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Chapter 8

Discrete event simulation
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Section 8.1

Pure jump processes
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Pure jump processes
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Figure: A pure jump process S(t)
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Pure jump processes (cont.)
Let {S(t)} be a stochastic process where S(t) denotes the state of the
process at time t ≥ 0. {S(t)} is said to be a pure jump process if S(t) can be
written as:

S(t) = S(0) +
∞∑
j=1

I(Tj ≤ t)Jj , t ≥ 0,

where 0 = T0 < T1 < T2 < · · · is a sequence of random points of time, and
J1, J2, . . . is a sequence of random (positive or negative) jumps.

In particular, for k = 0,1, . . ., we have:

S(t) = S(0) +
k∑

j=1

Jj = S(Tk ), for all t ∈ [Tk ,Tk+1).

From this it follows that the state function S(t) is piecewise constant and
right-continuous in t , with jumps at T1 < T2 < · · · .

In order to keep track of how the process evolves only the event points need
to be considered.
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Regular pure jump processes

Let {S(t)} be pure jump process, and let:

N(t) =
∞∑
j=1

I(Tj ≤ t)

= The number of jumps in [0, t].

We say that {S(t)} is regular if P(N(t) <∞) = 1 for all t > 0.

NOTE

P(N(t) <∞) = P( lim
k→∞

Tk =∞)

= P( lim
k→∞

k∑
j=1

∆j =∞),

where ∆j = Tj − Tj−1, j = 1,2, . . ..
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Regular pure jump processes (cont.)

Proposition (8.1.1)

Let {S(t)} be a pure jump process with jumps at:

T1 < T2 < · · ·

Moreover, we let T0 = 0 and introduce the non-negative random
variables ∆j = Tj − Tj−1, j = 1, 2, . . . .

If the sequence {∆j} contains an infinite subsequence {∆kj} of
independent, identically distributed random variables such that
E [∆kj ] = d > 0, then {S(t)} is regular.
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Regular pure jump processes (cont.)

PROOF: By the strong law of large numbers it follows that:

P( lim
n→∞

n−1
n∑

j=1

∆kj = d) = 1.

This implies that the series
∑∞

j=1 ∆kj is divergent with probability one.

Hence, since obviously
∑∞

j=1 ∆kj ≤
∑∞

j=1 ∆j , the result follows.
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Regular pure jump processes (cont.)

Proposition (8.1.2)

Let {S(t)} be a regular pure jump process with jumps at T1 < T2 < · · · . Then
limt→s− S(t) exists for every s > 0 with probability one.

PROOF: Let 0 ≤ t < s <∞, and consider the set:

T = {Tj : t ≤ Tj < s} ∪ {t}.

Since S is regular, the set T is finite with probability one. Moreover, T is
non-empty since t ∈ T . Thus, this set contains a maximal element, which we
denote by t ′. Moreover, since every element in T is less than s, then so is t ′.

From this it follows that the interval (t ′, s) is nonempty.

At the same time (t ′, s) does not contain any jumps, so S(t) is constant
throughout this interval. Hence, limt→s− S(t) exists. Since s was arbitrary
chosen, this holds for any s > 0.
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Regular pure jump processes (cont.)

t
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If u = T (0) and v = T (k+1), then:∫ v

u
S(t)dt =

k∑
j=0

S(T (j))(T (j+1) − T (j)).
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Regular pure jump processes (cont.)

Proposition (8.1.3)

Let {S(t)} be a regular pure jump process with jumps at
T1 < T2 < · · · , and let 0 ≤ u < v <∞.

Assume that {Tj : u < Tj < v} = {T (1), . . . ,T (k)}, where
T (1) < · · · < T (k).

Moreover, we define T (0) = u and T (k+1) = v.

Then we have: ∫ v

u
S(t)dt =

k∑
j=0

S(T (j))(T (j+1) − T (j)).

A. B. Huseby & K. R. Dahl (Univ. of Oslo) Lecture 10 11 / 35



Regular pure jump processes (cont.)

NOTE: Since {S(t)} is regular, the number of elements in the set
{Tj : u < Tj < v} is finite with probability one.

Thus, this set can almost surely be written in the form {T (1), . . . ,T (k)}, for
some suitable k <∞.

Since S is right-continuous and piecewise constant, it follows that
S(t) = S(T (j)) for all t ∈ [T (j),T (j+1)), j = 0,1, . . . , k .

Thus, we have:∫ T (j+1)

T (j)
S(t)dt = S(T (j))(T (j+1) − T (j)), j = 0,1, . . . , k .

The result then follows by adding up the contributions to the integral from
each of the k + 1 intervals [T (0),T (1)), . . . , [T (k),T (k+1))

A. B. Huseby & K. R. Dahl (Univ. of Oslo) Lecture 10 12 / 35



Regular pure jump processes (cont.)

Proposition (8.1.4)

Let {S1(t)}, . . . , {Sn(t)} be n regular pure jump processes, and let
H(t) = H(S(t)), where S(t) = (S1(t) . . . ,Sn(t)), t ≥ 0.

Then {H(t)} is a regular pure jump process as well.

That is, H(t) = H(S(t)) is:
Piecewise constant
Right-continuous in t,
The number of jumps in [0, t ] is finite with probability one for all
t > 0
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Regular pure jump processes (cont.)

PROOF: Let Ti be the set of jump points of {Si (t)}, i = 1, . . . ,n, and let T be
the set of jump points of the process {H(t)}.

Since the state value of H cannot change unless there is a change in the
state value of at least one of the elementary processes, it follows that
T ⊆ (T1 ∪ · · · ∪ Tn).

Thus, H(t) is piecewise constant and right-continuous in t . Moreover, for any
finite interval [0, t ] we also have:

T ∩ [0, t ] ⊆ [(T1 ∩ [0, t ]) ∪ · · · ∪ (Tn ∩ [0, t ])].

By regularity (Ti ∩ [0, t ]) is finite almost surely for i = 1, . . . ,n. Hence,
T ∩ [0, t ] is finite almost surely as well, implying that {H(t)} is regular.
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Section 8.2

Binary monotone systems of repairable components
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Binary monotone systems of repairable components

Consider (C, φ), a binary monotone system of n repairable
components.

Component state processes: {X1(t)}, . . . , {Xn(t)}, where:

Xi(t) = the state of component i at time t ≥ 0, i ∈ C.

Component state vector: X (t) = (X1(t), . . . ,Xn(t))

System state process: {φ(t)}, where:

φ(t) = φ(X (t)) = the state of the system at time t ≥ 0
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Repairable components

We introduce the following random variables:

Uij = The j th lifetime of the i th component

Dij = The j th repair time of the i th component

For i = 1, . . . ,n:

Ui1,Ui2, . . . are i.i.d. with mean value 0 < µi <∞

Di1,Di2, . . . are i.i.d with mean value 0 < νi <∞

All lifetimes and repair times are assumed to be independent. Thus, in
particular the component processes {X1(t)}, . . . , {Xn(t)} are independent of
each other.

NOTE: The Uij ’s and the Dij ’s are waiting times between state changes for the
components.

A. B. Huseby & K. R. Dahl (Univ. of Oslo) Lecture 10 17 / 35



Repairable components

Now we let for i = 1, . . . ,n:

Ti,1 = Ui1,

Ti,2 = Ui1 + Di1

Ti,3 = Ui1 + Di1 + Ui2,

Ti,4 = Ui1 + Di1 + Ui2 + Di2

· · ·

Moreover, let Jj = (−1)j . We may then write:

Xi (t) = X (0) +
∞∑
j=1

I(Tij ≤ t)Jj , i = 1, . . . ,n.

By Proposition 8.1.1 {X1(t)}, . . . , {Xn(t)} are regular pure jump processes.

By Proposition 8.1.4 {φ(t)} is a regular pure jump process as well.
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Availability
Let Ai (t) be the availability of the i th component at time t . That is, for
i = 1, . . . ,n we have:

Ai (t) = Pr(Xi (t) = 1) = E [Xi (t)].

By renewal theory the corresponding stationary availabilities are given by:

Ai = lim
t→∞

Ai (t) =
µi

µi + νi
, i = 1, . . . ,n.

Introduce A(t) = (A1(t), . . . ,An(t)) and A = (A1, . . . ,An). The system
availability at time t is given by:

Aφ(t) = Pr(φ(X (t)) = 1) = E [φ(X (t))] = h(A(t)),

where h is the system’s reliability function. The corresponding stationary
availability is given by:

Aφ = lim
t→∞

Aφ(t) = h(A)
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Criticality

The component i is said to be critical at time t if

ψi (X (t)) = φ(1i ,X (t))− φ(0i ,X (t)) = 1.

ψi (X (t)) is the criticality state of component i at time t .

The Birnbaum measure of importance of component i at time t , I(i)B (t), is the
probability that i is critical at time t :

I(i)B (t) = Pr(ψi (X (t)) = 1) = E [ψi (X (t))]

= h(1i ,A(t))− h(0i ,A(t)).

The corresponding stationary measure is given by:

I(i)B = lim
t→∞

I(i)B (t) = h(1i ,A)− h(0i ,A).
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Section 8.3

Simulating repairable systems
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Event model

Let (C, φ) be a binary monotone system with component state processes:
{X1(t)}, . . . , {Xn(t)}.

Ei1,Ei2, . . . are the events affecting the process {Xi (t)}

Ti1,Ti2, . . . are the corresponding points of time for these events

Assuming that all lifetimes and repair times have absolutely continuous
distributions, all the events happen at distinct points of time almost surely, i.e.,
all the Tijs are distinct numbers.

We assume that the events are sorted with respect to their respective points
of time, so that Ti1 < Ti2 < · · · .
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Event model (cont.)

At the system level the event set is the union of all the component event sets.

Let E (1),E (2), . . . denote the system events sorted with respect to their
respective points of time

Let T (1) < T (2) < · · · be the corresponding points of time

Each system event corresponds to a unique component event, organised in a
dynamic queue sorted with respect to the points of time of the events:
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Program flow

Event
queue

{X (t)}1

{X (t)}2 {φ(t)}

{X (t)}n

•
•
•

The components post initial events to the event queue

The event queue processes events in chronological order, and notifies
the components when the events occur. As soon as an event is
processed, it is removed from the queue.

The component updates its state, posts a new event to the queue, and
notifies the system about the state change
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Sampling events

Although the system state and component states stay constant between
events, it is of interest to sample the state values at predefined points of time.
Thus, we introduce yet another type of event, called a sampling events
spread out evenly on the timeline.

Let e1,e2, . . . denote the sampling events

Let t1 < t2 < · · · are the corresponding points of time

Typically tj = j ·∆ for some suitable ∆ > 0, j = 1,2, . . ..

The sampling events are placed into the queue in the same way as for the
ordinary events.
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Section 8.4

Estimating availability and importance
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Pointwise estimates of availability and importance

Goal: Estimate Aφ(t) and I(1)B (t), . . . , I(n)B (t) for 0 ≤ t ≤ tN

Solution: Pointwise estimates of Aφ(t) and I(1)B (t), . . . , I(n)B (t) for
t ∈ {t1, . . . , tN}, and use interpolation between these points.

In each simulation we sample the values of φ and ψ1, . . . , ψn at each sampling
point t1, . . . , tN . We denote the sth simulated result of the component state
vector process by {X s(t)}, s = 1, . . . ,M, and obtain the following estimates
for j = 1, . . . ,N:

Âφ(tj ) =
1
M

M∑
s=1

φ(X s(tj )),

Î (i)B (tj ) =
1
M

M∑
s=1

ψi (X s(tj )).
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Interval estimates of availability and importance

Alternative idea: Use average simulated availability and criticalities from
each interval (tj−1, tj ], j = 1, . . . ,N as estimates for the availability and
criticalities at the midpoints of these intervals.

We then obtain the following estimates for j = 1, . . . ,N:

Ãφ(̄tj ) =
1
M

M∑
s=1

1
∆

∑
k∈Esj

φ(X s(T (k)
s ))(T (k+1)

s − T (k)
s ),

Ĩ (i)B (̄tj ) =
1
M

M∑
s=1

1
∆

∑
k∈Esj

ψi (X s(T (k)
s ))(T (k+1)

s − T (k)
s ),

where Esj denotes the index set of the events in (tj−1, tj ] in the sth simulation,
and t̄j = (tj−1 + tj )/2.
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Interval estimates of availability and importance

The integral formula given in Proposition 8.1.3 implies that Ãφ(̄tj ) and
Ĩ(i)B (̄tj ) are unbiased and strongly consistent estimates of the
corresponding average availability and criticality in the intervals [tj−1, tj )
respectively.

By choosing ∆ so that the availabilities and criticalities are relatively
stable within each interval, the interval estimates are approximately
unbiased estimates for Aφ(̄tj ) and I(i)B (̄tj ) as well.

The resulting interval estimates stabilize much faster than the pointwise
estimates.

Interpolation is used to estimate Aφ(t) and I(i)B (t) between the interval
midpoints.

Since all process information is used in the estimates, satisfactory curve
estimates can be obtained for a much higher value of ∆ than the one
needed for the pointwise estimates.
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Estimates of asymptotic availability and importance

We may also obtain estimates of the asymptotic availability and importance
by calculating averages over the intervals (0, tj ], j = 1,2, . . .:

Āφ(tj ) =
1
M

M∑
s=1

1
tj

∑
k∈Fsj

φ(X s(T (k)
s ))(T (k+1)

s − T (k)
s ),

Ī (i)B (tj ) =
1
M

M∑
s=1

1
tj

∑
k∈Fsj

ψi (X s(T (k)
s ))(T (k+1)

s − T (k)
s ),

where Fsj denotes the index set of the events in (0, tj ] in the sth simulation.
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Example: A bridge system

The five components in the system have exponential lifetime and repair time
distributions with mean values 1 time unit.

Objective: Estimate Aφ(t) and I(1)B (t), . . . , I(5)B (t) for t ∈ [0,1000].
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Stationary values

Since in this very particular case all the lifetimes and repair times are
exponentially distributed with the same mean, component availabilities can
easily be calculated analytically:

Ni (t) = Number of failure/repair events affecting comp. i in [0, t ].

Now, we note that:

Ni (t) has a Poisson distribution with mean t

Xi (t) = 1 if and only if Ni (t) is even

Hence:

Ai (t) =
∞∑

k=0

Pr(Ni (t) = 2k) =
∞∑

k=0

t2k

(2k)!
e−t .
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Stationary values (cont.)

Convergence of the system availability:

|Aφ(t)− Aφ| < 10−15, for t > 20

Convergence of the Birnbaum measures of importance:

|I(i)B (t)− I(i)B | < 10−15, for t > 20, i = 1, . . . ,5.
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Figure: Availability curve estimates, Âφ(t) (red curve), Ãφ(t) (green curve)
and Āφ(t) (blue curve), M = 1000 simulations, N = 100 sample points,
∆ = 10 units
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Figure: Importance curve estimates, Î (1)B (t) (red curve) and Ĩ (1)B (t) (green
curve) and Ī (1)B (t) (blue curve), M = 1000 simulations, N = 100 sample
points, ∆ = 10 units
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