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Section 9.2

Case study - Reliability analysis of a network for
transmission of electronic pulses
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Multistate systems

We consider a system with component set C = {1, . . . ,n} and binary
component state processes {Xi(t)}i∈C , where:

Xi(t) = I(Component i is functioning at time t ≥ 0), i ∈ C.

We also introduce X (t) = (X1(t), . . . ,Xn(t)).

At any given point of time t the system state is a function of the components
states, and we introduce the structure function:

φ(t) = φ(X (t)) = The state of the system at time t .

In this case, however, the system is a multistate system. Thus, the set of
system states, denoted S, may contain more than two states.

Our main task is to find the distribution of φ(t) for any t ≥ 0.
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The structure function

The distribution of φ(t):
In principle we can compute the distribution of φ(t) by total state space
enumeration:

P(φ(t) = s) =
∑
x

I(φ(x) = s) · P(X (t) = x), s ∈ S.

However, since the number of terms in this sum grows exponentially in n, this
often becomes too time consuming.

State space reduction:
The computational complexity can be reduced considerably if we can find
new processes {Y1(X (t))}, . . . , {Ym(X (t))} such that m << n, and such that:

φ(t) = φ(Y (X (t))),

where Y (X (t)) = (Y1(X (t)), . . . ,Ym(X (t))).
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State space reduction (cont.)

Assuming that the joint distribution of Y (X (t)) is easily determined, we can
then find the distribution of φ(t) by using the following formula:

P(φ(t) = s) =
∑
y

I(φ(y) = s) · P(Y (X (t)) = y), s ∈ S.

In general, the number of terms in this sum grows exponentially in m.
However, if m << n, the number of terms may be reduced considerably.
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A network for transmission of electronic pulses
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A network for transmission of electronic pulses (cont.)

The purpose of the system shown in the previous slide is to ensure
communication between a control room and 5 production units.

The system consists of:

6 wires beween the control room and the connection unit A

6 wires beween the control room and the connection unit B

5 identical subsystems, one for each production unit, transporting
electronic pulses from the connection units, A and B, to the production
unit. Each subsystem contains 8 components.

In total we have n = 6 + 6 + 5 · 8 = 52 components.

The number of production units which can be controlled by a connection unit
is limited by the number of functioning wires between the control room and
the respective connection unit.
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The structure of the subsystems
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Figure: A subsystem transporting electronic pulses from the connection units,
A and B, to a production unit.

A. B. Huseby & K. R. Dahl (Univ. of Oslo) Lecture 14 8 / 22



uiobmcrop

Assumptions

All the 52 the components have idependent and exponentially distributed
lifetimes

The 12 wires have the same failure rate r0.

The 5 subsystems have identical stochastic properties.

The failure rates of the 8 components of a subsystem are r1, . . . , r8
respectively.

For a given point of time t ≥ 0 we introduce the survival probabilities:

qi(t) = exp(−ri t), i = 0,1, . . . ,8.

NOTE: A survival probability at time t is the probability that the component is
functioning at time t , or equivalently the reliability of the component at time t .
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The structure function

We define the state of the system at time t ≥ 0 as:

φ(t) = The number of production units which can be controlled at time t

Thus, it follows that the set of possible system states is:

S = {0,1, . . . ,5}

Since the total number of components is 52, a total state space enumeration
would consist of a sum of 252 ≈ 4.504 · 1015 terms.

This is way too many terms to handle. Thus, we must look for some
simplifications.
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Intermediate variables
In order to simplify the calculations we introduce intermediate variables:

Y1(t) = The number of functioning wires at the connection unit A at time t

Y2(t) = The number of functioning wires at the connection unit B at time t

Y3(t) = The number of prod.units connected to both A and B at time t

Y4(t) = The number of prod.units connected to A only at time t

Y5(t) = The number of prod.units connected to B only at time t

The state of the system can now be expressed as:

φ(t) = W1(t) + W2(t) + W3(t),

where:

W1(t) = min{Y1(t),Y4(t)}, W2(t) = min{Y2(t),Y5(t)},

W3(t) = min{(Y1(t)−W1(t)) + (Y2(t)−W2(t)),Y3(t)}.
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Intermediate variables (cont.)

We observe that:

W1(t) is the number of production units which can only be controlled
through connection unit A.

W2(t) is the number of production units which can only be controlled
through connection unit B.

(Y1(t)−W1(t)) is the left-over capacity at connection unit A.

(Y2(t)−W2(t)) is the left-over capacity at connection unit B.

W3(t) is the number of production units which can be handled by the
total left-over capacity at connection unit A and connection unit B.

Note that we may have zero left-over capacity at one or both connection units.
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The distribution of Y1(t) and Y2(t)

We observe that Y1(t) and Y2(t) are sums of 6 independent, identically
distributed binary random variables.

Since the 12 wires have a survival probability of q0(t) = exp(−r0t), it follows
that:

P(Yi(t) = y) =
(6

y

)
[q0(t)]y [1− q0(t)]6−y , y = 0,1, . . . ,6, i = 1,2.
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The distribution of Y3(t), Y4(t) and Y5(t)
We start by observing that each of the 5 subsystems can be in 4 different
states:

SAB = The prod. unit can communicate with both connection units

SA = The prod. unit can communicate with connection unit A

SB = The prod. unit can communicate with connection unit B

S∅ = The prod. unit cannot communicate with any connection unit

We recall that all subsystems have identical stochastic properties. Thus, we
may introduce:

qAB(t) = The probability that a prod.unit is in state SAB at time t

qA(t) = The probability that a prod.unit is in state SA at time t

qB(t) = The probability that a prod.unit is in state SB at time t

q∅(t) = The probability that a prod.unit is in state S∅ at time t
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The distribution of Y3(t), Y4(t) and Y5(t) (cont.)

Note that we obviously have:

qAB(t) + qA(t) + qB(t) + q∅(t) = 1

Thus, we can express q∅(t) as (1− qAB(t)− qA(t)− qB(t)).

Since the subsystems have identical stochastic properties and are
independent of each other, it follows that the vector (Y3(t),Y4(t),Y5(t)) is
multinomially distributed. That is, we have:

P(Y3(t) = y3,Y4(t) = y4,Y5(t) = y5) =
5!

y3!y4!y4!(5− y3 − y4 − y5)!

· [qAB(t)]y3 · [qA(t)]y4 · [qB(t)]y5 · [q∅(t)]5−y3−y4−y5

where y3 = 0,1, . . .5, y4 = 0,1, . . . (5− y3) and y5 = 0,1, . . . (5− y3 − y4).
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The probabilities qAB(t), qA(t) and qB(t)

In order to find the the probabilities qAB(t), qA(t) and qB(t) we introduce the
following events:

EA = The event that the production unit communicates with A at time t

EB = The event that the production unit communicates with B at time t

We may then express the desired probabilities as:

qAB(t) = P(EA ∩ EB)

qA(t) = P(EA)− P(EA ∩ EB)

qB(t) = P(EB)− P(EA ∩ EB)

Thus, we have reduced the problem to computing the probabilities P(EA),
P(EB) and P(EA ∩ EB).
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The probabilities qAB(t), qA(t) and qB(t) (cont.)
In the following we simplify the notation by omitting the time t , and consider
one of the subsystems:

A
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Prod.
unit

We also introduce state variables for the 8 components in this system and
denote these by Z1, . . . ,Z8. By previous assumptions we know that the state
variables are independent and that:

P(Zi = 1) = qi , i = 1, . . . ,8.
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Computing P(EA ∩ EB)

In order to compute the probability P(EA ∩ EB) we condition on the states of
the two bridges, i.e., components 3 and 6, and get:

P(EA ∩ EB) = P(EA ∩ EB | Z3 = 1,Z6 = 1) · q3q6

+ P(EA ∩ EB | Z3 = 1,Z6 = 0) · q3(1− q6)

+ P(EA ∩ EB | Z3 = 0,Z6 = 1) · (1− q3)q6

+ P(EA ∩ EB | Z3 = 0,Z6 = 0) · (1− q3)(1− q6)

It is easy to show that the conditional probabilities are:

P(EA ∩ EB | Z3 = 1,Z6 = 1) = q1q2[q4 + q5 − q4q5][q7 + q8 − q7q8]

P(EA ∩ EB | Z3 = 1,Z6 = 0) = q1q2[q4q7 + q5q8 − q4q5q7q8]

P(EA ∩ EB | Z3 = 0,Z6 = 1) = q1q2q4q5[q7 + q8 − q7q8]

P(EA ∩ EB | Z3 = 0,Z6 = 0) = q1q2q4q5q7q8
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Computing P(EA) and P(EB)

We observe that for the event EA Component 2 is irrelevant. When this
component is removed, we note that Component 3 and Component 5 are in
series. From this it is easy to show that:

P(EA) = q1q6[q4 + q3q5 − q3q4q5][q7 + q8 − q7q8]

+ q1(1− q6)[q4q7 + q3q5q8 − q3q4q5q7q8]

We observe that for the event EB Component 1 is irrelevant. When this
component is removed, we note that Component 3 and Component 4 are in
series. From this it is easy to show that:

P(EB) = q2q6[q5 + q3q4 − q3q4q5][q7 + q8 − q7q8]

+ q2(1− q6)[q5q8 + q3q4q7 − q3q4q5q7q8]
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The distribution of Y3(t), Y4(t) and Y4(t) (cont.)

Having computed the probabilities P(EA), P(EB) and P(EA ∩ EB), we can
compute the probabilities qAB(t), qA(t) and qB(t).

Furthermore, given qAB(t), qA(t) and qB(t) we have what we need to compute
the distribution of the vector (Y3(t),Y4(t),Y5(t)).

Since the system state φ(t) is expressed in terms of
Y1(t),Y2(t),Y3(t),Y4(t),Y5(t), we can find the distribution of φ(t) by a total
state space enumeration of these input variables.

The number of states for Y1(t) is 7

The number of states for Y2(t) is 7

The number of states for the vector (Y3(t),Y4(t),Y5(t)) is 56.

Thus, the total number of states needed in the enumeration is
7 · 7 · 56 = 2744. While this is still a large number of terms, it is much smaller
than 252 ≈ 4.504 · 1015.
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The computer we used
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The results
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