STK3405 - Lecture 11

A. B. Huseby \& K. R. Dahl

Department of Mathematics
University of Oslo, Norway

Section 5.3

The Barlow-Proschan measure of reliability importance

The Barlow-Proschan measure of reliability importance

Definition (Barlow-Proschan measure)

Let (C, ϕ) be a non-trivial binary monotone system where $C=\{1, \ldots, n\}$. Moreover, let T_{i} denote the lifetime of component $i, i \in C$, and let S denote the lifetime of the system.

The Barlow-Proschan measure of the reliability importance of component $i \in C$ is defined as:

$$
\begin{aligned}
I_{B-P}^{(i)} & =P(\text { Component } i \text { fails at the same time as the system }) \\
& =P\left(T_{i}=S\right) .
\end{aligned}
$$

The Barlow-Proschan measure of reliability importance (cont.)

Theorem (Probability of system failure)
Let (C, ϕ) be a non-trivial binary monotone system where $C=\{1, \ldots, n\}$. Moreover, let T_{i} denote the lifetime of component $i, i \in C$, and let S denote the lifetime of the system.

Assume that T_{1}, \ldots, T_{n} are independent and absolutely continuously distributed.

Then S is absolutely continuously distributed as well, and we have:

$$
\sum_{i=1}^{n} l_{B-P}^{(i)}=1
$$

The Barlow-Proschan measure of reliability importance (cont.)

Theorem (Integral formula for the Barlow-Proschan measure)
Let (C, ϕ) be a non-trivial binary monotone system where $C=\{1, \ldots, n\}$, and let T_{i} denote the lifetime of component $i, i \in C$.

Assume that T_{1}, \ldots, T_{n} are independent, absolutely continuously distributed with densities f_{1}, \ldots, f_{n} respectively. Then, we have:

$$
I_{B-P}^{(i)}=\int_{0}^{\infty} l_{B}^{(i)}(t) f_{i}(t) d t
$$

where $l_{B}^{(i)}(t)$ denotes the Birnbaum measure of the reliability importance of component i at time t.

Section 5.4

The Natvig measure of reliability importance

The Natvig measure of reliability importance

- The Barlow-Proschan measure: Components which have long lifetimes compared to the system lifetime, are the most important components.
- The Natvig measure: Components which greatly reduce the remaining system lifetime by failing, are the most important components.

The Natvig measure of reliability importance (cont.)

Definition (The Natvig measure)

Let (C, ϕ) be a non-trivial binary monotone system where $C=\{1, \ldots, n\}$. Moreover, for $i \in C$ let:

$$
Z_{i}=\text { Reduction of remaining lifetime for the system due to } i \text { failing. }
$$

The Natvig measure for the reliability importance of component i, denoted $I_{N}^{(i)}$, is defined by:

$$
I_{N}^{(i)}=\frac{E\left[Z_{i}\right]}{\sum_{j=1}^{n} E\left[Z_{j}\right]}
$$

where we assume that $E\left[Z_{i}\right]$ is finite.

The Natvig measure of reliability importance (cont.)

It is easy to show that $0 \leq I_{N}^{(i)} \leq 1$ for all $i \in C$, and that $\sum_{i=1}^{n} I_{N}^{(i)}=1$.
We also have the following theorem:
Theorem (Integral formula for the Natvig measure)
Let (C, ϕ) be a binary monotone system where $C=\{1, \ldots, n\}$, and where the components are independent and their lifetimes, T_{1}, \ldots, T_{n} are absolutely continuously distributed. Then we have:

$$
E\left[Z_{i}\right]=\int_{0}^{\infty} \bar{F}_{i}(t)\left(-\ln \left(\bar{F}_{i}(t)\right)\right) l_{B}^{(i)}(t) d t, \quad i \in C
$$

where $\bar{F}_{i}(t)=P\left(T_{i}>t\right)$ for all $i \in C$.

The Natvig measure of reliability importance (cont.)

Example: Assume that $f_{i}(t)=\lambda_{i} e^{-\lambda_{i} t}$ for $i \in C$. Then for all $i \in C$ we have:

$$
\bar{F}_{i}(t)=\int_{t}^{\infty} f_{i}(u) d u=e^{-\lambda_{i} t}
$$

Hence, we get that:

$$
\bar{F}_{i}(t)\left(-\ln \left(\bar{F}_{i}(t)\right)\right)=\lambda_{i} t \cdot e^{-\lambda_{i} t}=t \cdot f_{i}(t)
$$

Thus, in this case we have:

$$
I_{N}^{(i)} \propto E\left[Z_{i}\right]=\int_{0}^{\infty} I_{B}^{(i)}(t) t \cdot f_{i}(t) d t, \quad i \in C
$$

At the same time:

$$
l_{B-P}^{(i)}=\int_{0}^{\infty} l_{B}^{(i)}(t) f_{i}(t) d t
$$

The Natvig measure of reliability importance (cont.)

Conclusion: When the component lifetimes are independent and exponentially distributed, the Natvig measure puts more weight on later points of time than early points of time compared to the Barlow-Proschan measure.

Chapter 6

Association and bounds for the system reliability

Section 6.1

Associated random variables

Associated random variables

Definition (Associated random variables)
Let T_{1}, \ldots, T_{n} be random variables, and let $\boldsymbol{T}=\left(T_{1}, \ldots, T_{n}\right)$. We say that
T_{1}, \ldots, T_{n} are associated if

$$
\operatorname{Cov}(\Gamma(\boldsymbol{T}), \Delta(\boldsymbol{T})) \geq 0
$$

for all binary non-decreasing functions Γ and Δ.

NOTE: We only require $\operatorname{Cov}(\Gamma(\boldsymbol{T}), \Delta(\boldsymbol{T})) \geq 0$ for all binary non-decreasing functions.

Associated random variables (cont.)

Theorem (Generalized covariance property)
Let T_{1}, \ldots, T_{n} be associated random variables, and f and g functions which are non-decreasing in each argument such that $\operatorname{Cov}(f(\boldsymbol{T}), g(\boldsymbol{T}))$ exists, i.e.,

$$
E[|f(\boldsymbol{T})|]<\infty, E[|g(\boldsymbol{T})|]<\infty, E[|f(\boldsymbol{T}) g(\boldsymbol{T})|]<\infty
$$

Then we have:

$$
\operatorname{Cov}(f(\boldsymbol{T}), g(\boldsymbol{T})) \geq 0
$$

Associated random variables (cont.)

Theorem (Properties of Associated variables)
Associated random variables have the following properties:
(i) Any subset of a set of associated random variables also consists of associated random variables.
(ii) A single random variable is always associated.
(iii) Non-decreasing functions of associated random variables are associated.
(iv) If two sets of associated random variables are independent, then their union is a set of associated random variables.

Associated random variables (cont.)

We note that (i) follows from (iii). However, we can also prove this property directly:

Let T_{1}, \ldots, T_{n} be a set of associated random variables, and let $A \subset\{1, \ldots, n\}$. We would like to prove that $\left\{T_{i}\right\}_{i \in A}$ is a set of associated random variables. To do so, let Γ_{A}, Δ_{A} be arbitrary, binary functions which are non-decreasing in all of their arguments $T_{i}, i \in A$. We then define:

$$
\Gamma(\boldsymbol{T})=\Gamma_{A}\left(\boldsymbol{T}^{A}\right), \quad \Delta(\boldsymbol{T})=\Delta_{A}\left(\boldsymbol{T}^{A}\right) .
$$

From this it follows that:

$$
\operatorname{Cov}\left(\Gamma_{A}\left(\boldsymbol{T}^{A}\right), \Delta_{A}\left(\boldsymbol{T}^{A}\right)\right)=\operatorname{Cov}(\Gamma(\boldsymbol{T}), \Delta(\boldsymbol{T})) \geq 0
$$

where the inequality follows from the definition because we have assumed that T_{1}, \ldots, T_{n} is a set of associated random variables. Hence, (i) is proved.

Associated random variables (cont.)

To prove (ii) we let T be a random variable, and let Γ, Δ be arbitrary, binary functions which are non-decreasing in T. Then, since Γ, Δ are binary and non-decreasing in T, there are only two possible cases:

CASE 1. $\Gamma(T) \leq \Delta(T)$ for all T,
CASE 2. $\Gamma(T) \geq \Delta(T)$ for all T.
We consider Case 1 only, as Case 2 can be handled similarly. Then, we have:

$$
\begin{aligned}
\operatorname{Cov}(\Gamma(T), \Delta(T)) & =E[\Gamma(T) \Delta(T)]-E[\Gamma(T)] E[\Delta(T)] \\
& =E[\Gamma(T)]-E[\Gamma(T)] E[\Delta(T)] \\
& =E[\Gamma(T)](1-E[\Delta(T)]) \geq 0,
\end{aligned}
$$

where the second equality follows from the fact that we are in case 1. The last inequality holds because $\Gamma(T), \Delta(T) \in\{0,1\}$ for all T. Hence, (ii) is proved as well.

Associated random variables (cont.)

To prove (iii) we let T_{1}, \ldots, T_{n} be associated, and let $\boldsymbol{T}=\left(T_{1}, \ldots, T_{n}\right)$. Moreover, we let $S_{i}=f_{i}(\boldsymbol{T}), i=1, \ldots, m$, where f_{1}, \ldots, f_{m} are non-decreasing functions, and let $\boldsymbol{S}=\left(S_{1}, \ldots, S_{m}\right)$.
Finally, let $\Gamma=\Gamma(\boldsymbol{S})$ and $\Delta=\Delta(\boldsymbol{S})$ be binary non-decreasing functions. Then $\Gamma(\boldsymbol{S})=\Gamma\left(f_{1}(\boldsymbol{T}), \ldots, f_{m}(\boldsymbol{T})\right)$ and $\Delta(\boldsymbol{S})=\Delta\left(f_{1}(\boldsymbol{T}), \ldots, f_{m}(\boldsymbol{T})\right)$ are non-decreasing functions of \boldsymbol{T} as well.
Hence, by the definition it follows that:

$$
\operatorname{Cov}(\Gamma(\boldsymbol{S}), \Delta(\boldsymbol{S}))=\operatorname{Cov}\left(\Gamma\left(f_{1}(\boldsymbol{T}), \ldots, f_{m}(\boldsymbol{T})\right), \Delta\left(f_{1}(\boldsymbol{T}), \ldots, f_{m}(\boldsymbol{T})\right)\right) \geq 0
$$

Hence, we conclude that S_{1}, \ldots, S_{m} are associated as well.

Associated random variables (cont.)

To prove (iv) we let \boldsymbol{X} and \boldsymbol{Y} be two vectors of associated random variables, and assume that \boldsymbol{X} and \boldsymbol{Y} are independent of each other. Moreover, we assume that $\Gamma=\Gamma(\boldsymbol{X}, \boldsymbol{Y})$ and $\Delta=\Delta(\boldsymbol{X}, \boldsymbol{Y})$ are binary and non-decreasing functions in both \boldsymbol{X} and \boldsymbol{Y}. Then we have:

$$
\operatorname{Cov}(\Gamma, \Delta)=E[\operatorname{Cov}(\Gamma, \Delta \mid \boldsymbol{X})]+\operatorname{Cov}[E(\Gamma \mid \boldsymbol{X}), E(\Delta \mid \boldsymbol{X})] .
$$

We then note that for any $\boldsymbol{x}, \Gamma(\boldsymbol{x}, \boldsymbol{Y})$ and $\Delta(\boldsymbol{x}, \boldsymbol{Y})$ are binary non-decreasing functions of \boldsymbol{Y}. Hence, we must have:

$$
\operatorname{Cov}(\Gamma(\boldsymbol{X}, \boldsymbol{Y}), \Delta(\boldsymbol{X}, \boldsymbol{Y}) \mid \boldsymbol{X}=\boldsymbol{x})=\operatorname{Cov}(\Gamma(\boldsymbol{x}, \boldsymbol{Y}), \Delta(\boldsymbol{x}, \boldsymbol{Y})) \geq 0, \text { for all } \boldsymbol{x}
$$

where the equality follows since \boldsymbol{Y} is independent of \boldsymbol{X}, while the inequality follows since \boldsymbol{Y} is associated.

Associated random variables (cont.)

This implies that:

$$
E[\operatorname{Cov}(\Gamma, \Delta \mid \boldsymbol{X})] \geq 0
$$

Moreover, $E[\Gamma(\boldsymbol{x}, \boldsymbol{Y})]$ and $E[\Delta(\boldsymbol{x}, \boldsymbol{Y})]$ are non-decreasing (but not necessarily binary) functions of \boldsymbol{x}. Hence, since \boldsymbol{X} is associated, it follows by previous results that:

$$
\operatorname{Cov}[E(\Gamma \mid \boldsymbol{X}), E(\Delta \mid \boldsymbol{X})] \geq 0
$$

Note that since Γ and Δ are binary, we must have that $E(\Gamma \mid \boldsymbol{X}) \in[0,1]$ and $E(\Delta \mid \boldsymbol{X}) \in[0,1]$ with probability one. Thus, obviously $\operatorname{Cov}[E(\Gamma \mid \boldsymbol{X}), E(\Delta \mid \boldsymbol{X})]$ exists.

Combining these results implies that:

$$
\operatorname{Cov}(\Gamma, \Delta) \geq 0
$$

Thus, we conclude that $(\boldsymbol{X}, \boldsymbol{Y})$ is associated.

Associated random variables (cont.)

```
Theorem (Independence)
Let }\mp@subsup{T}{1}{},\ldots,\mp@subsup{T}{n}{}\mathrm{ be independent. Then, they are also associated.
```

PROOF: (Induction on n.) The result obviously holds for $n=1$ by property (ii).

Assume that the theorem holds for $n=m-1$. That is, $\left\{T_{1}, \ldots, T_{m-1}\right\}$ is a set of associated random variables.

Moreover, by property (ii), $\left\{T_{m}\right\}$ is associated as well.
By the assumption, these two sets are independent. Hence, it follows from property (iv) that their union $\left\{T_{1}, \ldots, T_{m-1}, T_{m}\right\}$ is a set of associated random variables.

Thus, the result is proved by induction.

Associated random variables (cont.)

Theorem (Absolute dependence)
Let T_{1}, \ldots, T_{n} be completely positively dependent random variables, i.e.,

$$
P\left(T_{1}=T_{2}=\ldots=T_{n}\right)=1 .
$$

Then they are associated.
PROOF: Let Γ, Δ be binary functions which are non-decreasing in each argument and let $\boldsymbol{T}=\left(T_{1}, \ldots, T_{n}\right)$ and $\boldsymbol{T}_{1}=\left(T_{1}, \ldots, T_{1}\right)$. By the assumption it follows that \boldsymbol{T} and \boldsymbol{T}_{1} must have the same distribution. Hence, we get that:

$$
\operatorname{Cov}(\Gamma(\boldsymbol{T}), \Delta(\boldsymbol{T}))=\operatorname{Cov}\left(\Gamma\left(\boldsymbol{T}_{1}\right), \Delta\left(\boldsymbol{T}_{1}\right)\right) \geq 0
$$

where the final inequality follows by property (ii) and the definition.

Associated random variables (cont.)

Theorem (Association of paths and cuts)

Let X_{1}, \ldots, X_{n} be the associated or independent component state variables of a monotone system ($C, \phi)$. Moreover, let the minimal path series structures of the system be $\left(P_{1}, \rho_{1}\right), \ldots,\left(P_{p}, \rho_{p}\right)$, where:

$$
\rho_{j}\left(\boldsymbol{X}^{P_{j}}\right)=\prod_{i \in P_{j}} X_{i}, \quad j=1, \ldots, p .
$$

Then, $\rho_{1}, \ldots, \rho_{p}$ are associated.
Similarly, let the minimal cut parallel structures of the system be $\left(K_{1}, \kappa_{1}\right), \ldots,\left(K_{k}, \kappa_{k}\right)$, where:

$$
\kappa_{j}\left(\boldsymbol{X}^{K_{j}}\right)=\coprod_{i \in K_{j}} X_{i}, \quad j=1, \ldots, k .
$$

Then, $\kappa_{1}, \ldots, \kappa_{k}$ are associated.

Associated random variables (cont.)

Theorem (Extension of property (iii))
Let $\boldsymbol{T}=\left(T_{1}, \ldots, T_{n}\right)$ be associated, and let:

$$
U_{i}=g_{i}(\boldsymbol{T}), \quad i=1, \ldots, m
$$

where $g_{i}, i=1, \ldots, m$ are non-increasing functions. Then, $\boldsymbol{U}=\left(U_{1}, \ldots, U_{m}\right)$ is associated.

Associated random variables (cont.)

PROOF: Let Γ, Δ be binary non-decreasing functions, and introduce $\boldsymbol{U}=\boldsymbol{g}(\boldsymbol{T})=\left(g_{1}(\boldsymbol{T}), \ldots, g_{m}(\boldsymbol{T})\right)$. Then let:

$$
\begin{aligned}
& \bar{\Gamma}(\boldsymbol{T})=1-\Gamma(\boldsymbol{g}(\boldsymbol{T}))=1-\Gamma(\boldsymbol{U}) \\
& \bar{\Delta}(\boldsymbol{T})=1-\Delta(\boldsymbol{g}(\boldsymbol{T}))=1-\Delta(\boldsymbol{U})
\end{aligned}
$$

It follows that $\bar{\Gamma}$ and $\bar{\Delta}$ are binary and non-decreasing in $T_{i}, i=1, \ldots, n$. Since \boldsymbol{T} is associated, it follows that:

$$
\begin{aligned}
\operatorname{Cov}(\Gamma(\boldsymbol{U}), \Delta(\boldsymbol{U}))) & =\operatorname{Cov}(1-\bar{\Gamma}(\boldsymbol{T}), 1-\bar{\Delta}(\boldsymbol{T})) \\
& =\operatorname{Cov}(1,1)+\operatorname{Cov}(1,-\bar{\Delta}(\boldsymbol{T}))+\operatorname{Cov}(-\bar{\Gamma}(\boldsymbol{T}), 1) \\
& +\operatorname{Cov}(-\bar{\Gamma}(\boldsymbol{T}),-\bar{\Delta}(\boldsymbol{T})) \\
& =\operatorname{Cov}(\bar{\Gamma}(\boldsymbol{T}), \bar{\Delta}(\boldsymbol{T})) \geq 0 .
\end{aligned}
$$

Hence, we conclude that \boldsymbol{U} is associated.

Associated random variables (cont.)

Theorem (Bivariate association)
Let X and Y be two binary random variables. Then, X and Y are associated if and only if

$$
\operatorname{Cov}(X, Y) \geq 0
$$

PROOF: Assume first that X and Y are associated. We may then choose $\Gamma(X, Y)=X$ and $\Delta(X, Y)=Y$.

Since obviously Γ and Δ are binary and non-decreasing functions, it follows by definition that $\operatorname{Cov}(X, Y)=\operatorname{Cov}(\Gamma, \Delta) \geq 0$.

Associated random variables (cont.)

Assume conversely that $\operatorname{Cov}(X, Y) \geq 0$. We want to prove that this implies that $\operatorname{Cov}(\Gamma(X, Y), \Delta(X, Y)) \geq 0$ for all binary non-decreasing functions, Γ and Δ.

The only choices for Γ and Δ are :

$$
\Gamma_{1} \equiv 0, \quad \Gamma_{2}=X \cdot Y, \quad \Gamma_{3}=X, \quad \Gamma_{4}=Y, \quad \Gamma_{5}=X \amalg Y, \quad \Gamma_{6} \equiv 1 .
$$

These functions can be ordered as follows:

$$
\Gamma_{1} \leq \Gamma_{2} \leq\left\{\begin{array}{l}
\Gamma_{3} \\
\Gamma_{4}
\end{array}\right\} \leq \Gamma_{5} \leq \Gamma_{6} .
$$

Associated random variables (cont.)

Assume first that Γ and Δ from the set $\left\{\Gamma_{1}, \ldots, \Gamma_{6}\right\}$ such that $\Gamma(X, Y) \leq \Delta(X, Y)$. We then have:

$$
\begin{aligned}
\operatorname{Cov}(\Gamma, \Delta) & =E(\Gamma \cdot \Delta)-E(\Gamma) \cdot E(\Delta) \\
& =E(\Gamma)-E(\Gamma) \cdot E(\Delta)=E(\Gamma)[1-E(\Delta)] \geq 0 .
\end{aligned}
$$

The only possibility left is $\Gamma=\Gamma_{3}=X$ and $\Delta=\Gamma_{4}=Y$. However, in this case we get that:

$$
\operatorname{Cov}(\Gamma, \Delta)=\operatorname{Cov}(X, Y) \geq 0,
$$

where the last inequality follows by the assumption. Hence, we conclude that $\operatorname{Cov}(\Gamma, \Delta) \geq 0$ for all binary non-decreasing functions, and thus the result is proved.

Section 6.2

Upper and lower bounds for the reliability of monotone systems

Associated random variables

Definition (Associated random variables)
Let T_{1}, \ldots, T_{n} be random variables, and let $\boldsymbol{T}=\left(T_{1}, \ldots, T_{n}\right)$. We say that
T_{1}, \ldots, T_{n} are associated if

$$
\operatorname{Cov}(\Gamma(\boldsymbol{T}), \Delta(\boldsymbol{T})) \geq 0
$$

for all binary non-decreasing functions Γ and Δ.

NOTE: We only require $\operatorname{Cov}(\Gamma(\boldsymbol{T}), \Delta(\boldsymbol{T})) \geq 0$ for all binary non-decreasing functions.

Associated random variables (cont.)

Theorem (Generalized covariance property)
Let T_{1}, \ldots, T_{n} be associated random variables, and f and g functions which are non-decreasing in each argument such that $\operatorname{Cov}(f(\boldsymbol{T}), g(\boldsymbol{T}))$ exists, i.e.,

$$
E[|f(\boldsymbol{T})|]<\infty, E[|g(\boldsymbol{T})|]<\infty, E[|f(\boldsymbol{T}) g(\boldsymbol{T})|]<\infty
$$

Then we have:

$$
\operatorname{Cov}(f(\boldsymbol{T}), g(\boldsymbol{T})) \geq 0
$$

Bounds for the system reliability

Theorem (6.2.1)
Let T_{1}, \ldots, T_{n} be associated random variables such that $0 \leq T_{i} \leq 1$, $i=1, \ldots, n$. We then have:

$$
\begin{aligned}
& E\left[\prod_{i=1}^{n} T_{i}\right] \geq \prod_{i=1}^{n} E\left[T_{i}\right] \\
& E\left[\coprod_{i=1}^{n} T_{i}\right] \leq \coprod_{i=1}^{n} E\left[T_{i}\right]
\end{aligned}
$$

Bounds for the system reliability (cont.)

PROOF: Note that since $0 \leq T_{i} \leq 1$, both T_{i} and $S_{i}=1-T_{i}$ are non-negative random variables, $i=1, \ldots, n$. Hence, the product functions $\prod_{i=j}^{n} T_{i}$ and $\prod_{i=j}^{n} s_{i}$ are non-decreasing in each argument, $j=1, \ldots, n$.

By using the generalized covariance property, we find:

$$
E\left[\prod_{i=1}^{n} T_{i}\right]-E\left[T_{1}\right] E\left[\prod_{i=2}^{n} T_{i}\right]=\operatorname{Cov}\left(T_{1}, \prod_{i=2}^{n} T_{i}\right) \geq 0
$$

since the product function is non-decreasing in each argument.
This implies that:

$$
E\left[\prod_{i=1}^{n} T_{i}\right] \geq E\left[T_{1}\right] E\left[\prod_{i=2}^{n} T_{i}\right]
$$

By repeated use of this inequality, we get the first inequality.

Bounds for the system reliability (cont.)

From the extension of property (iii), S_{1}, \ldots, S_{n} are associated random variables. Moreover, $0 \leq S_{i} \leq 1, i=1, \ldots, n$, so we can apply the first inequality to these variables.
From this it follows that:

$$
\begin{aligned}
E\left[\prod_{i=1}^{n} T_{i}\right] & =1-E\left[\prod_{i=1}^{n}\left(1-T_{i}\right)\right]=1-E\left[\prod_{i=1}^{n} S_{i}\right] \\
& \leq 1-\prod_{i=1}^{n} E\left(S_{i}\right)=1-\prod_{i=1}^{n}\left(1-E\left[T_{i}\right]\right) \\
& =\coprod_{i=1}^{n} E\left[T_{i}\right]
\end{aligned}
$$

so the second inequality is proved as well.

Bounds for the system reliability (cont.)

We apply the theorem to the component state variables X_{1}, \ldots, X_{n} :

- The first inequality says that for a series structure of associated components, an incorrect assumption of independence will lead to an underestimation of the system reliability.
- The second inequality says that for a parallel structure, an incorrect assumption of independence between the components will lead to an overestimation of the system reliability.

Since most systems are not purely series or purely parallel, we conclude that for an arbitrary structure, we cannot say for certain what the consequences of an incorrect assumption of independence will be.

Fortunately, it is still possible to obtain bounds on the system reliability.

