STK3405 - Lecture 11

A. B. Huseby & K. R. Dahl

Department of Mathematics University of Oslo, Norway

э

イロト イヨト イヨト イヨト

The Barlow-Proschan measure of reliability importance

э

A. B. Huseby & K. R. Dahl (Univ. of Oslo)

The Barlow-Proschan measure of reliability importance

Definition (Barlow-Proschan measure)

Let (C, ϕ) be a non-trivial binary monotone system where $C = \{1, ..., n\}$. Moreover, let T_i denote the lifetime of component $i, i \in C$, and let S denote the lifetime of the system.

The Barlow-Proschan measure of the reliability importance of component $i \in C$ is defined as:

 $I_{B-P}^{(i)} = P(Component \ i \ fails \ at \ the \ same \ time \ as \ the \ system)$ $= P(T_i = S).$

The Barlow-Proschan measure of reliability importance (cont.)

Theorem (Probability of system failure)

Let (C, ϕ) be a non-trivial binary monotone system where $C = \{1, ..., n\}$. Moreover, let T_i denote the lifetime of component $i, i \in C$, and let S denote the lifetime of the system.

Assume that T_1, \ldots, T_n are independent and absolutely continuously distributed.

Then S is absolutely continuously distributed as well, and we have:

$$\sum_{i=1}^{n} I_{B-P}^{(i)} = 1.$$

The Barlow-Proschan measure of reliability importance (cont.)

Theorem (Integral formula for the Barlow-Proschan measure)

Let (C, ϕ) be a non-trivial binary monotone system where $C = \{1, ..., n\}$, and let T_i denote the lifetime of component $i, i \in C$.

Assume that T_1, \ldots, T_n are independent, absolutely continuously distributed with densities f_1, \ldots, f_n respectively. Then, we have:

$$I_{B-P}^{(i)} = \int_0^\infty I_B^{(i)}(t) f_i(t) dt,$$

where $l_B^{(i)}(t)$ denotes the Birnbaum measure of the reliability importance of component *i* at time *t*.

A. B. Huseby & K. R. Dahl (Univ. of Oslo)

- The Barlow-Proschan measure: Components which have long lifetimes compared to the system lifetime, are the most important components.
- The Natvig measure: Components which greatly reduce the remaining system lifetime by failing, are the most important components.

Definition (The Natvig measure)

Let (C, ϕ) be a non-trivial binary monotone system where $C = \{1, ..., n\}$. Moreover, for $i \in C$ let:

 Z_i = Reduction of remaining lifetime for the system due to *i* failing.

The Natvig measure for the reliability importance of component *i*, denoted $I_N^{(I)}$, is defined by:

$$I_N^{(i)} = \frac{E[Z_i]}{\sum_{j=1}^n E[Z_j]}$$

where we assume that $E[Z_i]$ is finite.

It is easy to show that $0 \le I_N^{(i)} \le 1$ for all $i \in C$, and that $\sum_{i=1}^n I_N^{(i)} = 1$.

We also have the following theorem:

Theorem (Integral formula for the Natvig measure)

Let (C, ϕ) be a binary monotone system where $C = \{1, ..., n\}$, and where the components are independent and their lifetimes, $T_1, ..., T_n$ are absolutely continuously distributed. Then we have:

$$E[Z_i] = \int_0^\infty ar{F}_i(t)(-\ln(ar{F}_i(t)))I_B^{(i)}(t)dt, \quad i \in \mathcal{C},$$

where $\overline{F}_i(t) = P(T_i > t)$ for all $i \in C$.

Example: Assume that $f_i(t) = \lambda_i e^{-\lambda_i t}$ for $i \in C$. Then for all $i \in C$ we have:

$$\bar{F}_i(t) = \int_t^\infty f_i(u) du = e^{-\lambda_i t}$$

Hence, we get that:

$$\overline{F}_i(t)(-\ln(\overline{F}_i(t))) = \lambda_i t \cdot e^{-\lambda_i t} = t \cdot f_i(t)$$

Thus, in this case we have:

$$I_N^{(i)} \propto E[Z_i] = \int_0^\infty I_B^{(i)}(t)t \cdot f_i(t)dt, \quad i \in C$$

At the same time:

$$I_{B-P}^{(i)} = \int_0^\infty I_B^{(i)}(t) f_i(t) dt.$$

A. B. Huseby & K. R. Dahl (Univ. of Oslo)

Conclusion: When the component lifetimes are independent and exponentially distributed, the Natvig measure puts more weight on later points of time than early points of time compared to the Barlow-Proschan measure.

Association and bounds for the system reliability

A. B. Huseby & K. R. Dahl (Univ. of Oslo)

Associated random variables

A. B. Huseby & K. R. Dahl (Univ. of Oslo)

Associated random variables

Definition (Associated random variables)

Let T_1, \ldots, T_n be random variables, and let $\mathbf{T} = (T_1, \ldots, T_n)$. We say that T_1, \ldots, T_n are associated if

 $\operatorname{Cov}(\Gamma(\mathbf{T}), \Delta(\mathbf{T})) \geq 0,$

for all binary non-decreasing functions Γ and Δ .

NOTE: We only require $Cov(\Gamma(\mathbf{T}), \Delta(\mathbf{T})) \ge 0$ for all *binary* non-decreasing functions.

Theorem (Generalized covariance property)

Let T_1, \ldots, T_n be associated random variables, and f and g functions which are non-decreasing in each argument such that $Cov(f(\mathbf{T}), g(\mathbf{T}))$ exists, i.e.,

 $E[|f(T)|] < \infty, E[|g(T)|] < \infty, E[|f(T)g(T)|] < \infty.$

Then we have:

 $\operatorname{Cov}(f(\mathbf{T}), g(\mathbf{T})) \geq 0.$

< 回 > < 三 > < 三 >

Theorem (Properties of Associated variables)

Associated random variables have the following properties:

(*i*) Any subset of a set of associated random variables also consists of associated random variables.

(ii) A single random variable is always associated.

(iii) Non-decreasing functions of associated random variables are associated.

(*iv*) If two sets of associated random variables are independent, then their union is a set of associated random variables.

We note that (*i*) follows from (*iii*). However, we can also prove this property directly:

Let T_1, \ldots, T_n be a set of associated random variables, and let $A \subset \{1, \ldots, n\}$. We would like to prove that $\{T_i\}_{i \in A}$ is a set of associated random variables. To do so, let Γ_A , Δ_A be arbitrary, binary functions which are non-decreasing in all of their arguments T_i , $i \in A$. We then define:

$$\Gamma(\mathbf{T}) = \Gamma_{\mathcal{A}}(\mathbf{T}^{\mathcal{A}}), \quad \Delta(\mathbf{T}) = \Delta_{\mathcal{A}}(\mathbf{T}^{\mathcal{A}}).$$

From this it follows that:

$$\operatorname{Cov}(\Gamma_{\mathcal{A}}(\boldsymbol{T}^{\mathcal{A}}), \Delta_{\mathcal{A}}(\boldsymbol{T}^{\mathcal{A}})) = \operatorname{Cov}(\Gamma(\boldsymbol{T}), \Delta(\boldsymbol{T})) \geq 0,$$

where the inequality follows from the definition because we have assumed that T_1, \ldots, T_n is a set of associated random variables. Hence, (*i*) is proved.

To prove (*ii*) we let *T* be a random variable, and let Γ , Δ be arbitrary, binary functions which are non-decreasing in *T*. Then, since Γ , Δ are binary and non-decreasing in *T*, there are only two possible cases:

```
CASE 1. \Gamma(T) \leq \Delta(T) for all T,
```

```
CASE 2. \Gamma(T) \ge \Delta(T) for all T.
```

We consider Case 1 only, as Case 2 can be handled similarly. Then, we have:

$$Cov(\Gamma(T), \Delta(T)) = E[\Gamma(T)\Delta(T)] - E[\Gamma(T)]E[\Delta(T)]$$

= $E[\Gamma(T)] - E[\Gamma(T)]E[\Delta(T)]$
= $E[\Gamma(T)](1 - E[\Delta(T)]) \ge 0,$

where the second equality follows from the fact that we are in case 1. The last inequality holds because $\Gamma(T), \Delta(T) \in \{0, 1\}$ for all *T*. Hence, (*ii*) is proved as well.

To prove (*iii*) we let T_1, \ldots, T_n be associated, and let $\mathbf{T} = (T_1, \ldots, T_n)$. Moreover, we let $S_i = f_i(\mathbf{T}), i = 1, \ldots, m$, where f_1, \ldots, f_m are non-decreasing functions, and let $\mathbf{S} = (S_1, \ldots, S_m)$.

Finally, let $\Gamma = \Gamma(\mathbf{S})$ and $\Delta = \Delta(\mathbf{S})$ be binary non-decreasing functions. Then $\Gamma(\mathbf{S}) = \Gamma(f_1(\mathbf{T}), \dots, f_m(\mathbf{T}))$ and $\Delta(\mathbf{S}) = \Delta(f_1(\mathbf{T}), \dots, f_m(\mathbf{T}))$ are non-decreasing functions of \mathbf{T} as well.

Hence, by the definition it follows that:

 $\operatorname{Cov}(\Gamma(\boldsymbol{S}), \Delta(\boldsymbol{S})) = \operatorname{Cov}(\Gamma(f_1(\boldsymbol{T}), \dots, f_m(\boldsymbol{T})), \Delta(f_1(\boldsymbol{T}), \dots, f_m(\boldsymbol{T}))) \geq 0.$

Hence, we conclude that S_1, \ldots, S_m are associated as well.

To prove (*iv*) we let **X** and **Y** be two vectors of associated random variables, and assume that **X** and **Y** are independent of each other. Moreover, we assume that $\Gamma = \Gamma(X, Y)$ and $\Delta = \Delta(X, Y)$ are binary and non-decreasing functions in both **X** and **Y**. Then we have:

$$\operatorname{Cov}(\Gamma, \Delta) = E[\operatorname{Cov}(\Gamma, \Delta | \boldsymbol{X})] + \operatorname{Cov}[E(\Gamma | \boldsymbol{X}), E(\Delta | \boldsymbol{X})].$$

We then note that for any \mathbf{x} , $\Gamma(\mathbf{x}, \mathbf{Y})$ and $\Delta(\mathbf{x}, \mathbf{Y})$ are binary non-decreasing functions of \mathbf{Y} . Hence, we must have:

$$\operatorname{Cov}(\Gamma(\boldsymbol{X},\boldsymbol{Y}),\Delta(\boldsymbol{X},\boldsymbol{Y})|\boldsymbol{X}=\boldsymbol{x})=\operatorname{Cov}(\Gamma(\boldsymbol{x},\boldsymbol{Y}),\Delta(\boldsymbol{x},\boldsymbol{Y}))\geq0,\text{ for all }\boldsymbol{x},$$

where the equality follows since Y is independent of X, while the inequality follows since Y is associated.

This implies that:

 $E[\operatorname{Cov}(\Gamma, \Delta | \boldsymbol{X})] \ge 0.$

Moreover, $E[\Gamma(\mathbf{x}, \mathbf{Y})]$ and $E[\Delta(\mathbf{x}, \mathbf{Y})]$ are non-decreasing (but not necessarily binary) functions of \mathbf{x} . Hence, since \mathbf{X} is associated, it follows by previous results that:

 $\operatorname{Cov}[E(\Gamma|\boldsymbol{X}), E(\Delta|\boldsymbol{X})] \geq 0.$

Note that since Γ and Δ are binary, we must have that $E(\Gamma | \mathbf{X}) \in [0, 1]$ and $E(\Delta | \mathbf{X}) \in [0, 1]$ with probability one. Thus, obviously $Cov[E(\Gamma | \mathbf{X}), E(\Delta | \mathbf{X})]$ exists.

Combining these results implies that:

 $\operatorname{Cov}(\Gamma, \Delta) \geq 0.$

Thus, we conclude that (X, Y) is associated.

э

< 日 > < 同 > < 回 > < 回 > < □ > <

Theorem (Independence)

Let T_1, \ldots, T_n be independent. Then, they are also associated.

PROOF: (Induction on *n*.) The result obviously holds for n = 1 by property (*ii*).

Assume that the theorem holds for n = m - 1. That is, $\{T_1, \ldots, T_{m-1}\}$ is a set of associated random variables.

Moreover, by property (*ii*), $\{T_m\}$ is associated as well.

By the assumption, these two sets are independent. Hence, it follows from property (*iv*) that their union $\{T_1, \ldots, T_{m-1}, T_m\}$ is a set of associated random variables.

Thus, the result is proved by induction.

Theorem (Absolute dependence)

Let T_1, \ldots, T_n be completely positively dependent random variables, i.e.,

$$P(T_1=T_2=\ldots=T_n)=1.$$

Then they are associated.

PROOF: Let Γ , Δ be binary functions which are non-decreasing in each argument and let $\mathbf{T} = (T_1, \ldots, T_n)$ and $\mathbf{T}_1 = (T_1, \ldots, T_1)$. By the assumption it follows that \mathbf{T} and \mathbf{T}_1 must have the same distribution. Hence, we get that:

$$\operatorname{Cov}(\Gamma(\boldsymbol{T}), \Delta(\boldsymbol{T})) = \operatorname{Cov}(\Gamma(\boldsymbol{T}_1), \Delta(\boldsymbol{T}_1)) \geq 0$$

where the final inequality follows by property (*ii*) and the definition.

Theorem (Association of paths and cuts)

Let $X_1, ..., X_n$ be the associated or independent component state variables of a monotone system (C, ϕ) . Moreover, let the minimal path series structures of the system be $(P_1, \rho_1), ..., (P_p, \rho_p)$, where:

$$\rho_j(\boldsymbol{X}^{\boldsymbol{P}_j}) = \prod_{i \in \boldsymbol{P}_j} X_i, \quad j = 1, \dots, \boldsymbol{p}.$$

Then, ρ_1, \ldots, ρ_p are associated.

Similarly, let the minimal cut parallel structures of the system be $(K_1, \kappa_1), \ldots, (K_k, \kappa_k)$, where:

$$\kappa_j(\boldsymbol{X}^{K_j}) = \prod_{i \in K_j} X_i, \quad j = 1, \dots, k.$$

Then, $\kappa_1, \ldots, \kappa_k$ are associated.

Theorem (Extension of property (iii))

Let $\mathbf{T} = (T_1, \dots, T_n)$ be associated, and let:

$$U_i = g_i(\mathbf{T}), \quad i = 1, \ldots, m,$$

where g_i , i = 1, ..., m are non-increasing functions. Then, $\boldsymbol{U} = (U_1, ..., U_m)$ is associated.

イロト イ団ト イヨト イヨト

PROOF: Let Γ , Δ be binary non-decreasing functions, and introduce $\boldsymbol{U} = \boldsymbol{g}(\boldsymbol{T}) = (\boldsymbol{g}_1(\boldsymbol{T}), \dots, \boldsymbol{g}_m(\boldsymbol{T}))$. Then let:

$$ar{\Gamma}(T) = 1 - \Gamma(\boldsymbol{g}(T)) = 1 - \Gamma(\boldsymbol{U})$$

 $ar{\Delta}(T) = 1 - \Delta(\boldsymbol{g}(T)) = 1 - \Delta(\boldsymbol{U})$

It follows that $\overline{\Gamma}$ and $\overline{\Delta}$ are binary and non-decreasing in T_i , i = 1, ..., n. Since T is associated, it follows that:

$$Cov(\Gamma(\boldsymbol{U}), \Delta(\boldsymbol{U}))) = Cov(1 - \bar{\Gamma}(\boldsymbol{T}), 1 - \bar{\Delta}(\boldsymbol{T}))$$
$$= Cov(1, 1) + Cov(1, -\bar{\Delta}(\boldsymbol{T})) + Cov(-\bar{\Gamma}(\boldsymbol{T}), 1)$$
$$+ Cov(-\bar{\Gamma}(\boldsymbol{T}), -\bar{\Delta}(\boldsymbol{T}))$$

 $= \operatorname{Cov}(\overline{\Gamma}(\mathbf{T}), \overline{\Delta}(\mathbf{T})) \geq 0.$

Hence, we conclude that **U** is associated.

A. B. Huseby & K. R. Dahl (Univ. of Oslo)

< 日 > < 同 > < 回 > < 回 > < □ > <

Theorem (Bivariate association)

Let X and Y be two binary random variables. Then, X and Y are associated if and only if

 $\operatorname{Cov}(X, Y) \geq 0.$

PROOF: Assume first that X and Y are associated. We may then choose $\Gamma(X, Y) = X$ and $\Delta(X, Y) = Y$.

Since obviously Γ and Δ are binary and non-decreasing functions, it follows by definition that $Cov(X, Y) = Cov(\Gamma, \Delta) \ge 0$.

< 回 > < 三 > < 三 >

Assume conversely that $Cov(X, Y) \ge 0$. We want to prove that this implies that $Cov(\Gamma(X, Y), \Delta(X, Y)) \ge 0$ for all binary non-decreasing functions, Γ and Δ .

The only choices for Γ and Δ are :

$$\Gamma_1 \equiv 0, \quad \Gamma_2 = X \cdot Y, \quad \Gamma_3 = X, \quad \Gamma_4 = Y, \quad \Gamma_5 = X \amalg Y, \quad \Gamma_6 \equiv 1$$

These functions can be ordered as follows:

$$\Gamma_1 \leq \Gamma_2 \leq \left\{ \begin{array}{c} \Gamma_3 \\ \Gamma_4 \end{array} \right\} \leq \Gamma_5 \leq \Gamma_6.$$

Assume first that Γ and Δ from the set { $\Gamma_1, \ldots, \Gamma_6$ } such that $\Gamma(X, Y) \leq \Delta(X, Y)$. We then have:

$$Cov(\Gamma, \Delta) = E(\Gamma \cdot \Delta) - E(\Gamma) \cdot E(\Delta)$$
$$= E(\Gamma) - E(\Gamma) \cdot E(\Delta) = E(\Gamma)[1 - E(\Delta)] \ge 0$$

The only possibility left is $\Gamma = \Gamma_3 = X$ and $\Delta = \Gamma_4 = Y$. However, in this case we get that:

$$\operatorname{Cov}(\Gamma, \Delta) = \operatorname{Cov}(X, Y) \ge 0,$$

where the last inequality follows by the assumption. Hence, we conclude that $Cov(\Gamma, \Delta) \ge 0$ for all binary non-decreasing functions, and thus the result is proved.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Upper and lower bounds for the reliability of monotone systems

2

イロト イヨト イヨト イヨト

Associated random variables

Definition (Associated random variables)

Let T_1, \ldots, T_n be random variables, and let $\mathbf{T} = (T_1, \ldots, T_n)$. We say that T_1, \ldots, T_n are associated if

 $\operatorname{Cov}(\Gamma(\mathbf{T}), \Delta(\mathbf{T})) \geq 0,$

for all binary non-decreasing functions Γ and Δ .

NOTE: We only require $Cov(\Gamma(\mathbf{T}), \Delta(\mathbf{T})) \ge 0$ for all *binary* non-decreasing functions.

Theorem (Generalized covariance property)

Let T_1, \ldots, T_n be associated random variables, and f and g functions which are non-decreasing in each argument such that $Cov(f(\mathbf{T}), g(\mathbf{T}))$ exists, i.e.,

 $E[|f(T)|] < \infty, E[|g(T)|] < \infty, E[|f(T)g(T)|] < \infty.$

Then we have:

 $\operatorname{Cov}(f(\mathbf{T}), g(\mathbf{T})) \geq 0.$

< 回 > < 三 > < 三 >

Bounds for the system reliability

Theorem (6.2.1)

Let T_1, \ldots, T_n be associated random variables such that $0 \le T_i \le 1$, $i = 1, \ldots, n$. We then have:

$$E[\prod_{i=1}^{n} T_i] \ge \prod_{i=1}^{n} E[T_i]$$
$$E[\prod_{i=1}^{n} T_i] \le \prod_{i=1}^{n} E[T_i]$$

イロト イヨト イヨト イヨト

Bounds for the system reliability (cont.)

PROOF: Note that since $0 \le T_i \le 1$, both T_i and $S_i = 1 - T_i$ are non-negative random variables, i = 1, ..., n. Hence, the product functions $\prod_{i=j}^{n} T_i$ and $\prod_{i=j}^{n} S_i$ are non-decreasing in each argument, j = 1, ..., n.

By using the generalized covariance property, we find:

$$E[\prod_{i=1}^n T_i] - E[T_1]E[\prod_{i=2}^n T_i] = \operatorname{Cov}(T_1, \prod_{i=2}^n T_i) \ge 0,$$

since the product function is non-decreasing in each argument. This implies that:

$$E[\prod_{i=1}^n T_i] \geq E[T_1]E[\prod_{i=2}^n T_i].$$

By repeated use of this inequality, we get the first inequality.

(日)

Bounds for the system reliability (cont.)

From the extension of property (iii), S_1, \ldots, S_n are associated random variables. Moreover, $0 \le S_i \le 1$, $i = 1, \ldots, n$, so we can apply the first inequality to these variables.

From this it follows that:

$$E[\prod_{i=1}^{n} T_i] = 1 - E[\prod_{i=1}^{n} (1 - T_i)] = 1 - E[\prod_{i=1}^{n} S_i]$$

$$\leq 1 - \prod_{i=1}^{n} E(S_i) = 1 - \prod_{i=1}^{n} (1 - E[T_i])$$

$$= \prod_{i=1}^{n} E[T_i],$$

so the second inequality is proved as well.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Bounds for the system reliability (cont.)

We apply the theorem to the component state variables X_1, \ldots, X_n :

- The first inequality says that for a series structure of associated components, an incorrect assumption of independence will lead to an *underestimation* of the system reliability.
- The second inequality says that for a parallel structure, an incorrect assumption of independence between the components will lead to an *overestimation* of the system reliability.

Since most systems are not purely series or purely parallel, we conclude that for an arbitrary structure, we *cannot say for certain what the consequences of an incorrect assumption of independence will be.*

Fortunately, it is still possible to obtain bounds on the system reliability.

(日)