STK3405 – Lecture 12

A. B. Huseby & K. R. Dahl

Department of Mathematics University of Oslo, Norway

Associated random variables

Definition (Associated random variables)

Let T_1, \ldots, T_n be random variables, and let $\mathbf{T} = (T_1, \ldots, T_n)$. We say that T_1, \ldots, T_n are associated if

$$Cov(\Gamma(\mathbf{T}), \Delta(\mathbf{T})) \geq 0,$$

for all binary non-decreasing functions Γ and Δ .

NOTE: We only require $Cov(\Gamma(T), \Delta(T)) \ge 0$ for all *binary* non-decreasing functions.

Associated random variables (cont.)

Theorem (Properties of Associated variables)

Associated random variables have the following properties:

- (i) Any subset of a set of associated random variables also consists of associated random variables.
- (ii) A single random variable is always associated.
- (iii) Non-decreasing functions of associated random variables are associated.
- (iv) If two sets of associated random variables are independent, then their union is a set of associated random variables.

Associated random variables (cont.)

Theorem (Association of paths and cuts)

Let X_1, \ldots, X_n be the associated or independent component state variables of a monotone system (C, ϕ) . Moreover, let the minimal path series structures of the system be $(P_1, \rho_1), \ldots, (P_p, \rho_p)$, where:

$$\rho_j(\boldsymbol{X}^{P_j}) = \prod_{i \in P_j} X_i, \quad j = 1, \dots, p.$$

Then, ρ_1, \ldots, ρ_p are associated.

Similarly, let the minimal cut parallel structures of the system be $(K_1, \kappa_1), \ldots, (K_k, \kappa_k)$, where:

$$\kappa_j(\boldsymbol{X}^{K_j}) = \coprod_{i \in K_i} X_i, \quad j = 1, \dots, k.$$

Then, $\kappa_1, \ldots, \kappa_k$ are associated.

Bounds for the system reliability

Theorem (6.2.1)

Let $T_1, ..., T_n$ be associated random variables such that $0 \le T_i \le 1$, i = 1, ..., n. We then have:

$$E[\prod_{i=1}^n T_i] \ge \prod_{i=1}^n E[T_i]$$

$$E[\coprod_{i=1}^n T_i] \leq \coprod_{i=1}^n E[T_i]$$

In the next results we interpret T_i , i = 1, ..., n as the lifetimes of components in a binary monotone system.

Theorem (6.2.2)

Let T_1, \ldots, T_n be non-negative associated random variables. Then, for all t_i , $i = 1, \ldots, n$:

$$P[\bigcap_{i=1}^{n}(T_{i}>t_{i})]\geq\prod_{i=1}^{n}P[T_{i}>t_{i}],$$

$$P[\bigcap_{i=1}^{n}(T_{i}\leq t_{i})]\geq\prod_{i=1}^{n}P[T_{i}\leq t_{i}].$$

PROOF: Interpreting T_i as the lifetime of the ith component, we may introduce the binary component state process $\{X_i(t)\}, i = 1, ..., n$, where:

$$X_i(t) = \begin{cases} 1, & t < T_i \\ 0, & t \ge T_i. \end{cases}$$

In this we have plotted $X_i(t)$ as a function of $t \ge 0$ for a given value of T_i . The plot shows that $X_i(t)$ is a non-increasing function of t.

Alternatively, $X_i(t)$ can be plotted as a function of the lifetime T_i for a *fixed* point of time t. We see that $X_i(t)$ is a non-decreasing function of T_i .

Hence, since T_1, \ldots, T_n are assumed to be associated random variables, it follows that $X_1(t), \ldots, X_n(t)$ are associated for all $t \ge 0$.

Applying the first part of Theorem 6.2.1, we get:

$$P[\bigcap_{i=1}^{n} (T_{i} > t_{i})] = P[\bigcap_{i=1}^{n} (X_{i}(t_{i}) = 1)]$$

$$= P[\prod_{i=1}^{n} X_{i}(t_{i}) = 1] = E[\prod_{i=1}^{n} X_{i}(t_{i})]$$

$$\geq \prod_{i=1}^{n} E[X_{i}(t_{i})] = \prod_{i=1}^{n} P[X_{i}(t_{i}) = 1]$$

$$= \prod_{i=1}^{n} P[T_{i} > t_{i}],$$

and thus the first inequality is proved.

Applying the second part of Theorem 6.2.1, we get:

$$P[\bigcap_{i=1}^{n} (T_{i} \leq t_{i})] = P[\bigcap_{i=1}^{n} (X_{i}(t_{i}) = 0)] = 1 - P[\bigcup_{i=1}^{n} (X_{i}(t_{i}) = 1)]$$

$$= 1 - P[\prod_{i=1}^{n} X_{i}(t_{i}) = 1] = 1 - E[\prod_{i=1}^{n} X_{i}(t_{i})]$$

$$\geq 1 - \prod_{i=1}^{n} E[X_{i}(t_{i})] = 1 - [1 - \prod_{i=1}^{n} (1 - E[X_{i}(t_{i})])]$$

$$= \prod_{i=1}^{n} (1 - P[X_{i}(t_{i}) = 1]) = \prod_{i=1}^{n} P[T_{i} \leq t_{i}],$$

and thus the second inequality is proved.

Corollary (6.2.3)

Let T_1, \ldots, T_n be non-negative associated random variables. Then:

$$P(\min_{1\leq i\leq n}T_i>t)=P(\bigcap_{i=1}^nT_i>t)\geq \prod_{i=1}^nP(T_i>t)$$

$$P(\max_{1 \le i \le n} T_i > t) = 1 - P(\bigcap_{i=1}^n T_i \le t) \le \coprod_{i=1}^n P(T_i > t).$$

NOTE: If (C, ϕ) is a series system with component lifetimes T_1, \ldots, T_n , then the system lifetime is equal to $\min_{1 \le i \le n} T_i$.

If (C, ϕ) is a parallel system with component lifetimes T_1, \ldots, T_n , then the system lifetime is equal to $\max_{1 \le i \le n} T_i$.

We skip the following results:

- Theorem 6.2.4 (Very crude upper and lower bounds)
- Theorem 6.2.5 (We incorporate this result in Corollary 6.2.6)
- Theorem 6.2.7 (We incorporate this result in Corollary 6.2.8)

Corollary (6.2.6)

Consider a monotone system (C, ϕ) , where $C = \{1, ..., n\}$ and with minimal path sets $P_1, ..., P_p$ and minimal cut sets $K_1, ..., K_k$.

Moreover, assume that the component state variables, X_1, \ldots, X_n are associated with component reliabilities p_1, \ldots, p_n . Then we have:

$$\max_{1 \leq j \leq p} \prod_{i \in P_j} p_i \leq h \leq \min_{1 \leq j \leq k} \prod_{i \in K_j} p_i.$$

PROOF: We have that:

$$\min_{i \in P_r} X_i \leq \max_{1 \leq r \leq p} \min_{i \in P_r} X_i = \phi(\boldsymbol{X}) = \min_{1 \leq s \leq k} \max_{i \in K_s} X_i \leq \max_{i \in K_s} X_i,$$

for all r = 1, ..., p and all s = 1, ..., k.

This implies that:

$$P(\min_{i\in P_r}X_i=1)\leq h\leq P(\max_{i\in K_s}X_i=1)$$

for all r = 1, ..., p and all s = 1, ..., k.

Hence, we must have:

$$\max_{1 \leq j \leq p} P[\min_{i \in P_j} X_i = 1] \leq h \leq \min_{1 \leq j \leq k} P[\max_{i \in K_j} X_i = 1].$$

Furthermore, since X_1, \ldots, X_n are associated, we may use Theorem 6.2.1 and get:

$$P[\min_{i \in P_j} X_i = 1] = E[\prod_{i \in P_j} X_i] \ge \prod_{i \in P_j} E[X_i] = \prod_{i \in P_j} p_i$$

$$P[\max_{i \in \mathcal{K}_j} X_i = 1] = E[\coprod_{i \in \mathcal{K}_j} X_i] \le \coprod_{i \in \mathcal{K}_j} E[X_i] = \coprod_{i \in \mathcal{K}_j} p_i$$

Inserting these inequalities into the bounds on the previous slide we get:

$$\max_{1 \le j \le p} \prod_{i \in P_j} p_i \le h \le \min_{1 \le j \le k} \coprod_{i \in K_j} p_i.$$

Corollary (6.2.8)

Let (C, ϕ) be a binary monotone system where $C = \{1, ..., n\}$, and assume that the component state variables, $X_1, ..., X_n$ are independent with component reliabilities $p_1, ..., p_n$.

Moreover, let P_1, \dots, P_p and K_1, \dots, K_k be respectively the minimal path and cut sets of the system.

Then we have:

$$\prod_{j=1}^k \coprod_{i \in K_j} p_i \leq h(\boldsymbol{p}) \leq \coprod_{j=1}^p \prod_{i \in P_j} p_i.$$

PROOF: We introduce:

$$\rho_j(\mathbf{X}) = \prod_{i \in P_j} X_i, \quad j = 1, \ldots, p,$$

$$\kappa_j(\boldsymbol{X}) = \prod_{i \in K_j} X_i, \quad j = 1, \dots, k.$$

Since ρ_1, \ldots, ρ_p and $\kappa_1, \ldots, \kappa_k$ are non-decreasing functions of \boldsymbol{X} , they are associated. Hence, by Theorem 6.2.1 we have:

$$h(\boldsymbol{\rho}) = E[\coprod_{j=1}^{p} \prod_{i \in P_{j}} X_{i}] = E[\coprod_{j=1}^{p} \rho_{j}(\boldsymbol{X})] \leq \coprod_{j=1}^{p} E[\rho_{j}(\boldsymbol{X})]$$

$$h(\boldsymbol{p}) = E[\prod_{j=1}^{k} \prod_{i \in K_j} X_i] = E[\prod_{j=1}^{k} \kappa_j(\boldsymbol{X})] \ge \prod_{j=1}^{k} E[\kappa_j(\boldsymbol{X})]$$

Moreover, since the component state variables, X_1, \ldots, X_n , are *independent*, we have:

$$E[\rho_j(\mathbf{X})] = E[\prod_{i \in P_j} X_i] = \prod_{i \in P_j} \rho_i,$$

$$E[\kappa_j(\mathbf{X})] = E[\coprod_{i \in K_j} X_i] = \coprod_{i \in K_j} p_i.$$

Inserting this into the bounds on the previous slide, i.e.:

$$\prod_{j=1}^k E[\kappa_j(\boldsymbol{X})] \le h(\boldsymbol{p}) \le \prod_{j=1}^p E[\rho_j(\boldsymbol{X})],$$

we get:

$$\prod_{j=1}^k \prod_{i \in K_j} p_i \le h(\boldsymbol{p}) \le \prod_{j=1}^p \prod_{i \in P_j} p_i.$$

In the coming examples we shall compare the bounds from Corollary 6.2.6 to those from Corollary 6.2.8.

Let $h_n(p)$ denote the reliability of a parallel system of n components where all components have the same reliability p. We then have:

$$h_2(p) = p \coprod p = 1 - (1 - p)(1 - p)$$

$$= 1 - (1 - 2p + p^2) = 2p - p^2,$$

$$h_3(p) = p \coprod p \coprod p \coprod p = 1 - (1 - p)(1 - p)(1 - p)$$

$$= 1 - (1 - 3p + 3p^2 - p^3) = 3p - 3p^2 + p^3.$$

EXAMPLE 1: A 3-out-of-4 system with $p_i = p$, i = 1, 2, 3, 4 where all the component state variables are independent.

The minimal path sets for the 3-out-of-4 system are:

$$P_1=\{1,2,3\},\ P_2=\{1,2,4\},\ P_3=\{1,3,4\},\ P_4=\{2,3,4\},$$

and the minimal cut sets are:

$$\textit{K}_1 = \{1,2\}, \; \textit{K}_2 = \{1,3\}, \; \textit{K}_3 = \{1,4\}, \; \textit{K}_4 = \{2,3\}, \; \textit{K}_5 = \{2,4\}, \; \textit{K}_6 = \{3,4\}.$$

The lower and upper bounds in Corollary 6.2.6 are denoted by $l_1(p)$ and $u_1(p)$ respectively, and are given by:

$$\mathit{I}_1(\rho) = \max_{1 \leq j \leq 4} \prod_{i \in P_i} p = \max_{1 \leq j \leq 4} p^3 = p^3,$$

$$u_1(p) = \min_{1 \le j \le 6} \coprod_{i \in K_j} p = \min_{1 \le j \le 6} h_2(p) = 2p - p^2.$$

The lower and upper bounds in Corollary 6.2.8 are denoted by $l_2(p)$ and $u_2(p)$ respectively, and are given by:

$$l_2(p) = \prod_{j=1}^6 \prod_{i \in K_j} p = \prod_{j=1}^6 h_2(p) = (2p - p^2)^6,$$

$$u_2(p) = \coprod_{i=1}^4 \prod_{j \in P} p = h_2(p^3) \coprod h_2(p^3) = 2(2p^3 - p^6) - (2p^3 - p^6)^2.$$

The *true* reliability of the 3-out-of-4 system is given by:

$$h(p) = \sum_{i=3}^{4} {4 \choose i} p^{i} (1-p)^{n-i} = 4p^{3} (1-p) + p^{4}.$$

Figure: The true reliability function h as well as the bounds l_1 , u_1 , l_2 , u_2 .

EXAMPLE 2: A bridge system with $p_i = p$, i = 1, 2, 3, 4, 5 where all the component state variables are independent.

The minimal path sets for the bridge system are:

$$P_1 = \{1,4\}, P_2 = \{1,3,5\}, P_3 = \{2,3,4\}, P_4 = \{2,5\},$$

and the minimal cut sets are:

$$\textit{K}_1 = \{1,2\}, \; \textit{K}_2 = \{1,3,5\}, \; \textit{K}_3 = \{2,3,4\}, \; \textit{K}_4 = \{4,5\}.$$

The lower and upper bounds in Corollary 6.2.6 are denoted by $l_1(p)$ and $u_1(p)$ respectively, and are given by:

$$I_1(p) = \max_{1 \leq j \leq 4} \prod_{i \in P_i} p = \max(p^2, p^3, p^3, p^2) = p^2,$$

$$u_1(p) = \min_{1 \leq j \leq 4} \coprod_{i \in K_j} p = \min(h_2(p), h_3(p), h_3(p), h_2(p)) = 2p - p^2.$$

The lower and upper bounds in Corollary 6.2.8 are denoted by $l_2(p)$ and $u_2(p)$ respectively, and are given by:

$$I_2(p) = \prod_{j=1}^4 \prod_{i \in K_j} p = h_2(p)^2 \cdot h_3(p)^2,$$

$$u_2(p) = \coprod_{j=1}^4 \prod_{i \in P_j} p = h_2(p^2) \coprod h_2(p^3).$$

The *true* reliability of the bridge system is given by:

$$h(p) = p \cdot h_2(p)^2 + (1-p) \cdot h_2(p^2).$$

Figure: The true reliability function h as well as the bounds l_1 , u_1 , l_2 , u_2 .

We see that in both examples the bounds from Corollary 6.2.8 are better than those from Corollary 6.2.6 for *most* of the *p*-values.

NOTE:

- The lower bound l_1 from Corollary 6.2.6 is better than l_2 from Corollary 6.2.8 for small values of p.
- The upper bound u_1 from Corollary 6.2.6 is better than u_2 from Corollary 6.2.8 for large p-values.

In order to always get the best bounds, we may introduce l^* and u^* defined as follows:

$$I^* = \max(I_1, I_2),$$

$$u^* = \min(u_1, u_2)$$

