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Section 5.3

The Barlow-Proschan measure of reliability importance
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The Barlow-Proschan measure of reliability
importance

Definition (Barlow-Proschan measure)

Let (C, φ) be a non-trivial binary monotone system where C = {1, . . . ,n}.
Moreover, let Ti denote the lifetime of component i, i ∈ C, and let S denote
the lifetime of the system.

The Barlow-Proschan measure of the reliability importance of component
i ∈ C is defined as:

I(i)B−P = P(Component i fails at the same time as the system)

= P(Ti = S).
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The Barlow-Proschan measure of reliability
importance (cont.)

Theorem (Probability of system failure)

Let (C, φ) be a non-trivial binary monotone system where C = {1, . . . ,n}.
Moreover, let Ti denote the lifetime of component i, i ∈ C, and let S denote
the lifetime of the system.

Assume that T1, . . . ,Tn are independent and absolutely continuously
distributed.

Then S is absolutely continuously distributed as well, and we have:

n∑
i=1

I(i)B−P = 1.
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The Barlow-Proschan measure of reliability
importance (cont.)

Theorem (Integral formula for the Barlow-Proschan measure)

Let (C, φ) be a non-trivial binary monotone system where C = {1, . . . ,n}, and
let Ti denote the lifetime of component i, i ∈ C.

Assume that T1, . . . ,Tn are independent, absolutely continuously distributed
with densities f1, . . . , fn respectively. Then, we have:

I(i)B−P =

∫ ∞
0

I(i)B (t)fi (t)dt ,

where I(i)B (t) denotes the Birnbaum measure of the reliability importance of
component i at time t.
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Section 5.4

The Natvig measure of reliability importance
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The Natvig measure of reliability importance

The Barlow-Proschan measure: Components which have long
lifetimes compared to the system lifetime, are the most important
components.

The Natvig measure: Components which greatly reduce the remaining
system lifetime by failing, are the most important components.
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The Natvig measure of reliability importance (cont.)

Definition (The Natvig measure)

Let (C, φ) be a non-trivial binary monotone system where C = {1, . . . ,n}.
Moreover, for i ∈ C let:

Zi = Reduction of remaining lifetime for the system due to i failing.

The Natvig measure for the reliability importance of component i , denoted I(i)N ,
is defined by:

I(i)N =
E [Zi ]∑n
j=1 E [Zj ]

where we assume that E [Zi ] is finite.
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The Natvig measure of reliability importance (cont.)

It is easy to show that 0 ≤ I(i)N ≤ 1 for all i ∈ C, and that
∑n

i=1 I(i)N = 1.

We also have the following theorem:

Theorem (Integral formula for the Natvig measure)

Let (C, φ) be a binary monotone system where C = {1, . . . ,n}, and where the
components are independent and their lifetimes, T1, . . . ,Tn are absolutely
continuously distributed. Then we have:

E [Zi ] =

∫ ∞
0

F̄i (t)(− ln(F̄i (t)))I(i)B (t)dt , i ∈ C,

where F̄i (t) = P(Ti > t) for all i ∈ C.
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The Natvig measure of reliability importance (cont.)

Example: Assume that fi (t) = λie−λi t for i ∈ C. Then for all i ∈ C we have:

F̄i (t) =

∫ ∞
t

fi (u)du = e−λi t

Hence, we get that:

F̄i (t)(− ln(F̄i (t))) = λi t · e−λi t = t · fi (t)

Thus, in this case we have:

I(i)N ∝ E [Zi ] =

∫ ∞
0

I(i)B (t)t · fi (t)dt , i ∈ C

At the same time:

I(i)B−P =

∫ ∞
0

I(i)B (t)fi (t)dt .
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The Natvig measure of reliability importance (cont.)

Conclusion: When the component lifetimes are independent and
exponentially distributed, the Natvig measure puts more weight on later points
of time than early points of time compared to the Barlow-Proschan measure.

A. B. Huseby & K. R. Dahl (Univ. of Oslo) Lecture 11 11 / 36



Chapter 6

Association and bounds for the system reliability
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Section 6.1

Associated random variables
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Associated random variables

Definition (Associated random variables)

Let T1, . . . ,Tn be random variables, and let T = (T1, . . . ,Tn). We say that
T1, . . . ,Tn are associated if

Cov(Γ(T ),∆(T )) ≥ 0,

for all binary non-decreasing functions Γ and ∆.

NOTE: We only require Cov(Γ(T ),∆(T )) ≥ 0 for all binary non-decreasing
functions.
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Associated random variables (cont.)

Theorem (Generalized covariance property)

Let T1, . . . ,Tn be associated random variables, and f and g functions which
are non-decreasing in each argument such that Cov(f (T ),g(T )) exists, i.e.,

E [|f (T )|] <∞,E [|g(T )|] <∞,E [|f (T )g(T )|] <∞.

Then we have:
Cov(f (T ),g(T )) ≥ 0.
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Associated random variables (cont.)

Theorem (Properties of Associated variables)

Associated random variables have the following properties:

(i) Any subset of a set of associated random variables also consists of
associated random variables.

(ii) A single random variable is always associated.

(iii) Non-decreasing functions of associated random variables are associated.

(iv) If two sets of associated random variables are independent, then their
union is a set of associated random variables.
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Associated random variables (cont.)

We note that (i) follows from (iii). However, we can also prove this property
directly:

Let T1, . . . ,Tn be a set of associated random variables, and let
A ⊂ {1, . . . ,n}. We would like to prove that {Ti}i∈A is a set of associated
random variables. To do so, let ΓA, ∆A be arbitrary, binary functions which are
non-decreasing in all of their arguments Ti , i ∈ A. We then define:

Γ(T ) = ΓA(T A), ∆(T ) = ∆A(T A).

From this it follows that:

Cov(ΓA(T A),∆A(T A)) = Cov(Γ(T ),∆(T )) ≥ 0,

where the inequality follows from the definition because we have assumed
that T1, . . . ,Tn is a set of associated random variables. Hence, (i) is proved.
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Associated random variables (cont.)

To prove (ii) we let T be a random variable, and let Γ,∆ be arbitrary, binary
functions which are non-decreasing in T . Then, since Γ,∆ are binary and
non-decreasing in T , there are only two possible cases:

CASE 1. Γ(T ) ≤ ∆(T ) for all T ,

CASE 2. Γ(T ) ≥ ∆(T ) for all T .

We consider Case 1 only, as Case 2 can be handled similarly. Then, we have:

Cov(Γ(T ),∆(T )) = E [Γ(T )∆(T )]− E [Γ(T )]E [∆(T )]

= E [Γ(T )]− E [Γ(T )]E [∆(T )]

= E [Γ(T )](1− E [∆(T )]) ≥ 0,

where the second equality follows from the fact that we are in case 1. The last
inequality holds because Γ(T ),∆(T ) ∈ {0,1} for all T . Hence, (ii) is proved
as well.

A. B. Huseby & K. R. Dahl (Univ. of Oslo) Lecture 11 18 / 36



Associated random variables (cont.)

To prove (iii) we let T1, . . . ,Tn be associated, and let T = (T1, . . . ,Tn).
Moreover, we let Si = fi (T ), i = 1, . . . ,m, where f1, . . . , fm are non-decreasing
functions, and let S = (S1, . . . ,Sm).

Finally, let Γ = Γ(S) and ∆ = ∆(S) be binary non-decreasing functions. Then
Γ(S) = Γ(f1(T ), . . . , fm(T )) and ∆(S) = ∆(f1(T ), . . . , fm(T )) are
non-decreasing functions of T as well.

Hence, by the definition it follows that:

Cov(Γ(S),∆(S)) = Cov(Γ(f1(T ), . . . , fm(T )),∆(f1(T ), . . . , fm(T ))) ≥ 0.

Hence, we conclude that S1, . . . ,Sm are associated as well.
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Associated random variables (cont.)

To prove (iv) we let X and Y be two vectors of associated random variables,
and assume that X and Y are independent of each other. Moreover, we
assume that Γ = Γ(X ,Y ) and ∆ = ∆(X ,Y ) are binary and non-decreasing
functions in both X and Y . Then we have:

Cov(Γ,∆) = E [Cov(Γ,∆|X )] + Cov[E(Γ|X ),E(∆|X )].

We then note that for any x , Γ(x ,Y ) and ∆(x ,Y ) are binary non-decreasing
functions of Y . Hence, we must have:

Cov(Γ(X ,Y ),∆(X ,Y )|X = x) = Cov(Γ(x ,Y ),∆(x ,Y )) ≥ 0, for all x ,

where the equality follows since Y is independent of X , while the inequality
follows since Y is associated.
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Associated random variables (cont.)

This implies that:
E [Cov(Γ,∆|X )] ≥ 0.

Moreover, E [Γ(x ,Y )] and E [∆(x ,Y )] are non-decreasing (but not necessarily
binary) functions of x . Hence, since X is associated, it follows by previous
results that:

Cov[E(Γ|X ),E(∆|X )] ≥ 0.

Note that since Γ and ∆ are binary, we must have that E(Γ|X ) ∈ [0,1] and
E(∆|X ) ∈ [0,1] with probability one. Thus, obviously Cov[E(Γ|X ),E(∆|X )]
exists.

Combining these results implies that:

Cov(Γ,∆) ≥ 0.

Thus, we conclude that (X ,Y ) is associated.
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Associated random variables (cont.)

Theorem (Independence)

Let T1, . . . ,Tn be independent. Then, they are also associated.

PROOF: (Induction on n.) The result obviously holds for n = 1 by property
(ii).

Assume that the theorem holds for n = m − 1. That is, {T1, . . . ,Tm−1} is a set
of associated random variables.

Moreover, by property (ii), {Tm} is associated as well.

By the assumption, these two sets are independent. Hence, it follows from
property (iv) that their union {T1, . . . ,Tm−1,Tm} is a set of associated random
variables.

Thus, the result is proved by induction.
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Associated random variables (cont.)

Theorem (Absolute dependence)

Let T1, . . . ,Tn be completely positively dependent random variables, i.e.,

P(T1 = T2 = . . . = Tn) = 1.

Then they are associated.

PROOF: Let Γ,∆ be binary functions which are non-decreasing in each
argument and let T = (T1, . . . ,Tn) and T 1 = (T1, . . . ,T1). By the assumption
it follows that T and T 1 must have the same distribution. Hence, we get that:

Cov(Γ(T ),∆(T )) = Cov(Γ(T 1),∆(T 1)) ≥ 0

where the final inequality follows by property (ii) and the definition.
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Associated random variables (cont.)

Theorem (Association of paths and cuts)

Let X1, . . . ,Xn be the associated or independent component state variables of
a monotone system (C, φ). Moreover, let the minimal path series structures of
the system be (P1, ρ1), . . . , (Pp, ρp), where:

ρj (X Pj ) =
∏
i∈Pj

Xi , j = 1, . . . ,p.

Then, ρ1, . . . , ρp are associated.

Similarly, let the minimal cut parallel structures of the system be
(K1, κ1), . . . , (Kk , κk ), where:

κj (X Kj ) =
∐
i∈Kj

Xi , j = 1, . . . , k .

Then, κ1, . . . , κk are associated.
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Associated random variables (cont.)

Theorem (Extension of property (iii))

Let T = (T1, . . . ,Tn) be associated, and let:

Ui = gi (T ), i = 1, . . . ,m,

where gi , i = 1, . . . ,m are non-increasing functions. Then, U = (U1, . . . ,Um)
is associated.
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Associated random variables (cont.)

PROOF: Let Γ,∆ be binary non-decreasing functions, and introduce
U = g(T ) = (g1(T ), . . . ,gm(T )). Then let:

Γ̄(T ) = 1− Γ(g(T )) = 1− Γ(U)

∆̄(T ) = 1−∆(g(T )) = 1−∆(U)

It follows that Γ̄ and ∆̄ are binary and non-decreasing in Ti , i = 1, . . . ,n.
Since T is associated, it follows that:

Cov(Γ(U),∆(U))) = Cov(1− Γ̄(T ),1− ∆̄(T ))

= Cov(1,1) + Cov(1,−∆̄(T )) + Cov(−Γ̄(T ),1)

+ Cov(−Γ̄(T ),−∆̄(T ))

= Cov(Γ̄(T ), ∆̄(T )) ≥ 0.

Hence, we conclude that U is associated.
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Associated random variables (cont.)

Theorem (Bivariate association)

Let X and Y be two binary random variables. Then, X and Y are associated
if and only if

Cov(X ,Y ) ≥ 0.

PROOF: Assume first that X and Y are associated. We may then choose
Γ(X ,Y ) = X and ∆(X ,Y ) = Y .

Since obviously Γ and ∆ are binary and non-decreasing functions, it follows
by definition that Cov(X ,Y ) = Cov(Γ,∆) ≥ 0.
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Associated random variables (cont.)

Assume conversely that Cov(X ,Y ) ≥ 0. We want to prove that this implies
that Cov(Γ(X ,Y ),∆(X ,Y )) ≥ 0 for all binary non-decreasing functions, Γ and
∆.

The only choices for Γ and ∆ are :

Γ1 ≡ 0, Γ2 = X · Y , Γ3 = X , Γ4 = Y , Γ5 = X q Y , Γ6 ≡ 1.

These functions can be ordered as follows:

Γ1 ≤ Γ2 ≤
{

Γ3
Γ4

}
≤ Γ5 ≤ Γ6.
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Associated random variables (cont.)

Assume first that Γ and ∆ from the set {Γ1, . . . , Γ6} such that
Γ(X ,Y ) ≤ ∆(X ,Y ). We then have:

Cov(Γ,∆) = E(Γ ·∆)− E(Γ) · E(∆)

= E(Γ)− E(Γ) · E(∆) = E(Γ)[1− E(∆)] ≥ 0.

The only possibility left is Γ = Γ3 = X and ∆ = Γ4 = Y . However, in this case
we get that:

Cov(Γ,∆) = Cov(X ,Y ) ≥ 0,

where the last inequality follows by the assumption. Hence, we conclude that
Cov(Γ,∆) ≥ 0 for all binary non-decreasing functions, and thus the result is
proved.
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Section 6.2

Upper and lower bounds for the reliability of monotone
systems
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Associated random variables

Definition (Associated random variables)

Let T1, . . . ,Tn be random variables, and let T = (T1, . . . ,Tn). We say that
T1, . . . ,Tn are associated if

Cov(Γ(T ),∆(T )) ≥ 0,

for all binary non-decreasing functions Γ and ∆.

NOTE: We only require Cov(Γ(T ),∆(T )) ≥ 0 for all binary non-decreasing
functions.
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Associated random variables (cont.)

Theorem (Generalized covariance property)

Let T1, . . . ,Tn be associated random variables, and f and g functions which
are non-decreasing in each argument such that Cov(f (T ),g(T )) exists, i.e.,

E [|f (T )|] <∞,E [|g(T )|] <∞,E [|f (T )g(T )|] <∞.

Then we have:
Cov(f (T ),g(T )) ≥ 0.
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Bounds for the system reliability

Theorem (6.2.1)

Let T1, . . . ,Tn be associated random variables such that 0 ≤ Ti ≤ 1,
i = 1, . . . ,n. We then have:

E [
n∏

i=1

Ti ] ≥
n∏

i=1

E [Ti ]

E [
n∐

i=1

Ti ] ≤
n∐

i=1

E [Ti ]
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Bounds for the system reliability (cont.)

PROOF: Note that since 0 ≤ Ti ≤ 1, both Ti and Si = 1− Ti are non-negative
random variables, i = 1, . . . ,n. Hence, the product functions

∏n
i=j Ti and∏n

i=j Si are non-decreasing in each argument, j = 1, . . . ,n.

By using the generalized covariance property, we find:

E [
n∏

i=1

Ti ]− E [T1]E [
n∏

i=2

Ti ] = Cov(T1,

n∏
i=2

Ti ) ≥ 0,

since the product function is non-decreasing in each argument.

This implies that:

E [
n∏

i=1

Ti ] ≥ E [T1]E [
n∏

i=2

Ti ].

By repeated use of this inequality, we get the first inequality.
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Bounds for the system reliability (cont.)

From the extension of property (iii), S1, . . . ,Sn are associated random
variables. Moreover, 0 ≤ Si ≤ 1, i = 1, . . . ,n, so we can apply the first
inequality to these variables.

From this it follows that:

E [
n∐

i=1

Ti ] = 1− E [
n∏

i=1

(1− Ti )] = 1− E [
n∏

i=1

Si ]

≤ 1−
n∏

i=1

E(Si ) = 1−
n∏

i=1

(1− E [Ti ])

=
n∐

i=1

E [Ti ],

so the second inequality is proved as well.
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Bounds for the system reliability (cont.)

We apply the theorem to the component state variables X1, . . . ,Xn:

The first inequality says that for a series structure of associated
components, an incorrect assumption of independence will lead to an
underestimation of the system reliability.

The second inequality says that for a parallel structure, an incorrect
assumption of independence between the components will lead to an
overestimation of the system reliability.

Since most systems are not purely series or purely parallel, we conclude that
for an arbitrary structure, we cannot say for certain what the consequences of
an incorrect assumption of independence will be.

Fortunately, it is still possible to obtain bounds on the system reliability.
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