STK3405 – Lecture 2

A. B. Huseby & K. R. Dahl

Department of Mathematics University of Oslo, Norway

э

1/25

Section 2.3

In this lecture we shall introduce the concept of dual systems.

Dual systems

イロト イヨト イヨト イヨト

A. B. Huseby & K. R. Dahl (Univ. of Oslo)

Dual systems

We start out by presenting the following definition:

Definition

Let ϕ be a structure function of a binary monotone system of order *n*. We then define the *dual structure function*, ϕ^D for all $\mathbf{y} \in \{0, 1\}^n$ as:

$$\phi^{D}(\boldsymbol{y}) = 1 - \phi(\boldsymbol{1} - \boldsymbol{y}).$$

Furthermore, if **X** is the component state vector of a binary monotone system, we define the dual component state vector \mathbf{X}^{D} as:

$$X^{D} = (X_{1}^{D}, \dots, X_{n}^{D}) = (1 - X_{1}, \dots, 1 - X_{n}) = 1 - X$$

Dual systems

Let ϕ be a structure function of a binary monotone system of order *n*. We then define the dual structure function, denoted ϕ^D , for all binary **y** as:

Definition

Let ϕ be a structure function of a binary monotone system of order *n*. We then define the *dual structure function*, ϕ^D for all $\mathbf{y} \in \{0, 1\}^n$ as:

$$\phi^{D}(\boldsymbol{y}) = 1 - \phi(\boldsymbol{1} - \boldsymbol{y}).$$

Furthermore, if **X** is the component state vector of a binary monotone system, we define the dual component state vector \mathbf{X}^{D} as:

$$\boldsymbol{X}^{D} = (X_{1}^{D}, \dots, X_{n}^{D}) = (1 - X_{1}, \dots, 1 - X_{n}) = \mathbf{1} - \boldsymbol{X}$$

Dual systems (cont.)

Note:

- The relation between ϕ and ϕ^D is a relation between two *functions*
- The relation between **X** and **X**^D is a relation between two *stochastic vectors*

We have the following relation between the two stochastic variables $\phi(\mathbf{X})$ and $\phi^{D}(\mathbf{X}^{D})$:

$$\phi^{D}(\boldsymbol{X}^{D}) = 1 - \phi(\boldsymbol{1} - \boldsymbol{X}^{D}) = 1 - \phi(\boldsymbol{X}).$$

Hence, the dual system is functioning if and only if the original system is failed and vice versa.

We also introduce the dual component set $C^D = \{1^D, ..., n^D\}$, where the dual component i^D is functioning if the component *i* is failed, while i^D is failed if the component *i* is functioning.

Let ϕ be the structure function of a system of order 3 such that:

$$\phi(\mathbf{y}) = \mathbf{y}_1 \amalg (\mathbf{y}_2 \cdot \mathbf{y}_3),$$

The dual structure function is then given by:

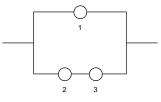
$$\phi^{D}(\mathbf{y}) = 1 - \phi(\mathbf{1} - \mathbf{y})$$

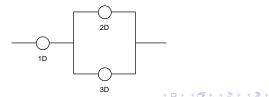
= 1 - (1 - y₁) II ((1 - y₂) \cdot (1 - y₃))
= 1 - [1 - (1 - (1 - y₁))(1 - (1 - y₂) \cdot (1 - y₃))]
= 1 - [1 - y₁ \cdot (1 - (1 - y₂) \cdot (1 - y₃))]
= y₁ \cdot (y₂ II y₃)

A. B. Huseby & K. R. Dahl (Univ. of Oslo)

Examples of dual systems (cont.)

$$\phi(\mathbf{y}) = y_1 \amalg (y_2 \cdot y_3), \qquad \phi^D(\mathbf{y}) = y_1 \cdot (y_2 \amalg y_3)$$





A. B. Huseby & K. R. Dahl (Univ. of Oslo)

Examples of dual systems (cont.)

Let (C, ϕ) be a series system of order *n*:

$$\phi(\mathbf{y}) = \prod_{i=1}^n y_i.$$

The dual structure function is then given by:

$$\phi^{\mathcal{D}}(\boldsymbol{y}) = 1 - \phi(\boldsymbol{1} - \boldsymbol{y})$$

= $1 - \prod_{i=1}^{n} (1 - y_i) = \prod_{i=1}^{n} y_i.$

Thus, (C^D, ϕ^D) is a parallel system of order *n*.

イロト イポト イヨト イヨト

Examples of dual systems (cont.)

Let (C, ϕ) be a parallel system of order *n*:

$$\phi(\mathbf{y}) = \prod_{i=1}^n y_i.$$

The dual structure function is then given by:

$$\phi^D(\mathbf{y}) = 1 - \phi(\mathbf{1} - \mathbf{y}) = 1 - \prod_{i=1}^n (1 - y_i)$$

= $1 - (1 - \prod_{i=1}^n (1 - (1 - y_i))) = \prod_{i=1}^n y_i.$

Thus, (C^D, ϕ^D) is a series system of order *n*.

1

(日)

Dual systems (cont.)

Theorem

Let ϕ be the structure function of a binary monotone system, and let ϕ^{D} be the corresponding dual structure function. Then we have:

$$(\phi^D)^D = \phi.$$

That is, the dual of the dual system is equal to the original system.

Proof: For all $\mathbf{y} \in \{0, 1\}^n$ we have:

$$(\phi^D)^D(y) = 1 - \phi^D(1 - y)$$

= 1 - [1 - $\phi(1 - (1 - y))$]
= $\phi(y)$.

Reliability of binary monotone systems

A. B. Huseby & K. R. Dahl (Univ. of Oslo)

Let (C, ϕ) be a binary monotone system, and let $i \in C$.

$$p_i = P(X_i = 1) =$$
 The *reliability* of a component *i*

Since the state variable X_i is binary, we have for all $i \in C$:

$$E[X_i] = 0 \cdot P(X_i = 0) + 1 \cdot P(X_i = 1) = P(X_i = 1) = p_i$$

Thus, the reliability of component *i* is equal to the expected value of its component state variable, X_i .

Reliability of binary monotone systems (cont.)

 $h = P(\phi(\mathbf{X}) = 1) =$ The *reliability* of the system

Since ϕ is binary, we have:

$$\operatorname{E}[\phi(\boldsymbol{X})] = \mathbf{0} \cdot \boldsymbol{P}(\phi(\boldsymbol{X}) = \mathbf{0}) + \mathbf{1} \cdot \boldsymbol{P}(\phi(\boldsymbol{X}) = \mathbf{1}) = \boldsymbol{P}(\phi(\boldsymbol{X}) = \mathbf{1}) = h.$$

Thus, the reliability of the system is equal to the expected value of the structure function, $\phi(\mathbf{X})$.

From this it immediately follows that the reliability of a system, at least in principle, can be calculated as:

$$h = \mathrm{E}[\phi(\boldsymbol{X})] = \sum_{\boldsymbol{X} \in \{0,1\}^n} \phi(\boldsymbol{X}) P(\boldsymbol{X} = \boldsymbol{X})$$

< 日 > < 同 > < 回 > < 回 > < □ > <

We now focus on the case where the component state variables can be assumed to be *independent* and introduce $\mathbf{p} = (p_1, p_2, \dots, p_n)$. We note that:

$$P(X_i = x_i) = \begin{cases} p_i & \text{if } x_i = 1, \\ 1 - p_i & \text{if } x_i = 0. \end{cases}$$

Since x_i is either 0 or 1, $P(X_i = x_i)$ can be written in the following more compact form:

$$P(X_i = x_i) = p_i^{x_i}(1 - p_i)^{1 - x_i}.$$

The reliability function

Thus, when the component state variables are independent, their joint distribution can be written as:

$$P(\mathbf{X} = \mathbf{x}) = \prod_{i=1}^{n} P(X_i = x_i) = \prod_{i=1}^{n} p_i^{x_i} (1 - p_i)^{1 - x_i}.$$

Hence, we get the following expression for the system reliability:

$$h = h(\mathbf{p}) = \mathbb{E}[\phi(\mathbf{X})] = \sum_{\mathbf{X} \in \{0,1\}^n} \phi(\mathbf{X}) \prod_{i=1}^n p_i^{x_i} (1-p_i)^{1-x_i}$$

The function $h(\mathbf{p})$ is called *the reliability function* of the system.

< ロ > < 同 > < 回 > < 回 >

Consider a series system of order *n*. Assuming that the component state variables are independent, the reliability of this system is given by:

$$h(\boldsymbol{p}) = \mathrm{E}[\phi(\boldsymbol{X})] = \mathrm{E}[\prod_{i=1}^{n} X_i] = \prod_{i=1}^{n} \mathrm{E}[X_i] = \prod_{i=1}^{n} p_i,$$

where the third equality follows since X_1, X_2, \ldots, X_n are independent.

< ロ > < 同 > < 回 > < 回 >

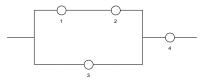
Consider a parallel system of order *n*. Assuming that the component state variables are independent, the reliability of this system is given by:

$$h(\mathbf{p}) = E[\phi(\mathbf{X})] = E[\prod_{i=1}^{n} X_i] = E[1 - \prod_{i=1}^{n} (1 - X_i)]$$
$$= 1 - \prod_{i=1}^{n} (1 - E[X_i]) = \prod_{i=1}^{n} E[X_i] = \prod_{i=1}^{n} p_i,$$

where the fourth equality follows since X_1, X_2, \ldots, X_n are independent.

Reliability of a mixed system

ŀ



Assuming independent component states the system reliability becomes:

$$\begin{aligned} h(\boldsymbol{p}) &= \mathrm{E}[\phi(\boldsymbol{X})] = \mathrm{E}[[(X_1 \cdot X_2) \amalg X_3] \cdot X_4] \\ &= \mathrm{E}[(X_1 \cdot X_2) \amalg X_3] \cdot \mathrm{E}[X_4] \\ &= [\mathrm{E}[X_1 \cdot X_2] \amalg \mathrm{E}[X_3]] \cdot \mathrm{E}[X_4] \\ &= [(\mathrm{E}[X_1] \cdot \mathrm{E}[X_2]) \amalg \mathrm{E}[X_3]] \cdot \mathrm{E}[X_4] \\ &= [(p_1 \cdot p_2) \amalg p_3] \cdot p_4. \end{aligned}$$

Component level changes vs. system level changes

In the following we define $\boldsymbol{p} \cdot \boldsymbol{p}'$ as $(p_1 \cdot p'_1, \dots, p_n \cdot p'_n)$.

Theorem

Let $h(\mathbf{p})$ be the reliability function of a binary monotone system (C, ϕ) of order n. Then for all $\mathbf{p}, \mathbf{p}' \in [0, 1]^n$ we have:

(i)
$$h(\boldsymbol{p} \amalg \boldsymbol{p}') \geq h(\boldsymbol{p}) \amalg h(\boldsymbol{p}'),$$

(ii)
$$h(\boldsymbol{p} \cdot \boldsymbol{p}') \leq h(\boldsymbol{p}) \cdot h(\boldsymbol{p}')$$

If (C, ϕ) is coherent, equality holds in (i) for all $\mathbf{p}, \mathbf{p}' \in [0, 1]^n$ if and only if (C, ϕ) is a parallel system.

If (C, ϕ) is coherent, equality holds in (ii) for all $\mathbf{p}, \mathbf{p}' \in [0, 1]^n$ if and only if (C, ϕ) is a series system.

э

イロト イヨト イヨト イヨト

Proof: Assume that **X** and **Y** are two independent component state vectors with corresponding reliability vectors p and p' respectively.. We then have:

$$h(\boldsymbol{p} \amalg \boldsymbol{p}') - h(\boldsymbol{p}) \amalg h(\boldsymbol{p}') \\= E[\phi(\boldsymbol{X} \amalg \boldsymbol{Y})] - E[\phi(\boldsymbol{X})] \amalg E[\phi(\boldsymbol{Y})] \\= E[\phi(\boldsymbol{X} \amalg \boldsymbol{Y}) - \phi(\boldsymbol{X}) \amalg \phi(\boldsymbol{Y})],$$

where the last expectation must be non-negative since by the corresponding result for structure functions we know that:

$$\phi(\mathbf{x} \amalg \mathbf{y}) - \phi(\mathbf{x}) \amalg \phi(\mathbf{y}) \ge 0$$
, for all $\mathbf{x}, \mathbf{y} \in \{0, 1\}^n$.

This completes the proof of (i). The proof of (ii) is similar.

We now consider the case where (C, ϕ) is coherent and show that equality in (*i*) holds for all $\mathbf{p}, \mathbf{p}' \in [0, 1]^n$ if and only if (C, ϕ) is a parallel system.

Assume that $0 < p_i < 1, 0 < p'_i < 1$ for i = 1, ..., n. This implies that:

$$P(X = x, Y = y) > 0$$
, for all $x \in \{0, 1\}^n$ and $y \in \{0, 1\}^n$.

From this it follows that:

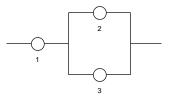
$$E[\phi(\boldsymbol{X} \amalg \boldsymbol{Y}) - \phi(\boldsymbol{X}) \amalg \phi(\boldsymbol{Y})] = 0$$

if and only if
 $\phi(\boldsymbol{x} \amalg \boldsymbol{y}) - \phi(\boldsymbol{x}) \amalg \phi(\boldsymbol{y}) = 0$ for all $\boldsymbol{x} \in \{0, 1\}^n$ and $\boldsymbol{y} \in \{0, 1\}^n$.

By the corresponding result for structure functions this holds if and only if (C, ϕ) is a parallel system. The other equivalence is proved similarly.

э

▲御 ▶ ▲ 国 ▶ ▲ 国 ▶

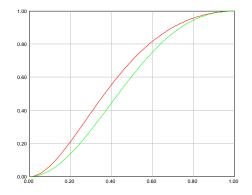


Let (C, ϕ) be a system with independent component state variables with $P(X_i = 1) = p$ for all $i \in C$, and where $\phi(\mathbf{x}) = x_1 \cdot (x_2 \amalg x_3)$.

We then get that $h(\boldsymbol{p}) = h(\boldsymbol{p}) = \boldsymbol{p} \cdot (\boldsymbol{p} \amalg \boldsymbol{p}) = \boldsymbol{p} \cdot (\boldsymbol{p} + \boldsymbol{p} - \boldsymbol{p}^2) = 2\boldsymbol{p}^2 - \boldsymbol{p}^3$.

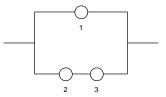
Hence, for all $0 \le p \le 1$, we have:

$$\begin{array}{l} h(\pmb{p} \amalg \pmb{p}') = 2(p \amalg p)^2 - (p \amalg p)^3 \\ \geq h(\pmb{p}) \amalg h(\pmb{p}') = (2p^2 - p^3) \amalg (2p^2 - p^3) \end{array}$$



• Red curve: $h(\boldsymbol{p} \amalg \boldsymbol{p}') = 2(p \amalg p)^2 - (p \amalg p)^3$

• Green curve: $h(\mathbf{p}) \amalg h(\mathbf{p}') = (2p^2 - p^3) \amalg (2p^2 - p^3)$

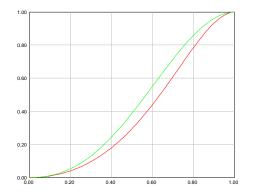


Let (C, ϕ) be a system with independent component state variables with $P(X_i = 1) = p$ for all $i \in C$, and where $\phi(\mathbf{x}) = x_1 \amalg (x_2 \cdot x_3)$.

We then get that $h(\mathbf{p}) = h(\mathbf{p}) = p \amalg (\mathbf{p} \cdot \mathbf{p}) = p \amalg p^2 = p + p^2 - p^3$.

Hence, for all $0 \le p \le 1$, we have:

$$egin{aligned} h(m{p}\cdotm{p}') &= p^2 + p^4 - p^6 \ &\leq h(m{p})\cdot h(m{p}') = (p + p^2 - p^3)^2 \end{aligned}$$



• Red curve: $h(p \cdot p') = p^2 + p^4 - p^6$

• Green curve: $h(p) \cdot h(p') = (p + p^2 - p^3)^2$

< 回 > < 回 > < 回 >