737
= 0.50532,

P (no power supply in a year)
= [1− (1− P (F3))(1− P (K4))]P (F2)

= 0.77508 · 0.58852
= 0.45615.

If we make the same kind of error as was done for the one-engine system in equa-
tion (9.3), we find that:

P (system error in a year) (9.8)
= 1− (1− 0.50532)(1− 0.45615) = 0.73097.

In order to correct this mistake, we introduce some binary random variables:

X1 =

!
1 if F2 does not occur within a year
0 if F2 occurs within a year

(9.9)

X2 =

!
1 if K2 does not occur within a year
0 if K2 occurs within a year

X3 =

!
1 if F3 does not occur within a year
0 if F3 occurs within a year.

X4 =

!
1 if K3 does not occur within a year
0 if K3 occurs within a year.

X5 =

!
1 if K4 does not occur within a year
0 if K4 occurs within a year.
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Again, by letting component 1 with state variable X1, correspond to the left propul-
sion engine, component 2 with state variable X2 correspond to the left hydraulic clutch
and so on, we see that the fault tree for the two-engine system is equivalent to the
reliability block diagram shown in Figure 9.4.

21

3 4

1

3 5

Figure 9.4: System equivalent to the fault tree for the two-engine system.

From this, we get that the structure function for the two-engine system is:

φ2(X) = [1− (1−X1X2)(1−X3X4)][1− (1−X1)(1−X3X5)]

= (X1X2 +X3X4 −X1X2X3X4)(X1 +X3X5 −X1X3X5)

= X1X2 +X1X3X4 −X1X2X3X4 +X1X2X3X5 +X3X4X5

−X1X2X3X4X5 −X1X2X3X5 −X1X3X4X5 +X1X2X3X4X5

= X1X2 +X1X3X4 −X1X2X3X4 +X3X4X5 −X1X3X4X5

= X1X2 +X3X4[X1(1−X2) +X5(1−X1)].

Hence, all of the components are relevant since they are all part of the structure function.
From this, we derive the correct estimate for the probability of the two-engine system
failing:

P (System error within a year) (9.10)
= 1− P (φ2(X) = 1)

= 1− E[φ2(X)]

= 1−
'
(1− P (F2)) · (1− P (K2)) + (1− P (F3)) · (1− P (K3))

· [(1− P (F2))P (K2) + (1− P (K4))P (F2)]
(

= 0.50666.

To conclude, we see from equations (9.3) and (9.8) that when we are not careful with
taking the system structure into account in the correct way, the two systems are (almost)
equally reliable. However, if we do the reliability analysis in the correct way, considering
the actual structure of the system, we find from equations (9.5) and (9.10) that the
two-engine system is actually more reliable than the one-engine system (which was the
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system that was approved by Fiskeriteknologisk Forskningsinstitutt). Intuitively, this
is actually quite obvious, since in the two-engine system, both engines can be used
for both running the propeller and supplying power. In the one-engine system, the
auxiliary engine is just an irrelevant component.

9.2 Case study: Reliability analysis of a network for
transmission of electronic pulses

In this case study, we will perform a reliability analysis of a system for transmission of
electronic pulses. This system consists of several identical parts. As we shall see, this
property can be utilized in order to simplify the calculations.

In this case study twe consider a multistate system. This means that the system is
not just functioning or failed. Instead the set of possible system states is a set of non-
negative integers. This approach provides a more detailed description of the system.
As before, we let:

Xi(t) = The state of component i at time t,

and assume that the stochastic processes {Xi(t), t ≥ 0}ni=1 are independent. The struc-
ture function is given by:

φ(t) = φ(X(t)) = The state of the system at time t.

We assume that φ(t) ∈ {φ1, . . . ,φk}. In principle, one can find the distribution of the
state of a multistate system by using the approach introduced in Section 4.1, i.e., by
enumerating all possible component states:

P (φ(t) = φj) =
)

x

I(φ(x) = φj) · P (X(t) = x), j = 1, . . . , k. (9.11)

where the indicator function I(φ(x) = φj) is 1 if φ(x) = φj and 0 otherwise. However,
as in Section 4.1, we typically need to reduce the number of terms in this sum because
the calculations quickly become too time-consuming. We now assume that there exists
variables Y1 = Y1(X), . . . , Ym = Ym(X) such that φ(t) can be written:

φ(t) = φ(X(t)) = φ(Y(X(t))),

where Y(X(t)) = (Y1(X(t)), . . . , Ym(X(t))). In this case, the probability distribution
of φ can be found from the formula:

P (φ(t) = φj) =
)

y

I(φ(y) = φj)P (Y(X(t)) = y), j = 1, . . . , k. (9.12)

In order to use (9.12) to compute the system reliability, we have to compute P (Y(X(t)) =
y) for all y. Hence, if the number of possible values of Y is large, little is gained by
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A

Control room

B

Prod. unit 2

Prod. unit 1

Prod. unit 3

Prod. unit 4

Prod. unit 5

Figure 9.5: A network for transmission of electronic pulses.

using (9.12) instead of (9.11). In some cases, however, we can achieve a large reduction
in the computational load by a clever choice of Y1, . . . , Ym. In particular, this turns out
to be the case for the network in Figure 9.5.

The purpose of the system shown in Figure 9.5 is to ensure communication between
a control room and 5 production units. In Figure 9.5 the components in the system
are represented by blue circles. In addition to these components, the system consists
of a control room, 5 production units and two connection units called A and B. To
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simplify the example somewhat, we will not consider potential errors in the control
room, the production units and the connection units. Hence, the system consists of
n = 52 components.

Each of the connection units, A and B, receive signals from the control room via 6
input wires. The number of production units which can be controlled by a connection
unit is bounded by the number of functioning input wires to the respective connection
unit. That is, if only 3 of the input wires to connection unit A are functioning, A can
control at most 3 production units. If all 6 of the input wires to A are functioning, then
all of the 5 production units can be controlled via connection unit A.

We assume that all of the components are stochastically independent, and we also
assume that all of the 12 input wires to the connection units A and B have the same
lifetime distributions. In particular, we assume that for any wire between the control
room and a connection unit we have:

P (The wire is functioning at time t) = w(t).

We observe that the part of the system which ensures communication between the con-
nection units A and B and the production units consists of 5 identical subsystems. Each
of these subsystems consists of 8 components. We assume that all of these subsystems
have the same stochastic properties, in the sense that the corresponding components in
the different subsystems have the same lifetime distributions.

Now, we define the state of the system, represented by the function φ, as:

φ(t) = The number of production units which can be controlled from
the control room at time t.

Thus, the set of possible values for φ is {0, 1, . . . , 5}. The components are assumed to
be either functioning or failed, so the component states are binary. Hence, the system
in Figure 9.5 is a multistate system of binary components. The number of terms in
the sum (9.11) for computing the distribution of φ is 252 = 4.504 · 1015, so finding
this by enumerating all of the states is very time-consuming. However, by introducing
appropriate variables, we can obtain a significant reduction of terms in (9.12) compared
to (9.11). More specifically, we introduce the following variables:

Y1(t) = The number of intact input wires to connection unit A at time t

Y2(t) = The number of intact input wires to connection unit B at time t

Y3(t) = The number of production units connected to A and B at time t

Y4(t) = The number of production units only connected to A at time t

Y5(t) = The number of production units only connected to B at time t.

The state of the system can now be expressed as:

φ(t) = W1(t) +W2(t) +W3(t), (9.13)
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where:

W1(t) = min{Y1(t), Y4(t)}, W2(t) = min{Y2(t), Y5(t)}, (9.14)

W3(t) = min{(Y1(t)−W1(t)) + (Y2(t)−W2(t)), Y3(t)}.

In order to derive equation (9.13), we distribute the Y1(t) functioning input wires
to A and the Y2(t) functioning input wires to B between the 5 production units in
such a way that as many production units as possible are running. To do this, we
first distribute input wires to the production units which are only connected to one
connection unit, i.e., the Y4(t) production units only connected to A and the Y5(t)
production units only connected to B. In this way, we establish connection with W1(t)
production units via A and W2(t) connection units via B. When this is done, there are
Y1(t)−W1(t) input wires available via connection unit A, and Y2(t)−W2(t) input wires
available via B. These are then used to establish connection to as many as possible of
the Y3(t) remaining production units. The number of production units which can be
reached in this way is then W3(t). Note that both Y1(t)−W1(t) an Y2(t)−W2(t) may
be 0. We conclude that W1(t)+W2(t)+W3(t) is the number of production units which
can be controlled from the control room. Thus, equation (9.13) is indeed correct.

Next, we need to find the probability distributions of Y1(t), . . . , Y5(t). Note that
Y1(t) is a function of the state variables of the wires into connection unit A, Y2(t) is
a function of the state variables of the wires into connection unit B, while the vector
(Y3(t), Y4(t), Y5(t)) is a function of state variables of the other 40 components. Since we
have assumed that the components are independent, this implies that Y1, Y2 and the
vector (Y3(t), Y4(t), Y5(t)) are independent. Note, however that Y3(t), Y4(t) and Y5(t)
are dependent. In fact we have 0 ≤ Y3(t) + Y4(t) + Y5(t) ≤ 5 for all t ≥ 0.

Both Y1(t) and Y2(t) are sums of 6 independent, identically distributed binary ran-
dom variables. Hence, from standard probability theory, Y1(t) and Y2(t) are binomially
distributed:

P (Yi(t) = y) =

-
6

y

.
[w(t)]y[1− w(t)]6−y, y = 0, 1, . . . , 6, i = 1, 2, (9.15)

We then consider the probability distribution of (Y3(t), Y4(t), Y5(t)). This depends
on the 5 subsystems which ensure communication between the connection units and the
production units. Each of these subsystems can be in one out of four possible states,
denoted SAB, SA, SB and S∅, where we define:

SAB = The prod. unit can communicate with both connection units (9.16)
SA = The prod. unit can only communicate with connection unit A

SB = The prod. unit can only communicate with connection unit B

S∅ = The prod. unit cannot communicate with any connection unit.
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Furthermore, we have assumed that the subsystems are independent and that each of
the subsystems have the same stochastic properties. This implies that the probability
of being in either of the four states SAB, SA, SB or S∅ at a given time t is the same for
all the subsystems.

We observe that at time t the variables Y3(t), Y4(t) and Y5(t) are the number of
production units in states SAB, SA and SB respectively. It follows from standard prob-
ability theory that for t ≥ 0 the vector (Y3(t), Y4(t), Y5(t)) is multinomially distributed,.
That is, we have:

P (Y3(t) = y3 ∩ Y4(t) = y4 ∩ Y5(t) = y5) =
5!

y3!y4!y5!(5− y3 − y4 − y5)!
(9.17)

· [p3(t)]y3 [p4(t)]y4 [p5(t)]y5 [1− p3(t)− p4(t)− p5(t)]
5−y3−y4−y5

where y3 = 0, 1, . . . , 5, y4 = 0, 1, . . . , 5−y3, y5 = 0, 1, . . . , 5−y3−y4 and p3(t), p4(t), p5(t)
are the probabilities of a subsystem being in states SAB, SA and SB respectively.

In order to compute the distribution of φ, all that remains is to find p3(t), p4(t) and
p5(t). To do so, we study the structure of the subsystems, as shown in Figure 9.6, more
closely.

A

B

1

2

3

4

5

6

7

8

Prod.

unit

Figure 9.6: Subsystem of a network for transmission of electronic pulses.

In Figure 9.6, we have numbered the components of the subsystem under consid-
eration from 1 through 8. We denote the corresponding component state variables by
X1, . . . , X8, and their respective reliabilities by q1, . . . , q8, where we have simplified the
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notation by omitting the time t. Moreover, we introduce the events:

EA = {The production unit communicates with connection unit A}
EB = {The production unit communicates with connection unit B},

and observe that

p3(t) = P (EA ∩ EB), (9.18)
p4(t) = P (EA)− P (EA ∩ EB),

p5(t) = P (EB)− P (EA ∩ EB).

Computing P (EA ∩ EB)

To find this probability, we condition with respect to the two bridges in the structure,
i.e., components 3 and 6, and get:

P (EA ∩ EB) = P (EA ∩ EB|X3 = 1, X6 = 1)q3q6 (9.19)
+ P (EA ∩ EB|X3 = 1, X6 = 0)q3(1− q6)

+ P (EA ∩ EB|X3 = 0, X6 = 1)(1− q3)q6

+ P (EA ∩ EB|X3 = 0, X6 = 0)(1− q3)(1− q6).

The four conditional probabilities in (9.19) can be computed by series- and parallel
reductions (this is left as an exercise). They are given by:

P (EA ∩ EB|X3 = 1, X6 = 1) = q1q2[q4 + q5 − q4q5][q7 + q8 − q7q8], (9.20)
P (EA ∩ EB|X3 = 1, X6 = 0) = q1q2[q4q7 + q5q8 − q4q5q7q8],

P (EA ∩ EB|X3 = 0, X6 = 1) = q1q2q4q5[q7 + q8 − q7q8],

P (EA ∩ EB|X3 = 0, X6 = 0) = q1q2q4q5q7q8.

Computing P (EA) and P (EB)

Note that in order to compute P (EA), component 2 is irrelevant (see Figure 9.6). If
we remove this component, we see that components 3 and 5 are in series. By series
redulction, we end up with a bridge structure (see Example 3.1.2) connected in series
with component 1. Hence, P (EA) is given by the following (again, see Example 3.1.2):

P (EA) = q1q6[q4 + q3q5 − q3q4q5][q7 + q8 − q7q8] (9.21)
+ q1(1− q6)[q4q7 + q3q5q8 − q3q4q5q7q8].

Similarly, P (EB) is given by:

P (EB) = q2q6[q5 + q3q4 − q3q4q5][q7 + q8 − q7q8] (9.22)
+ q2(1− q6)[q5q8 + q3q4q7 − q3q4q5q7q8].
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By inserting the expressions (9.19), (9.21) and (9.22) into (9.18), we have all the prob-
abilities we need in order to calculate the distribution of the system state φ using
equation (9.12).

What have we gained by this approach? Instead of enumerating all possible states of
the 52 binary state variables of the components in Figure 9.5, we now have to enumerate
the possible states of just the five multinary variables Y1, . . . Y5. We observe that Y1

and Y2 each attain 7 values in the set {0, 1, . . . 6}. The vector (Y3, Y4, Y5) can attain
any value in the set {(Y3, Y4, Y5) : 0 ≤ Y3 + Y4 + Y5 ≤ 5, 0 ≤ Y3, Y4, Y5}. In order to
count the number of values in this set, we consider 6 different cases corresponding to
the possible values of Y3, and count the number of possible values for each case, noting
that if Y3 = y, then Y4 + Y5 ≤ 5− y, y = 0, 1, . . . , 5. Hence, we get:

Case 0. Y3 = 0, Y4 + Y5 ≤ 5− 0 = 5 : 21 possible values, (9.23)
Case 1. Y3 = 1, Y4 + Y5 ≤ 5− 1 = 4 : 15 possible values,
Case 2. Y3 = 2, Y4 + Y5 ≤ 5− 2 = 3 : 10 possible values,
Case 3. Y3 = 3, Y4 + Y5 ≤ 5− 3 = 2 : 6 possible values,
Case 4. Y3 = 4, Y4 + Y5 ≤ 5− 4 = 1 : 3 possible values,
Case 5. Y3 = 5, Y4 + Y5 ≤ 5− 5 = 0 : 1 possible value.

Adding these counts up, we see that there are 56 values in total. Hence, the sum in
(9.12) for computing P (φ(t) = φj) contains 7 · 7 · 56 = 2744 terms (since there are
7 possible values for Y1 and Y2, as well as 56 possible values for (Y3, Y4, Y5)). This is
very easy to compute, as opposed to the 4.504 · 1015 terms of the original method by
simply enumerating the states. We see that by introducing the new variables Y1, . . . , Y5,
the computational load has been significantly reduced. The same approach is useful
in other systems where the structure consists of many identical components and where
there is a strong symmetry. A difficulty with the method is that in practice, it may
not be possible to find efficient ways to introduce new variables. However, as there is
so much to be gained from the method when it works, it may be worth spending some
time trying to figure out which variables to introduce.

9.3 Exercises
Exercise 9.2.1:

Use series- and parallel reductions to show that the conditional probabilities in
(9.19) are given by the expressions in (9.20).

Exercise 9.2.2:
Explain why the 6 different values in (9.23) hold true (for example, the only way

Y4 + Y5 ≤ 0 for non-negative integers is for Y4 = 0, Y5 = 0).



Chapter 10
Notations

AC , the complement of a set. See Section 3.3.

:=, marks definitions.

≡, identically equal.

φ(·), the structure function of a binary system. See equation (2.2).

h(·), the reliability function of a binary system. See equation (2.6).

$n
i=1 ai := a1 · a2 . . . · an, the product.

3n
i=1 ai := 1

$n
i=1(1− ai), the ip notation.

,
y∈{0,1}n . . ., summing over all possible vectors in Rn where all components are either

0 or 1.

φD, the dual structure function. See Definition 2.3.1.

0, a vector where all components are 0.

1, a vector where all components are 1.
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