STK3405 - Exercises Chapter 2

A. B. Huseby \& K. R. Dahl

Department of Mathematics
University of Oslo, Norway

Exercise 2.1

What is the reliability function of a series system of order n where the component states are assumed to be independent?

SOLUTION: A series system of order n is a binary monotone system (C, ϕ) which functions if and only if all the n components function. Thus, the structure function of the system is:

$$
\phi(\boldsymbol{X})=\prod_{i=1}^{n} X_{i}
$$

Assuming that the component state variables X_{1}, \ldots, X_{n} are independent with reliabilites p_{1}, \ldots, p_{n} respectively, we get that:

$$
\begin{aligned}
h(\boldsymbol{p}) & =P(\phi(\boldsymbol{X})=1)=E[\phi(\boldsymbol{X})]=E\left[\prod_{i=1}^{n} X_{i}\right] \\
& =\prod_{i=1}^{n} E\left[X_{i}\right] \text { (using the independence) }=\prod_{i=1}^{n} p_{i}
\end{aligned}
$$

Exercise 2.2

Consider the parallel structure of order 2. Assume that the component states are independent. The reliability function of this system is:

$$
h(\boldsymbol{p})=p_{1} \amalg p_{2}=1-\left(1-p_{1}\right)\left(1-p_{2}\right)=p_{1}+p_{2}-p_{1} p_{2} .
$$

a) If you know that $p_{1}=P\left(X_{1}=1\right)=0.5$ and $p_{2}=P\left(X_{2}=1\right)=0.7$, what is the reliability of the parallel system?

SOLUTION: $h(0.5,0.7)=0.5+0.7-0.5 \cdot 0.7=0.85$

Exercise 2.2 (cont.)

b) What is the system reliability if $p_{1}=0.9$ and $p_{2}=0.1$?

SOLUTION: $h(0.9,0.1)=0.9+0.1-0.9 \cdot 0.1=0.91$
c) Can you give an interpretation of these results?

SOLUTION: For a parallel system it is better to have one really good component and one really bad component, than to have two components with reliabilities close 0.5 .

Exercise 2.2 (cont.)

Assume more generally that $P\left(X_{1}=1\right)=p$ and $P\left(X_{2}=1\right)=1-p$. This implies that:

$$
h(\boldsymbol{p})=p+(1-p)-p(1-p)=1-p(1-p) .
$$

This is parabola with minimum at $p=0.5$. Thus, the system reliability of the parallel system is smallest when the components have the same reliability.

For a series system of two components with $P\left(X_{1}=1\right)=p$ and $P\left(X_{2}=1\right)=1-p$ we have:

$$
h(\boldsymbol{p})=p(1-p) .
$$

This is parabola with maximum at $p=0.5$. Thus, the system reliability of the series system is largest when the components have the same reliability.

Exercise 2.3

Consider a binary monotone system (C, ϕ), where the component set is $C=\{1, \ldots, 4\}$ and where ϕ is given by:

$$
\phi(\boldsymbol{x})=x_{1} \cdot x_{2} \cdot\left(x_{3} \amalg x_{4}\right) .
$$

a) Draw a reliability block diagram of this system. SOLUTION:

Exercise 2.3 (cont.)

b) Assume again that ϕ is given by:

$$
\phi(\boldsymbol{x})=x_{1} \cdot x_{2} \cdot\left(x_{3} \amalg x_{4}\right) .
$$

and that $X_{1}, X_{2}, X_{3}, X_{4}$ are independent with reliabilities $p_{1}, p_{2}, p_{3}, p_{4}$ respectively. What is the corresponding reliability function?

SOLUTION:

$$
\begin{aligned}
h(\boldsymbol{p}) & =E[\phi(\boldsymbol{X})]=E\left[X_{1} \cdot X_{2} \cdot\left(X_{3} \amalg X_{4}\right)\right] \\
& =E\left[X_{1}\right] \cdot E\left[X_{2}\right] \cdot\left(E\left[X_{3}\right] \amalg E\left[X_{4}\right]\right) \quad \text { using independence } \\
& =p_{1} \cdot p_{2} \cdot\left(p_{3} \amalg p_{4}\right)
\end{aligned}
$$

Exercise 2.4

a) What is the structure function of this system?

SOLUTION: The structure function of this system is:

$$
\phi(\boldsymbol{x})=x_{1} \cdot x_{2} \cdot\left(x_{3} \amalg x_{4}\right) \cdot x_{5} .
$$

Exercise 2.4 (cont.)

b) Assume again that ϕ is given by:

$$
\phi(\boldsymbol{x})=x_{1} \cdot x_{2} \cdot\left(x_{3} \amalg x_{4}\right) \cdot x_{5} .
$$

and that $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$ are independent with reliabilities $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}$ respectively. What is the corresponding reliability function?

SOLUTION:

$$
\begin{aligned}
h(\boldsymbol{p}) & =E[\phi(\boldsymbol{X})]=E\left[X_{1} \cdot X_{2} \cdot\left(X_{3} \amalg X_{4}\right) \cdot X_{5}\right] \\
& =E\left[X_{1}\right] \cdot E\left[X_{2}\right] \cdot\left(E\left[X_{3}\right] \amalg E\left[X_{4}\right]\right) \cdot E\left[X_{5}\right] \quad \text { using independence } \\
& =p_{1} \cdot p_{2} \cdot\left(p_{3} \amalg p_{4}\right) \cdot p_{5}
\end{aligned}
$$

Exercise 2.5

There are 8 different coherent systems of order less than or equal to 3 (not counting permutations in the numbering of components). What are they?

SOLUTION: There are three coherent systems of order 1 or 2 :

Exercise 2.5 (cont.)

There are five coherent systems of order 3:

Exercise 2.6

Consider a monotone system (C, ϕ) of order n, and let $A \subset C$ be the set of irrelevant components.
Furthermore, let ($C \backslash A, \phi^{\prime}$), be a binary monotone system of order $m=n-|A|$, where ϕ^{\prime} is defined for all m-dimensional binary vectors $\boldsymbol{x} \in\{0,1\}^{m}$ as:

$$
\phi^{\prime}(\boldsymbol{x})=\phi\left(\mathbf{1}^{A}, \boldsymbol{x}^{C \backslash A}\right)
$$

Show that ($C \backslash A, \phi^{\prime}$) is coherent.
SOLUTION: Since ϕ is non-decreasing in each argument, it follows that $\phi\left(\mathbf{1}^{A}, \boldsymbol{x}^{C \backslash A}\right)$ is non-decreasing in x_{i} for all $i \in \boldsymbol{C} \backslash \boldsymbol{A}$.
Hence, ($C \backslash A, \phi^{\prime}$) is indeed a binary monotone system.

Exercise 2.6 (cont.)

We then let $i \in(C \backslash A)$. By assumption i is relevant in (C, ϕ). That is, there exists a $(\cdot i, \boldsymbol{X})$ such that:

$$
\phi\left(1_{i}, \boldsymbol{x}\right)-\phi\left(0_{i}, \boldsymbol{x}\right)=1 .
$$

This equation can also be written as:

$$
\phi\left(1_{i}, \boldsymbol{x}^{A}, \boldsymbol{x}^{C \backslash A}\right)-\phi\left(0_{i}, \boldsymbol{x}^{A}, \boldsymbol{x}^{C \backslash A}\right)=1 .
$$

Since all the components in A are irrelevant in the original system, we may replace \boldsymbol{x}^{A} by 1^{A} without changing the value of ϕ :

$$
\phi\left(1_{i}, \mathbf{1}^{A}, \boldsymbol{x}^{C \backslash A}\right)-\phi\left(0_{i}, \mathbf{1}^{A}, \boldsymbol{x}^{C \backslash A}\right)=1 .
$$

Hence, we have shown that there exists a vector $\left({ }_{\cdot i}, \mathbf{1}^{A}, \boldsymbol{x}^{C \backslash A}\right)$ such that:

$$
\phi\left(1_{i}, \mathbf{1}^{A}, \boldsymbol{x}^{C \backslash A}\right)-\phi\left(0_{i}, \mathbf{1}^{A}, \boldsymbol{x}^{C \backslash A}\right)=1 .
$$

Thus, we conclude that i is relevant in ($C \backslash A, \phi^{\prime}$), and since this holds for all $i \in C \backslash A$, we conclude that ($C \backslash A, \phi^{\prime}$) is coherent.

Exercise 2.7

Let (C, ϕ) be a non-trivial binary monotone system of order n. Then for all $\boldsymbol{x} \in\{0,1\}^{n}$ we have:

$$
\prod_{i=1}^{n} x_{i} \leq \phi(\boldsymbol{x}) \leq \coprod_{i=1}^{n} x_{i}
$$

Prove the right-hand inequality.
SOLUTION: If $\coprod_{i=1}^{n} x_{i}=1$, this inequality is trivial since $\phi(\boldsymbol{x}) \in\{0,1\}$ for all $\boldsymbol{x} \in\{0,1\}^{n}$.
If on the other hand $\coprod_{i=1}^{n} x_{i}=0$, we must have $\boldsymbol{x}=\mathbf{0}$.
Since (\boldsymbol{C}, ϕ) is assumed to be non-trivial, it follows that $\phi(\mathbf{0})=0$. Thus, the inequality is valid in this case as well.
This completes the proof of the right-hand inequality.

Exercise 2.8

Let (C, ϕ) be a binary monotone system of order n. Show that for all $\boldsymbol{x}, \boldsymbol{y} \in\{0,1\}^{n}$ we have:

$$
\phi(\boldsymbol{x} \cdot \boldsymbol{y}) \leq \phi(\boldsymbol{x}) \cdot \phi(\boldsymbol{y})
$$

Moreover, assume that (C, ϕ) is coherent. Prove that equality holds for all $\boldsymbol{x}, \boldsymbol{y} \in\{0,1\}^{n}$ if and only if (C, ϕ) is a series system.

SOLUTION: Since $\boldsymbol{x} \cdot \boldsymbol{y} \leq \boldsymbol{x}$ and $\boldsymbol{x} \cdot \boldsymbol{y} \leq \boldsymbol{y}$ and ϕ is non-decreasing in each argument, we have:

$$
\phi(\boldsymbol{x} \cdot \boldsymbol{y}) \leq \phi(\boldsymbol{x}) \text { and } \phi(\boldsymbol{x} \cdot \boldsymbol{y}) \leq \phi(\boldsymbol{y}) .
$$

Hence, we have:

$$
\phi(\boldsymbol{x} \cdot \boldsymbol{y}) \leq \min \{\phi(\boldsymbol{x}), \phi(\boldsymbol{y})\}=\phi(\boldsymbol{x}) \cdot \phi(\boldsymbol{y}) .
$$

Exercise 2.8 (cont.)

It remains to prove that if (\boldsymbol{C}, ϕ) is coherent, then $\phi(\boldsymbol{x} \cdot \boldsymbol{y})=\phi(\boldsymbol{x}) \cdot \phi(\boldsymbol{y})$ if and only if (C, ϕ) is a series system.

SOLUTION: Assume first that (C, ϕ) is a series system. Then:

$$
\phi(\boldsymbol{x} \cdot \boldsymbol{y})=\prod_{i=1}^{n}\left(x_{i} \cdot y_{i}\right)=\left[\prod_{i=1}^{n} x_{i}\right] \cdot\left[\prod_{i=1}^{n} y_{i}\right]=\phi(\boldsymbol{x}) \cdot \phi(\boldsymbol{y}) .
$$

Assume conversely that $\phi(\boldsymbol{x} \cdot \boldsymbol{y})=\phi(\boldsymbol{x}) \cdot \phi(\boldsymbol{y})$, and choose $i \in C$ arbitrarily.

Since (C, ϕ) is coherent, there exists a vector $\left(\cdot{ }^{\prime}, \boldsymbol{X}\right)$ such that:

$$
\phi\left(1_{i}, \boldsymbol{x}\right)=1 \text { and } \phi\left(0_{i}, \boldsymbol{x}\right)=0 .
$$

Exercise 2.8 (cont.)

For this particular $(\cdot i, \boldsymbol{x})$ we have by the assumption that:

$$
\begin{aligned}
0 & =\phi\left(0_{i}, \boldsymbol{x}\right)=\phi\left(\left(0_{i}, \mathbf{1}\right) \cdot\left(1_{i}, \boldsymbol{x}\right)\right) \\
& =\phi\left(0_{i}, \mathbf{1}\right) \cdot \phi\left(1_{i}, \boldsymbol{x}\right)=\phi\left(0_{i}, \mathbf{1}\right) \cdot 1
\end{aligned}
$$

Hence, $\phi\left(0_{i}, \mathbf{1}\right)=0$, and since obviously $\phi\left(1_{i}, \mathbf{1}\right)=1$, we conclude that:

$$
\phi\left(x_{i}, \mathbf{1}\right)=x_{i}, \text { for } x_{i}=0,1 .
$$

Since $i \in C$ was chosen arbitrarily, we must have:

$$
\phi\left(x_{i}, \mathbf{1}\right)=x_{i}, \text { for } x_{i}=0,1, \text { for all } i \in C .
$$

Exercise 2.8 (cont.)

By repeated use of the assumption, we get:

$$
\begin{aligned}
\phi(\boldsymbol{x}) & =\phi\left(\left(x_{1}, \mathbf{1}\right) \cdot\left(x_{2}, \mathbf{1}\right) \cdots\left(x_{n}, \mathbf{1}\right)\right) \\
& =\phi\left(x_{1}, \mathbf{1}\right) \cdot \phi\left(x_{2}, \mathbf{1}\right) \cdots \phi\left(x_{n}, \mathbf{1}\right) \\
& =x_{1} \cdot x_{2} \cdots x_{n}=\prod_{i=1}^{n} x_{i}
\end{aligned}
$$

Thus, we conclude that (C, ϕ) is a series system.

Exercise 2.9

Prove that the dual system of a k-out-of- n system is an ($n-k+1$)-out-of- n system.

SOLUTION: Assume that (C, ϕ) is a k-out-of- n-system. The structure function, ϕ, can then be written as:

$$
\phi(\boldsymbol{x})= \begin{cases}1 & \text { if } \sum_{i=1}^{n} x_{i} \geq k \\ 0 & \text { otherwise }\end{cases}
$$

More compactly we may write this as:

$$
\phi(\boldsymbol{x})=I\left(\sum_{i=1}^{n} x_{i} \geq k\right)
$$

Exercise 2.9 (cont.)

We then have:

$$
\begin{aligned}
\phi^{D}(\boldsymbol{y}) & =1-\phi(\mathbf{1}-\boldsymbol{y})=1-I\left(\sum_{i=1}^{n}\left(1-y_{i}\right) \geq k\right) \\
& =1-I\left(n-\sum_{i=1}^{n} y_{i} \geq k\right)=1-I\left(\sum_{i=1}^{n} y_{i} \leq n-k\right) \\
& =I\left(\sum_{i=1}^{n} y_{i}>n-k\right)=I\left(\sum_{i=1}^{n} y_{i} \geq n-k+1\right)
\end{aligned}
$$

Hence, $\left(C^{D}, \phi^{D}\right)$ is an $(n-k+1)$-out-of- n system.

Exercise 2.10

Let S be a stochastic variable with values in $\{0,1, \ldots, n\}$. We then define the generating function of S as:

$$
G_{S}(y)=E\left[y^{s}\right]=\sum_{s=0}^{n} y^{s} P(S=s)
$$

a) Explain why $G_{S}(y)$ is a polynomial, and give an interpretation of the coefficients of this polynomial.

SOLUTION: $G_{S}(y)$ is a polynomial because all the terms in the sum are of the form $a_{s} y^{s}, s=0,1, \ldots, n$.

The coefficient a_{s} is equal to $P(S=s)$.

Exercise 2.10 (cont.)

NOTE: A polynomial $g(y)=\sum_{s=0}^{n} a_{s} y^{n}$ is a generating function for a random variable S with values in $\{0,1, \ldots n\}$ if and only if:

$$
\begin{aligned}
a_{s} & \geq 0, \quad s=0,1, \ldots, n \\
\sum_{s=0}^{n} a_{s} & =1
\end{aligned}
$$

Exercise 2.10 (cont.)

b) Let T be another non-negative integer valued stochastic variable with values in $\{0,1, \ldots, m\}$ which is independent of S. Show that:

$$
G_{S+T}(y)=G_{S}(y) \cdot G_{T}(y)
$$

SOLUTION: By the definition of a generating function and the independence of S and T we have:

$$
\begin{aligned}
G_{S+T}(y) & =E\left[y^{S+T}\right]=E\left[y^{S} \cdot y^{T}\right] \\
& =E\left[y^{S}\right] \cdot E\left[y^{T}\right] \text { (using that } S \text { and } T \text { are independent) } \\
& =G_{S}(y) \cdot G_{T}(y)
\end{aligned}
$$

Exercise 2.10 (cont.)

c) Let X_{1}, \ldots, X_{n} be independent binary variables with $P\left(X_{i}=1\right)=p_{i}$ and $P\left(X_{i}=0\right)=1-p_{i}=q_{i}, i=1, \ldots, n$. Show that:

$$
G_{x_{i}}(y)=q_{i}+p_{i} y, \quad i=1, \ldots, n
$$

SOLUTION: By the definition of a generating function we get:

$$
\begin{aligned}
G_{X_{i}}(y) & =E\left[y^{x_{i}}\right] \\
& =y^{0} \cdot P\left(X_{i}=0\right)+y^{1} P\left(X_{i}=1\right) \\
& =q_{i}+p_{i} y, \quad i=1, \ldots, n
\end{aligned}
$$

Exercise 2.10 (cont.)

d) Introduce:

$$
S_{j}=\sum_{i=1}^{j} X_{i}, \quad j=1,2, \ldots, n
$$

and assume that we have computed $G_{S_{j}}(y)$. Thus, all the coefficients of $G_{S_{j}}(y)$ are known at this stage. We then compute:

$$
G_{S_{j+1}}(y)=G_{S_{j}}(y) \cdot G_{X_{j+1}}(y)
$$

How many algebraic operations (addition and multiplication) will be needed to complete this task?

Exercise 2.10 (cont.)

SOLUTION: Assume that we have computed $G_{S_{j}}(y)$, and that:

$$
G_{S_{j}}(y)=a_{j 0}+a_{j 1} y+a_{j 2} y^{2}+\cdots+a_{j j} y^{j}
$$

Then:

$$
\begin{aligned}
G_{S_{j+1}}(y) & =G_{S_{j}}(y) \cdot G_{X_{j+1}}(y) \\
& =\left(a_{j 0}+a_{j 1} y+a_{j 2} y^{2}+\cdots+a_{j j} y^{j}\right) \cdot\left(q_{i+1}+p_{i+1} y\right)
\end{aligned}
$$

In order to compute $G_{S_{j+1}}(y)$ we need to do $2(j+1)$ multiplications and j additions.

Exercise 2.10 (cont.)

e) Explain how generating functions can be used in order to calculate the reliability of a k-out-of- n system. What can you say about the order of this algorithm.

SOLUTION: In order to compute $G_{S}(y)=G_{S_{n}}(y), 2 \cdot(2+3+\cdots+n)$ multiplications and ($1+2+\cdots(n-1)$) additions are needed. Thus, the number of operations grows roughly proportionally to n^{2} operations.

Having calculated $G_{S}(y)$, a polynomial of degree n, the distribution of S is given by the coefficients of this polynomial.

If (C, ϕ) is a k-out-of- n-system with component state variables X_{1}, \ldots, X_{n}, then the reliability of this system is given by:

$$
P(\phi(\boldsymbol{X})=1)=P(S \geq k)=\sum_{s=k}^{n} P(S=s)
$$

Thus, the reliability of (C, ϕ) can be calculated in $O\left(n^{2}\right)$-time.

