Exam STK3405/4405-2015

A. B. Huseby \& K. R. Dahl

Department of Mathematics
University of Oslo, Norway

STK3405/4405-2015

Exam STK3405/4405-2015

STK3405/4405-2015, problem 1 (a)

(a) Minimal path sets:

$$
\{1,6\},\{2,6\},\{1,4,5,7\},\{2,4,5,7\},\{3,7\},\{3,4,5,6\} .
$$

Minimal cut sets:

$$
\{1,2,3\},\{1,2,4,7\},\{1,2,5,7\},\{3,4,6\},\{3,5,6\},\{6,7\} .
$$

STK3405/4405-2015, problem 1 (b)

By using the multiplication method based on either the minimal path sets or the minimal cut sets:

$$
\phi(\boldsymbol{X})=\coprod_{j=1}^{6} \prod_{i \in P_{j}} X_{i}=\prod_{j=1}^{6} \coprod_{i \in K_{j}} x_{i}
$$

we get $2^{6}-1=63$ terms before simplification.
By using total state space enumeration:

$$
h(\boldsymbol{p})=\sum_{\boldsymbol{x} \in\{0,1\}^{7}} \phi(\boldsymbol{x}) P(\boldsymbol{X}=\boldsymbol{x})
$$

we get $2^{7}-1=127$ terms before simplification (since there are 7 components).

STK3405/4405-2015, problem 1 (c)

Find the reliability of this system as a function of the component reliabilities p_{1}, \ldots, p_{7}.

By factoring with respect to the bridge consisting of the series connection of the components 4 and 5, we get:

$$
\begin{aligned}
& h(\boldsymbol{p})= \\
& \quad p_{4} p_{5}\left[\left(\left(p_{1}+p_{2}-p_{1} p_{2}\right)+p_{3}-\left(p_{1}+p_{2}-p_{1} p_{2}\right) p_{3}\right)\right. \\
& \left.\quad \cdot\left(p_{6}+p_{7}-p_{6} p_{7}\right)\right] \\
& \quad+\left(1-p_{4} p_{5}\right)\left[\left(p_{1}+p_{2}-p_{1} p_{2}\right) p_{6}+p_{3} p_{7}\right. \\
& \left.\quad-\left(p_{1}+p_{2}-p_{1} p_{2}\right) p_{6} \cdot p_{3} p_{7}\right]
\end{aligned}
$$

STK3405/4405-2015, problem 1 (d)

What is the reliability importance of component 4 according to the Birnbaum measure?

$$
\begin{aligned}
& I_{B}^{(4)}=\partial h(\boldsymbol{p}) / \partial p_{4} \\
& \quad p_{5}\left[\left(\left(p_{1}+p_{2}-p_{1} p_{2}\right)+p_{3}-\left(p_{1}+p_{2}-p_{1} p_{2}\right) p_{3}\right)\right. \\
& \left.\quad \cdot\left(p_{6}+p_{7}-p_{6} p_{7}\right)\right] \\
& \quad-p_{5}\left[\left(p_{1}+p_{2}-p_{1} p_{2}\right) p_{6}+p_{3} p_{7}\right. \\
& \left.\quad-\left(p_{1}+p_{2}-p_{1} p_{2}\right) p_{6} \cdot p_{3} p_{7}\right]
\end{aligned}
$$

STK3405/4405-2015, problem 1 (e)

What is the corresponding structural importance of component 4 ?
By letting $p_{i}=1 / 2$ for $i=1,2,3,5,6,7$ in $I_{B}^{(4)}$ we get:

$$
\begin{aligned}
J_{B}^{(4)} & =(1 / 2)[((3 / 4)+(1 / 2)-(3 / 4) \cdot(1 / 2))(3 / 4)] \\
& -(1 / 2)[(3 / 4)(1 / 2)+(1 / 2)(1 / 2)-(3 / 4)(1 / 2) \cdot(1 / 2)(1 / 2)] \\
& =4 / 64=1 / 16 .
\end{aligned}
$$

STK3405/4405-2015, problem 1 (e)

Alternatively, we have:

$$
J_{B}^{(4)}=\frac{1}{2^{7-1}} \cdot \text { The number of critical vectors for component } 4 .
$$

We have the following critical vectors for component 4:

$$
\begin{array}{ll}
(1,0,0, \cdot, 1,0,1), & (0,1,0, \cdot, 1,0,1), \\
(1,1,0, \cdot, 1,0,1), & (0,0,1, \cdot, 1,1,0),
\end{array}
$$

Hence,

$$
J_{B}^{(4)}=\frac{4}{64}=\frac{1}{16} .
$$

NOTE: The critical vectors correspond to the following path sets:

$$
\begin{array}{ll}
\{1,4,5,7\}, & \{2,4,5,7\}, \\
\{3,4,5,6\}, & \{1,2,4,5,7\},
\end{array}
$$

where the first three are minimal path sets containing component 4.

STK3405/4405-2015, problem 1 (f)

What is the structural importance of component 1 ?

$$
\begin{aligned}
& I_{B}^{(1)}=\partial h(\boldsymbol{p}) / \partial p_{1} \\
& \quad p_{4} p_{5}\left[\left(\left(1-p_{2}\right)-\left(1-p_{2}\right) p_{3}\right) \cdot\left(p_{6}+p_{7}-p_{6} p_{7}\right)\right] \\
& \quad+\left(1-p_{4} p_{5}\right)\left[\left(1-p_{2}\right) p_{6}-\left(1-p_{2}\right) p_{6} \cdot p_{3} p_{7}\right] \\
& \quad=p_{4} p_{5}\left[\left(1-p_{2}\right)\left(1-p_{3}\right)\left(p_{6}+p_{7}-p_{6} p_{7}\right)\right] \\
& \quad+\left(1-p_{4} p_{5}\right)\left[\left(1-p_{2}\right) p_{6}\left(1-p_{3} p_{7}\right)\right]
\end{aligned}
$$

STK3405/4405-2015, problem 1 (f)

Hence, the structural importance of component 1 is:

$$
\begin{aligned}
J_{B}^{(1)} & =(1 / 4)[(1 / 2)(1 / 2)(3 / 4)]+(3 / 4)[(1 / 2)(1 / 2)(3 / 4)] \\
& =(3 / 64)+(9 / 64)=12 / 64=3 / 16 .
\end{aligned}
$$

We observe that $J_{B}^{(1)}>J_{B}^{(4)}$. Thus, component 1 and component 2 are structurally more important than the bridge components 4 and component 5 .

STK3405/4405-2015, problem 2

In this exercise you may use that if X_{1}, \ldots, X_{n} are associated, binary, random variables, then:

$$
\begin{aligned}
& E\left[\prod_{i=1}^{n} X_{i}\right] \geq \prod_{i=1}^{n} E\left[X_{i}\right] \\
& E\left[\coprod_{i=1}^{n} X_{i}\right] \leq \coprod_{i=1}^{n} E\left[X_{i}\right]
\end{aligned}
$$

STK3405/4405-2015, problem 2 (a)

Show that independent random variables are associated.
PROOF: Let T_{1}, \ldots, T_{n} be independent random variables. We shall prove that they are also associated. The proof is by induction on n. The result obviously holds for $n=1$ by Theorem 6.1.4 (ii).

Assume that the theorem holds for $n=m-1$. That is, $\left\{T_{1}, \ldots, T_{m-1}\right\}$ is a set of associated random variables. Moreover, by Theorem 6.1.4 (ii), $\left\{T_{m}\right\}$ is associated as well.

By the assumption, these two sets are independent. Hence, it follows from Theorem 6.1.4 (iv) that their union $\left\{T_{1}, \ldots, T_{m-1}, T_{m}\right\}$ is a set of associated random variables.

Thus, the result is proved by induction.

STK3405/4405-2015, problem 2 (b)

Let X_{1}, \ldots, X_{n} be the associated component state variables of a non-trivial binary monotone structure (C, ϕ) with component reliabilities p_{1}, \ldots, p_{n}. Show that:

$$
\prod_{i=1}^{n} p_{i} \leq P[\phi(\boldsymbol{x})=1] \leq \coprod_{i=1}^{n} p_{i} .
$$

PROOF: Since (C, ϕ) is non-trivial, we know that:

$$
\prod_{i=1}^{n} x_{i} \leq \phi(\boldsymbol{X}) \leq \coprod_{i=1}^{n} x_{i}
$$

Hence, we get

$$
\begin{aligned}
\prod_{i=1}^{n} p_{i} & =\prod_{i=1}^{n} E\left[X_{i}\right] \leq E\left[\prod_{i=1}^{n} X_{i}\right] \leq P[\phi(\boldsymbol{x})=1] \\
& \leq E\left[\coprod_{i=1}^{n} X_{i}\right] \leq \coprod_{i=1}^{n} E\left[X_{i}\right]=\coprod_{i=1}^{n} p_{i}
\end{aligned}
$$

STK3405/4405-2015, problem 2 (c)

Show that:

$$
\prod_{j=1}^{k} P\left(\kappa_{j}\left(\boldsymbol{X}^{K_{j}}\right)=1\right) \leq P[\phi(\boldsymbol{x})=1] \leq \coprod_{j=1}^{p} P\left(\rho_{j}\left(\boldsymbol{X}^{P_{j}}\right)=1\right)
$$

PROOF: It follows from Theorem 6.1.4 (iii) that the minimal path series structures, and the minimal cut parallel structures, are associated. Hence, we get that:

$$
\begin{aligned}
\prod_{j=1}^{k} P\left(\kappa_{j}\left(\boldsymbol{X}^{K_{j}}\right)=1\right) & \leq E\left[\prod_{j=1}^{k} \kappa_{j}\left(\boldsymbol{X}^{K_{j}}\right)\right]=P[\phi(\boldsymbol{x})=1] \\
& =E\left[\coprod_{j=1}^{p} \rho_{j}\left(\boldsymbol{X}^{P_{j}}\right)\right] \leq \coprod_{j=1}^{p} P\left(\rho_{j}\left(\boldsymbol{X}^{P_{j}}\right)=1\right)
\end{aligned}
$$

Unfortunately, these bounds are not explicit.

STK3405/4405-2015, problem 2 (d)

Asssume in addition that X_{1}, \ldots, X_{n} are independent. Show that:

$$
\prod_{j=1}^{k} \coprod_{i \in K_{j}} p_{i} \leq P[\phi(\boldsymbol{x})=1] \leq \coprod_{j=1}^{p} \prod_{i \in P_{j}} p_{i}
$$

PROOF: For independent components, the lower bound is equal to the one in (c) because:

$$
P\left(\kappa_{j}\left(\boldsymbol{X}^{K_{j}}\right)=1\right)=E\left[\coprod_{i \in K_{j}} X_{i}\right]=\coprod_{i \in K_{j}} p_{i} .
$$

Similarly the upper bound is equal to the one in (c) because:

$$
P\left(\rho_{j}\left(\boldsymbol{X}^{K_{j}}\right)=1\right)=E\left[\prod_{i \in P_{j}} X_{i}\right]=\prod_{i \in P_{j}} p_{i} .
$$

STK3405/4405-2015, problem 2 (e)

Assume in addition that the binary monotone system (C, ϕ) has at least two minimal cut sets that overlap and that $0<p_{i}<1, i=1, \ldots, n$. Show then that we have:

$$
\prod_{j=1}^{k} \coprod_{i \in K_{j}} p_{i}<P[\phi(\boldsymbol{x})=1] .
$$

PROOF: Assume without loss of generality that $K_{1} \cap K_{2} \neq \emptyset$.
Since we have assumed that $0<p_{i}<1, i=1, \ldots, n$, it follows that $\coprod_{i \in K_{1}} X_{i}$ and $\prod_{j=2}^{k} \amalg_{i \in K_{j}} X_{i}$ are dependent. Thus, we must have:

$$
\operatorname{Cov}\left(\coprod_{i \in K_{1}} X_{i}, \prod_{j=2}^{k} \coprod_{i \in K_{j}} X_{i}\right)>0
$$

Hence, it follows that:

$$
E\left[\prod_{j=1}^{k} \coprod_{i \in K_{j}} x_{i}\right]=E\left[\coprod_{i \in K_{1}} x_{i} \cdot \prod_{j=2}^{k} \coprod_{i \in K_{j}} x_{i}\right]>E\left[\coprod_{i \in K_{1}} x_{i}\right] \cdot E\left[\prod_{j=2}^{k} \coprod_{i \in K_{j}} x_{i}\right] .
$$

STK3405/4405-2015, problem 2 (e)

Thus, we have:

$$
\begin{aligned}
P[\phi(\boldsymbol{x}) & =1]=E\left[\prod_{j=1}^{k} \coprod_{i \in K_{j}} X_{i}\right] \\
& >E\left[\coprod_{i \in K_{1}} X_{i}\right] \cdot E\left[\prod_{j=2}^{k} \prod_{i \in K_{j}} X_{i}\right] \geq E\left[\coprod_{i \in K_{1}} X_{i}\right] \cdot \prod_{j=2}^{k} E\left[\coprod_{i \in K_{j}} X_{i}\right] \\
& =\prod_{j=1}^{k} E\left[\coprod_{i \in K_{j}} X_{i}\right]=\prod_{j=1}^{k} \prod_{i \in K_{j}} p_{i}
\end{aligned}
$$

STK3405/4405-2015, problem 2 (f)

Show that for a specific k-out-of- n system with $p_{i}=p, i=1, \ldots, n$ that the lower bound in (d) can be poorer than the lower bound in (b).

PROOF: Consider a 3-out-of-4 system med $p_{i}=p, i=1,2,3,4$. Then the lower bound in (d) becomes:

$$
\prod_{j=1}^{k} \coprod_{i \in K_{j}} p_{i}=\prod_{j=1}^{6}\left(p+p-p^{2}\right)=p^{6}(2-p)^{6} .
$$

STK3405/4405-2015, problem 2 (f)

We then compare this to the lower bound in (b), i.e, p^{4}, and look for some $p \in(0,1)$ such that:

$$
p^{6}(2-p)^{6}<p^{4}
$$

or equivalently:

$$
p^{2}(2-p)^{6}<1
$$

By choosing $p=1 / 10$ we get that:

$$
p^{2}(2-p)^{6}=(1 / 10)^{2}(2-1 / 10)^{6}<2^{6} / 10^{2}=64 / 100<1 .
$$

Thus, for this value of p the lower bound in (d) is poorer than the lower bound in (b).

