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Section 2.1

Binary monotone systems
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Binary monotone systems

A system is some technological unit consisting of a finite set of
components which are operating together

A binary system has only two possible states: functioning or failed.
Moreover, each component is either functioning or failed as well

A binary monotone system is a binary system such that repairing
a component does not make the system worse, and breaking a
component does not make system better
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Binary monotone systems (cont.)

We consider a binary system of n components, 1, . . . ,n, and introduce
the component state variable Xi denoting the state of component i ,
i = 1, . . . ,n, defined as:

Xi :=

{
1 if the i th component is functioning
0 otherwise.

Furthermore, we introduce the variable φ representing the state of the
system, defined as:

φ :=

{
1 if the system is functioning
0 otherwise.
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Binary monotone systems (cont.)

The variables Xi , i = 1, . . . ,n and φ are said to be binary, since they
only have two possible values, 0 and 1.

The state of the system is assumed to be uniquely determined by the
state of the components. Thus, we may write φ as:

φ = φ(X ) = φ(X1,X2, . . . ,Xn)

The function φ : {0,1}n → {0,1} is called the structure function of the
system.
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Binary monotone systems (cont.)

Definition
A binary monotone system is an ordered pair (C, φ), where:

C = {1, . . . ,n} is the component set and φ is the structure function.

The structure function φ is non-decreasing in each argument.

The number of components, n, is referred to as the order of the
system.
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Trivial systems

NOTE: According to the definition binary monotone systems includes
systems where the structure function is constant, i.e., systems where:

φ(x) = 1 for all x ∈ {0,1}n

or
φ(x) = 0 for all x ∈ {0,1}n

We will refer to such systems as trivial systems.

Some textbooks exclude trivial systems from the class of monotone systems.
We have chosen not to do so in order to have a class which is closed with
respect to conditioning.
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Trivial systems (cont.)

Theorem
Let (C, φ) be a non-trivial binary monotone system.

Then φ(0) = 0 and φ(1) = 1.

Proof: Since (C, φ) is assumed to be non-trivial, there exists at least
one vector x0 such that φ(x0) = 0 and another vector x1 such that
φ(x1) = 1.

Since (C, φ) is monotone, it follows that:

0 ≤ φ(0) ≤ φ(x0) = 0

1 = φ(x1) ≤ φ(1) ≤ 1

Hence, we conclude that φ(0) = 0 and φ(1) = 1
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Reliability block diagrams

In a reliability block diagram components are drawn as circles and connected
by lines. The system is functioning if and only it is possible to find a way
through the diagram passing only functioning components.

1 2

4

3

Note: In order to represent arbitrarily binary monotone systems, we allow
components to occur in multiple places in the block diagram. Thus, a
reliability block diagram should not necessarily be interpreted as a picture of
a physical system.
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A series system

1 2 n. . .

Figure: A reliability block diagram of a series system.
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A parallel system

1

2

. . .

n

Figure: A reliability block diagram of a parallel system.
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A 2-out-of-3 system

1

2

1

3

2

3

Figure: A reliability block diagram of a 2-out-of-3 system.

For a 2-out-of-3 system to fail 2 out of 3 components must fail. There
are 3 possible subsets of components which contains 2 components:
{1,2}, {1,3}, {2,3}.
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A 2-out-of-4 system
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Figure: A reliability block diagram of a 2-out-of-4 system.

For a 2-out-of-4 system to fail 3 out of 4 components must fail. There
are 4 possible subsets of components which contains 3 components:
{1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}.
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The structure function of a series system

1 2 n. . .

Figure: A reliability block diagram of a series system.
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The structure function of a series system (cont.)

From the reliability block diagram we see that the series system is
functioning if and only if all of its components are functioning, i.e., if
and only if X1 = 1 and · · · and Xn = 1.

Hence, the state of the system can be expressed as a function of the
component state variables as follows:

φ(X ) = X1 · X2 · · ·Xn =
n∏

i=1

Xi

Alternatively, the structure function of a series system can be written
as:

φ(X ) = min{X1, . . . ,Xn}

since min{X1, . . . ,Xn} = 1 if and only if X1 = 1 and · · · and Xn = 1.
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The coproduct operator

For any a1,a2, . . . ,an we define:

a1 q a2 = 1− (1− a1)(1− a2),

n∐
i=1

ai = 1−
n∏

i=1

(1− ai).

Note: If a1,a2, . . . ,an ∈ {0,1}, we have:

a1 q a2 = 1− (1− a1)(1− a2) = max{a1,a2},

n∐
i=1

ai = 1−
n∏

i=1

(1− ai) = max{a1, . . . ,an}.
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The coproduct operator (cont.)

Proof:

a1 q a2 = 1− (1− a1)(1− a2) = 0

if and only if

(1− a1)(1− a2) = 1

Hence, a1 q a2 = 0 if and only if a1 = 0 and a2 = 0.

Equivalently, a1 q a2 = 1 if and only if a1 = 1 or a2 = 1.

Hence, a1 q a2 = max{a1,a2}.
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The coproduct operator (cont.)

n∐
i=1

ai = 1−
n∏

i=1

(1− ai) = 0

if and only if

n∏
i=1

(1− ai) = 1

Hence,
∐n

i=1 ai = 0 if and only if a1 = 0 and · · · and an = 0.

Equivalently,
∐n

i=1 ai = 1 if and only if a1 = 1 or · · · or an = 1.

Hence,
∐n

i=1 ai = max{a1, . . . ,an}.
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The structure function of a parallel system

1

2

. . .

n

Figure: A reliability block diagram of a parallel system.
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The structure function of a parallel system (cont.)

From the reliability block diagram we see that the parallel system is
functioning if and only if at least one of its components are functioning,
i.e., if and only if X1 = 1 or · · · or Xn = 1.

Hence, the state of the system can be expressed as a function of the
component state variables as follows:

φ(X ) = X1 q X2 · · · q Xn =
n∐

i=1

Xi .

Alternatively, the structure function of a parallel system can be written
as:

φ(X ) = max{X1, . . . ,Xn}

since max{X1, . . . ,Xn} = 1 if and only if X1 = 1 or · · · or Xn = 1.
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The structure function of a mixed system

1 2

4

3

It is easy to verify that the structure function of this system is:

φ(X ) = [(X1 · X2)q X3] · X4
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The structure function of a 2-out-of-3 system

1

2

1

3

2

3

It is easy to verify that the structure function of this system is:

φ(X ) = (X1 q X2)(X1 q X3)(X2 q X3)
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Section 2.2

Coherent systems
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Coherent systems

Every component of a binary monotone system should have some
impact on the system state. More precisely, if i is a component in a
system, there should ideally exist at least some state of the rest of the
system where the system state depends on the state of component i .

Notation:

(1i ,x) = (x1, . . . , xi−1,1, xi+1, . . . , xn)

(0i ,x) = (x1, . . . , xi−1,0, xi+1, . . . , xn)

(·i ,x) = (x1, . . . , xi−1, ·, xi+1, . . . , xn).
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Coherent systems (cont.)

Note: If X is a binary variable, then X n = X for n = 1,2, . . ..

The coproduct of two variables:

X1 q X2 = 1− (1− X1)(1− X2)

= 1− (1− X1 − X2 + X1X2)

= 1− 1 + X1 + X2 − X1X2

= X1 + X2 − X1X2
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Coherent systems (cont.)

Definition

Let (C, φ) be a binary monotone system, and let i ∈ C. The component i is
said to be relevant for the system (C, φ) if:

0 = φ(0i ,x) < φ(1i ,x) = 1 for some (·i ,x).

If this is not the case, component i is said to be irrelevant for the system.

A binary monotone system (C, φ) is coherent if all its components are
relevant.

Note that a coherent system is obviously non-trivial as well, since in a trivial
system all components are irrelevant.
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An incoherent system

1

2

2

The structure function of this system is:

φ(X ) = (X1 q X2) · X2

= (X1 + X2 − X1X2) · X2

= X1X2 + X 2
2 − X1X 2

2

= X1X2 + X2 − X1X2 = X2
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Conditionally irrelevant components

1 2

4

3

The structure function of this system is:

φ(X ) = [(X1 · X2)q X3] · X4

= (X1X2 + X3 − X1X2X3) · X4

Given that component 2 is failed, i.e., X2 = 0, we get:

φ(02,X ) = X3 · X4

Thus, component 1 is conditionally irrelevant given that component 2 is failed.
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Conditionally irrelevant components (cont.)

1 2

4

3

The structure function of this system is:

φ(X ) = [(X1 · X2)q X3] · X4

= (X1X2 + X3 − X1X2X3) · X4

Given that component 3 is functioning, i.e., X3 = 1, we get:

φ(13,X ) = (X1X2 + 1− X1X2) · X4 = X4

Thus, components 1 and 2 are conditionally irrelevant given that component 3
is functioning.
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The best and worst systems

Theorem

Let (C, φ) be a non-trivial binary monotone system of order n. Then for all
x ∈ {0,1}n we have:

n∏
i=1

xi ≤ φ(x) ≤
n∐

i=1

xi .

Proof:
If
∏n

i=1 xi = 0, then
∏n

i=1 xi ≤ φ(x) since φ(x) ∈ {0,1} for all x ∈ {0,1}n.

If
∏n

i=1 xi = 1, we have x = 1. Hence, φ(x) = φ(1) = 1 since (C, φ) is
non-trivial

Thus, the inequality is valid in this case as well. This completes the proof of
the left-hand inequality.

The right-hand inequality is proved in a similar way.
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The product and coproduct operators for vectors

Consider two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn).

For our purpose the product and coproduct operators for vectors are
defined as follows:

x · y = (x1 · y1, x2 · y2, . . . , xn · yn),

x q y = (x1 q y1, x2 q y2, . . . , xn q yn).
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Component level changes vs. system level changes

Theorem
Let (C, φ) be a binary monotone system of order n. Then for all binary
vectors x ,y we have:

(i) φ(x q y) ≥ φ(x)q φ(y),
(ii) φ(x · y) ≤ φ(x) · φ(y).

Moreover, assume that (C, φ) is coherent. Then equality holds in (i) for
all x ,y ∈ {0,1}n if and only if (C, φ) is a parallel system. Similarly,
equality holds in (ii) for all x ,y ∈ {0,1}n if and only if (C, φ) is a series
system.

Interpretation: Components in parallel are better than systems in
parallel. Components in series are worse than systems in series.
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Component level vs. system level (cont.)

Proof: Since φ is non-decreasing and xi q yi ≥ xi for i = 1, . . . ,n, it
follows that:

φ(x q y) ≥ φ(x).

Similarly, we see that
φ(x q y) ≥ φ(y).

Hence,
φ(x q y) ≥ max{φ(x), φ(y)} = φ(x)q φ(y).

This proves (i).

The proof of (ii) is similar.
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Component level vs. system level (cont.)

We then prove that equality holds in (i) for all binary vectors x ,y if and
only if (C, φ) is a parallel system.

If (C, φ) is a parallel system, it follows that:

φ(x q y) = qn
i=1(xi q yi) = max

1≤i≤n

{
max{xi , yi}

}
= max

{
max
1≤i≤n

xi , max
1≤i≤n

yi
}
= φ(x)q φ(y),

which proves the "if"-part of the equivalence.
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Component level vs. system level (cont.)

Assume conversely that φ(x q y) = φ(x)q φ(y) for all binary vectors x ,y .

Since (C, φ) is coherent it follows that for any i ∈ C there exists a vector (·i ,x)
such that:

φ(1i ,x) = 1 and φ(0i ,x) = 0.

For this particular vector (·i ,x) we have:

1 = φ(1i ,x) = φ
(
(1i ,0)q (0i ,x)

)
= φ(1i ,0)q φ(0i ,x) = φ(1i ,0)q 0
= φ(1i ,0).

This implies that component i is in parallel with the rest of the system. Since
this holds for any i ∈ C, we conclude that the system is a parallel system.
This proves the "only if"-part of the equivalence.

The other equivalence is proved similarly.
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Component level vs. system level (cont.)

Example: A series system of two components.

For all binary vectors x = (x1, x2) and y = (y1, y2) we have:

(x1 q y1) · (x2 q y2) ≥ (x1 · x2)q (y1 · y2).
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Component level vs. system level (cont.)

In order to verify this inequality we note that:

(x1 · x2)q (y1 · y2) = 1 ⇔ x1 · x2 = 1 or y1 · y2 = 1.

If x1 · x2 = 1, then x1 = x2 = 1. Hence, we get:

(x1 q y1) · (x2 q y2) = (1q y1) · (1q y2) = 1

If y1 · y2 = 1, then y1 = y2 = 1. Hence, we get:

(x1 q y1) · (x2 q y2) = (x1 q 1) · (x2 q 1) = 1

Thus, we have shown that:

(x1 · x2)q (y1 · y2) = 1 ⇒ (x1 q y1) · (x2 q y2) = 1.
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Component level vs. system level (cont.)

Similarly, we note that:

(x1 q y1) · (x2 q y2) = 0 ⇔ x1 q y1 = 0 or x2 q y2 = 0.

If x1 q y1 = 0, then x1 = y1 = 0. Hence, we get:

(x1 · x2)q (y1 · y2) = (0 · x2)q (0 · y2) = 0

If x2 q y2 = 0, then x2 = y2 = 0. Hence, we get:

(x1 · x2)q (y1 · y2) = (x1 · 0)q (x2 · 0) = 0

Thus, we have shown that:

(x1 q y1) · (x2 q y2) = 0 ⇒ (x1 · x2)q (y1 · y2) = 0.
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Component level vs. system level (cont.)

Summarizing this we have shown that:

(x1 · x2)q (y1 · y2) = 1 ⇒ (x1 q y1) · (x2 q y2) = 1

(x1 q y1) · (x2 q y2) = 0 ⇒ (x1 · x2)q (y1 · y2) = 0

From this we conclude that we have:

φ(x q y) = (x1 q y1) · (x2 q y2)

≥ (x1 · x2)q (y1 · y2) = φ(x)q φ(y),

for all binary vectors x = (x1, x2) and y = (y1, y2) as claimed.
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