UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: \quad STK3405/4405 - Introduction to risk and reliability analysis

Day of examination: Friday December 17th 2021.
Examination hours: 09.00-13.00.
This problem set consists of 4 pages.

Appendices:
Permitted aids: Approved calculator.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All subpoints will be equally weighted in the marking.

Problem 1

Figure 1: Block diagram of (C, ϕ)
Consider the binary monotone system (C, ϕ) shown in Figure 1. The component set of the system is $C=\{1,2, \ldots, 5\}$. Let $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{5}\right)$ denote the vector of component state variables, and assume throughout this problem that $X_{1}, X_{2}, \ldots, X_{5}$ are stochastically independent. We also let $\boldsymbol{p}=\left(p_{1}, p_{2}, \ldots, p_{5}\right)$ denote the vector of component reliabilities, where $p_{i}=P\left(X_{i}=1\right), i=1,2, \ldots, 5$.
a) Find the minimal path sets (3 sets) and the minimal cut sets (5 sets) of the system.
b) We let $h(\boldsymbol{p})=P(\phi=1)$ denote the reliability function of the system. Show that:

$$
h(\boldsymbol{p})=p_{2} \cdot\left[p_{1} \cdot\left(p_{3} \amalg p_{4}\right)+\left(1-p_{1}\right) \cdot p_{3} p_{4} p_{5}\right]
$$

The Birnbaum measure for the reliability importance of component i is defined as:
$I_{B}^{(i)}=P($ Component i is critical for the system $), \quad i=1,2, \ldots, 5$.
c) Show that:

$$
I_{B}^{(i)}=\frac{\partial h(\boldsymbol{p})}{\partial p_{i}}, \quad i=1,2, \ldots, 5 .
$$

d) Show that:

$$
\begin{aligned}
& I_{B}^{(2)}=p_{1} \cdot\left(p_{3} \amalg p_{4}\right)+\left(1-p_{1}\right) \cdot p_{3} p_{4} p_{5} \\
& I_{B}^{(5)}=\left(1-p_{1}\right) \cdot p_{2} p_{3} p_{4}
\end{aligned}
$$

In the remaining part of this problem we assume that $0<p_{i}<1$, $i=1,2, \ldots, 5$.
e) Show that if $p_{5} \geq p_{2}$, then $I_{B}^{(2)}>I_{B}^{(5)}$.
f) Show that if $p_{1} \geq \frac{1}{2}$, then $I_{B}^{(2)}>I_{B}^{(5)}$.
g) In this point we assume more specifically that $p_{1}=p_{5}=\frac{1}{10}$ and that $p_{2}=p_{3}=p_{4}=\frac{9}{10}$. Calculate $I_{B}^{(2)}$ and $I_{B}^{(5)}$ and compare the results. Comment your findings.

The Birnbaum measure for the structural importance of component i is defined as:

$$
J_{B}^{(i)}=\frac{1}{2^{5-1}} \sum_{(\cdot i, \boldsymbol{x})}\left[\phi\left(1_{i}, \boldsymbol{x}\right)-\phi\left(0_{i}, \boldsymbol{x}\right)\right], \quad i=1,2, \ldots, 5
$$

h) Explain briefly why: $J_{B}^{(2)}>J_{B}^{(i)}$ for $i=1,3,4,5$.

Problem 2

Let X_{1}, \ldots, X_{n} be n binary associated random variables.
a) Show that:

$$
\begin{align*}
& E\left[\prod_{i=1}^{n} X_{i}\right] \geq \prod_{i=1}^{n} E\left[X_{i}\right] \tag{1}\\
& E\left[\coprod_{i=1}^{n} X_{i}\right] \leq \coprod_{i=1}^{n} E\left[X_{i}\right] \tag{2}
\end{align*}
$$

Let X_{1}, \ldots, X_{n} be the associated component state variables of a binary monotone system (C, ϕ) with minimal path sets P_{1}, \ldots, P_{p} and minimal cut sets K_{1}, \ldots, K_{k}.
b) Show that:

$$
\begin{equation*}
\max _{1 \leq j \leq p} \prod_{i \in P_{j}} E\left[X_{i}\right] \leq E[\phi] \leq \min _{1 \leq j \leq k} \coprod_{i \in K_{j}} E\left[X_{i}\right] \tag{3}
\end{equation*}
$$

c) Show that:

$$
\begin{equation*}
\prod_{j=1}^{k} E\left[\coprod_{i \in K_{j}} X_{i}\right] \leq E[\phi] \leq \coprod_{j=1}^{p} E\left[\prod_{i \in P_{j}} X_{i}\right] \tag{4}
\end{equation*}
$$

We denote the lower and upper bounds on $E[\phi]$ given in (3) by L_{1} and U_{1} respectively. Similarly, we denote the lower and upper bounds on $E[\phi]$ given in (4) by L_{2} and U_{2} respectively.

In the rest of this problem we assume that (C, ϕ) is a 2 -out-of- 3 system. That is, $C=\{1,2,3\}$ and the structure function, ϕ, is given by:

$$
\phi(\boldsymbol{X})=X_{1} X_{2}+X_{1} X_{3}+X_{2} X_{3}-2 X_{1} X_{2} X_{3}
$$

where $\boldsymbol{X}=\left(X_{1}, X_{2}, X_{3}\right)$. Moreover, we assume that the joint distribution of the component state variables satisfies the following properties:

$$
\begin{aligned}
E\left[X_{1}\right]=E\left[X_{2}\right] & =E\left[X_{3}\right]=p \\
E\left[X_{1} X_{2}\right]=E\left[X_{1} X_{3}\right] & =E\left[X_{2} X_{3}\right]=p^{2-\alpha} \\
E\left[X_{1} X_{2} X_{3}\right] & =p^{3-2 \alpha}
\end{aligned}
$$

where $0<p<1$ and $0 \leq \alpha \leq 1$. It can be shown that these properties imply that X_{1}, X_{2}, X_{3} are associated random variables.
d) We now consider the correlation between the component state variables. Show that:

$$
\operatorname{Corr}\left(X_{i}, X_{j}\right)=\frac{p^{2-\alpha}-p^{2}}{p(1-p)}, \quad \text { for } i \neq j
$$

Moreover, show that the correlation is increasing in α. In particular, calculate the correlation for the cases $\alpha=0$ and $\alpha=1$. Comment your findings.
e) Show that:

$$
L_{1}=p^{2} \quad \text { and } \quad U_{1}=1-(1-p)^{2}
$$

and that:

$$
L_{2}=\left(2 p-p^{2-\alpha}\right)^{3} \quad \text { and } \quad U_{2}=1-\left(1-p^{2-\alpha}\right)^{3}
$$

and that:

$$
E[\phi]=3 p^{2-\alpha}-2 p^{3-2 \alpha}
$$

f) Show that L_{2} is decreasing in α while U_{2} is increasing in α. What can you say about the quality of these bounds when the correlation between the component state variables increases?
g) Assume that $\alpha=1$. Show that we in this case have:

$$
L_{2}<L_{1}<E[\phi]<U_{1}<U_{2}
$$

Which bounds would you recommend in this case?
h) Assume that $\alpha=0$. What kind of bounds would you recommend in this case?

