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Problem 1
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Binary monotone system (C, φ) with component set of the system is
C = {1,2, . . . ,6}. X = (X1,X2, . . . ,X6) is the vector of component state
variables, where X1,X2, . . . ,X6 are stochastically independent.

Let p = (p1,p2, . . . ,p6) denote the vector of component reliabilities, where
pi = P(Xi = 1), i = 1,2, . . . ,6.
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Problem 1a. Minimal path and cut sets of the system
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SOLUTION:
Minimal path sets: P1 = {1,3,4}, P2 = {1,5,6}, P3 = {2,3,5}, P4 = {2,4,6}.

Minimal cut sets: K1 = {1,2}, K2 = {3,6}, K3 = {4,5}, K4 = {1,3,4},
K5 = {1,5,6}, K6 = {2,3,5}, K7 = {2,4,6}
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Problem 1b

(b) We let h(p) = P(φ = 1) denote the reliability function of the system. Show
that:

h(11,12,p) = E [φ(11,12,X )] = (p3 q p6) · (p4 q p5),

h(11,02,p) = E [φ(11,02,X )] = (p3 · p4)q (p5 · p6),

h(01,12,p) = E [φ(01,12,X )] = (p3 · p5)q (p4 · p6),

and use this to find h(p).
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Problem 1b (cont.)
SOLUTION:
CASE 1. X1 = 1 and X2 = 1.

We recall that the minimal cut sets of the system are:

K1 = {1,2}, K2 = {3,6}, K3 = {4,5}, K4 = {1,3,4},
K5 = {1,5,6}, K6 = {2,3,5}, K7 = {2,4,6}

In this case the minimal cut sets containing components 1 or 2 can be
removed. The remaining minimal cut sets are:

K2 = {3,6} and K3 = {4,5}.

This implies that:

φ(11,12,X ) = (X3 q X6) · (X4 q X5),

and hence:
h(11,12,p) = (p3 q p6) · (p4 q p5).
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Problem 1b (cont.)

CASE 2. X1 = 1 and X2 = 0.

We recall that the minimal path sets of the system are:

P1 = {1,3,4}, P2 = {1,5,6}, P3 = {2,3,5}, P4 = {2,4,6}.

In this case the minimal paths containing component 2 can be removed, and
thus, the resulting minimal path sets, where we have removed component 1
which we know is functioning, are:

P ′1 = {3,4} and P ′2 = {5,6}.

This implies that:

φ(11,02,X ) = (X3 · X4)q (X5 · X6),

and hence:
h(11,02,p) = (p3 · p4)q (p5 · p6).

A. B. Huseby & K. R. Dahl (Univ. of Oslo) Exam STK3405/4405 - 2019 6 / 30



uiobmcrop

Problem 1b (cont.)

CASE 3. X1 = 0 and X2 = 1.

We recall that the minimal path sets of the system are:

P1 = {1,3,4}, P2 = {1,5,6}, P3 = {2,3,5}, P4 = {2,4,6}.

In this case the minimal paths containing component 1 can be removed, and
thus, the resulting minimal path sets, where we have removed component 2
which we know is functioning, are:

P ′3 = {3,5} and P ′4 = {4,6}.

This implies that:

φ(01,12,X ) = (X3 · X5)q (X4 · X6),

and hence:
h(01,12,p) = (p3 · p5)q (p4 · p6).
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Problem 1b (cont.)

Finally, since {1,2} is a minimal cut set, we have:

h(01,02,p) = φ(01,02,X ) = 0

Hence, combining all these results we get:

h(p) = p1p2h(11,12,p) + p1(1− p2)h(11,02,p) + (1− p1)p2h(01,12,p)

= p1p2[(p3 q p6) · (p4 q p5)]

+ p1(1− p2)[(p3 · p4)q (p5 · p6)]

+ (1− p1)p2[(p3 · p5)q (p4 · p6)]
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Problem 1c

In the remaining part of this problem we assume that all components have
equal reliability p, i.e., p1 = · · · = p6 = p. The reliability function can then be
written as h(p) instead of h(p).

(c) Use the results from (b) to show that:

h(p) = p4 · (2− p)2 + 2p3(1− p)(2− p2)

In particular, show that:

h(
1
2

) = 23 · (1
2

)6

SOLUTION: We start by noting that:

s q s = 1− (1− s)(1− s) = 2s − s2, for all s.
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Problem 1c (cont.)
Inserting p1 = · · · = p6 = p into h(p) we get:

h(p) = p1p2[(p3 q p6) · (p4 q p5)]

+ p1(1− p2)[(p3 · p4)q (p5 · p6)] + (1− p1)p2[(p3 · p5)q (p4 · p6)]

= p2[(2p − p2) · (2p − p2)] + p(1− p)[2p2 − p4] + (1− p)p[2p2 − p4]

= p2 · (2p − p2)2 + 2p(1− p) · (2p2 − p4)

= p4 · (2− p)2 + 2p3(1− p)(2− p2).

In particular we have:

h(
1
2

) = (
1
2

)4 · (3
2

)2 + 2 · (1
2

)3 · (1
2

) · (7
4

)

= [32 + 2 · 7] · (1
2

)6 = 23 · (1
2

)6.
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Problem 1d

(d) Let S =
∑6

i=1 Xi . Explain why the distribution of S is given by:

P(S = s) =

(
6
s

)
ps(1− p)6−s, s = 0,1, . . . ,6.

SOLUTION:
The random variable S is the sum of the independent and identically binary
variables X1, . . . ,X6.

Hence, S ∼ Bin(6,p), and thus P(S = s) can be expressed as claimed.
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Problem 1e

(e) Show that:

h(p) =
6∑

s=0

bsps(1− p)6−s

where bs denotes the number of path sets (minimal and non-minimal) having
exactly s components, s = 0,1, . . . ,6.

SOLUTION:
We start by noting that:

bs =
∑

{x :
∑6

i=1 xi=s}

φ(x), s = 0,1, . . . ,6.
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Problem 1e (cont.)

Moreover, the conditional distribution of X given S is:

P(X = x | S = s) =
p
∑6

i=1 xi (1− p)6−
∑6

i=1 xi(6
s

)
ps(1− p)6−s

=
1(6
s

) ,
for all x such that

∑6
i=1 xi = s, and zero otherwise.

From this it follows that:

E [φ(X )|S = s] =
∑

{x :
∑6

i=1 xi=s}

φ(x)P(X = x | S = s)

=
1(6
s

) ∑
{x :

∑6
i=1 xi=s}

φ(x) =
bs(6
s

)
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Problem 1e (cont.)

Finally, the system reliability, h, expressed as a function of p, is given by:

h(p) = E [φ(X )] =
6∑

s=0

E [φ(X )|S = s]P(S = s)

=
6∑

s=0

bs(6
s

)(6
s

)
ps(1− p)6−s =

6∑
s=0

bsps(1− p)6−s.
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Problem 1f
(f) Show that:

6∑
s=0

bs = 23.

SOLUTION: By inserting p = 1
2 into the expression for h(p) we get:

h(
1
2

) =
6∑

s=0

bs(
1
2

)s(1− (
1
2

))6−s

=
6∑

s=0

bs(
1
2

)6 = [
6∑

s=0

bs](
1
2

)6 = 23 · (1
2

)6,

where the last equality follows by the last result in (c). Hence:
6∑

s=0

bs = 23.
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Problem 1g

(g) Determine b0,b1, . . . ,b6.

SOLUTION: Since the smallest path sets have 3 components, we must have:

b0 = b1 = b2 = 0.

We know from (a) that there are 4 minimal paths, all of size 3. Hence we
have:

b3 = 4.

Since all cut sets have at least 2 components, all sets of size 5 or 6 must be
path sets. Hence, we have:

b5 =
(6

5

)
= 6, and b6 =

(6
6

)
= 1.
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Problem 1g (cont.)
In order to determine b4, we could go through all sets of size 4, i.e.,

(6
s

)
= 15

sets, and count the path sets among these sets.

Alternatively, we can apply the result from (f). This gives us an equation
which we can use to determine b4:

0 + 0 + 0 + 4 + b4 + 6 + 1 = 23

This implies that:

b4 = 12.

NOTE: By the same arguments as we have used in this problem we can show
more generally that if (C, φ) is a binary monotone system of order n, then:

n∑
s=0

bs = h(
1
2

) · 2n.
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Problem 2a

If T1, . . . ,Tn are random variables, and we let T = (T1, . . . ,Tn), we say that
T1, . . . ,Tn are associated if

Cov(Γ(T ),∆(T )) ≥ 0,

for all binary, non-decreasing functions Γ and ∆.

(a) Prove that non-decreasing functions of associated random variables are
associated.

SOLUTION: Let T1, . . . ,Tn be associated, and let T = (T1, . . . ,Tn).
Moreover, we let:

Si = fi (T ), i = 1, . . . ,m,

where f1, . . . , fm are non-decreasing functions. Let S = (S1, . . . ,Sm).
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Problem 2a (cont.)

Finally, let:

Γ = Γ(S) and ∆ = ∆(S)

be binary non-decreasing functions.

Then:

Γ(S) = Γ(f1(T ), . . . , fm(T ))

∆(S) = ∆(f1(T ), . . . , fm(T ))

are non-decreasing functions of T as well. Hence, by the definition of
association, it follows that:

Cov(Γ(S),∆(S)) = Cov(Γ(f1(T ), . . . , fm(T )),∆(f1(T ), . . . , fm(T ))) ≥ 0.

Thus, we conclude that S1, . . . ,Sm are associated as well.

A. B. Huseby & K. R. Dahl (Univ. of Oslo) Exam STK3405/4405 - 2019 19 / 30



uiobmcrop

Problem 2b

(b) Assume that T1, . . . ,Tn are associated random variables such that
0 ≤ Ti ≤ 1, i = 1, . . . ,n.

Prove that:

E [
n∏

i=1

Ti ] ≥
n∏

i=1

E [Ti ]

E [
n∐

i=1

Ti ] ≤
n∐

i=1

E [Ti ].

SOLUTION:
We note that since 0 ≤ Ti ≤ 1, both Ti and Si = 1− Ti are non-negative
random variables, i = 1, . . . ,n.

Hence, the product functions
∏n

i=1 Ti and
∏n

i=1 Si are both non-decreasing in
each argument.
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Problem 2b (cont.)
Since non-decreasing functions of associated random variables have
non-negative covariance, we find:

E [
n∏

i=1

Ti ]− E [T1]E [
n∏

i=2

Ti ] = Cov(T1,

n∏
i=2

Ti ) ≥ 0,

since the product function is non-decreasing in each argument because
Ti ≥ 0, i = 2, . . . ,n. This implies that:

E [
n∏

i=1

Ti ] ≥ E [T1]E [
n∏

i=2

Ti ].

By repeated use of this argument we get:

E [
n∏

i=1

Ti ] ≥ E [T1]E [
n∏

i=2

Ti ] ≥ E [T1]E [T2]E [
n∏

i=3

Ti ] ≥ · · · ≥
n∏

i=1

E [Ti ]

Thus, the first inequality is proved.
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Problem 2b (cont.)

It can be shown that non-increasing functions of associated random variables
are associated. Thus, S1, . . . ,Sn are associated random variables.

Moreover, 0 ≤ Si ≤ 1, i = 1, . . . ,n.

Hence, we can apply the first inequality to these variables and get:

E [
n∐

i=1

Ti ] = 1− E [
n∏

i=1

(1− Ti )] = 1− E [
n∏

i=1

Si ]

≤ 1−
n∏

i=1

E(Si ) = 1−
n∏

i=1

(1− E [Ti ]) =
n∐

i=1

E [Ti ]

Thus, the second inequality is proved as well.
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Problem 2c

(c) Interpret the inequalities in (b) by applying them to the binary component
state variables X1, . . . ,Xn.

SOLUTION:
Using the first inequality it follows that for a series system where the
component state variables are associated, an incorrect assumption of
independence implies that the system reliability is underestimated.

Using the second inequality it follows that for a parallel system where the
component state variables are associated, an incorrect assumption of
independence implies that the system reliability is overestimated.
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Problem 2d

(d) Let X1, . . . ,Xn be the associated component state variable of a binary
monotone system (C, φ).

Furthermore, let (P1, ρ1), . . . , (Pp, ρp)) be the minimal path series structures
be, and let (K1, κ1), . . . , (Kk , κk )) be the minimal cut parallel structures.

Prove that:

k∏
j=1

P(κj (X Kj ) = 1) ≤ h ≤
p∐

j=1

P(ρj (X Pj ) = 1).
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Problem 2d (cont.)

SOLUTION: Since non-decreasing functions of associated random variables
are associated from a), it follows that the minimal path series structures, and
the minimal cut parallel structures, are associated.

Hence, we get:

k∏
j=1

P(κj (X Kj ) = 1) =
k∏

j=1

E [κj (X Kj )] ≤ E [
k∏

j=1

κj (X Kj )] = h

= E [

p∐
j=1

ρj (X Pj )] ≤
p∐

j=1

E [ρj (X Pj ] =

p∐
j=1

P(ρj (X Pj ) = 1),

where the first inequality follows from the first inequality in (b), the first and
second equalities follow from the representation of the system via its minimal
path series and cut parallel structures and the final inequality follows from the
second inequality in (b).

A. B. Huseby & K. R. Dahl (Univ. of Oslo) Exam STK3405/4405 - 2019 25 / 30



uiobmcrop

Problem 2e

(e) Make the same assumptions as in (d), and assume in addition that the
component state variables are independent with component reliabilities
p1,p2, . . .pn. Use the result in (d) to prove that:

k∏
j=1

∐
i∈Kj

pi ≤ h(p) ≤
p∐

j=1

∏
i∈Pj

pi .

SOLUTION:
If X1, . . . ,Xn are independent, we have:

P(κj (X Kj ) = 1) = E [
∐
i∈Kj

Xi ] =
∐
i∈Kj

pi , j = 1, . . . , k .

P(ρj (X Pj ) = 1) = E [ρj (X Pj ) = 1)] =
∏
i∈Pj

pi , j = 1, . . . ,p.

The result follows by inserting these expressions into the inequalities in (d).

A. B. Huseby & K. R. Dahl (Univ. of Oslo) Exam STK3405/4405 - 2019 26 / 30



uiobmcrop

Problem 2f

(f) Consider the system in Problem 1. Assume that all components have the
same component reliability p = 0.9.

Compute the bounds derived in (e) and comment on how well they
approximate the actual system reliability in this case.

SOLUTION: We start out by recalling the expression for h(p) derived in 1(c):

h(p) = p4 · (2− p)2 + 2p3(1− p)(2− p2)
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Problem 2f (cont.)

Considering the minimal cut sets from 1(a), the 3 first sets are of size 2, while
the 4 last sets of size 3. Hence, we have:∐

i∈K1

p =
∐
i∈K2

p =
∐
i∈K3

p = p q p = (2p − p2)

∐
i∈K4

p =
∐
i∈K5

p =
∐
i∈K6

p =
∐
i∈K7

p = p q p q p = (3p − 3p2 + p3)

Considering the minimal path sets from 1(a), all 4 sets are of size 3. Hence,
we have: ∏

i∈P1

p = · · · =
∏
i∈P4

p = p3
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Problem 2f (cont.)
Hence, the lower and upper bounds become:

`(p) =
7∏

j=1

∐
i∈Kj

p = (2p − p2)3 · (3p − 3p2 + p3)4

u(p) =
4∐

j=1

∏
i∈Pj

p =
4∐

j=1

p3 = 1− (1− p3)4

By inserting p = 0.9 we get:

`(0.9) = 0.9664,
h(0.9) = 0.9674,
u(0.9) = 0.9946.

We observe that the lower bound is very close to the correct system reliability,
while the upper bound is noticeably higher.

A. B. Huseby & K. R. Dahl (Univ. of Oslo) Exam STK3405/4405 - 2019 29 / 30



uiobmcrop

Problem 2g

(g) In the previous points we have derived upper and lower bounds for the
system reliability. In which cases is it important to have such bounds?

SOLUTION: In real-life cases the exact system reliability may not be possible
to calculate.

This may be the case for large, complex systems where the computations
simply take too much time, but also for systems where the component state
varaibles are dependent.

In such cases bounds for the system reliability are important.
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