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Section 2.3
In this lecture we shall introduce the concept of dual systems.
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Dual systems

We start out by presenting the following definition:

Definition
Let ¢ be a structure function of a binary monotone system of order n.
We then define the dual structure function, ¢P for all y € {0,1}" as:

oPy)=1-0(1-y).

Furthermore, if X is the component state vector of a binary monotone
system, we define the dual component state vector XP as:

XP=xP,.. . XY =(1—-Xq,...1=X))=1-X
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Dual systems

Let ¢ be a structure function of a binary monotone system of order n. We then define the dual structure function, denoted ¢D, for

all binary y as:

Definition
Let ¢ be a structure function of a binary monotone system of order n.
We then define the dual structure function, ¢P for all y € {0,1}" as:

P(y)=1-06(1-y).

Furthermore, if X is the component state vector of a binary monotone
system, we define the dual component state vector X? as:

XP=(XP,... XPy=(1-Xy,....,1 = Xp)=1-X
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Dual systems (cont.)

Note:
@ The relation between ¢ and ¢P is a relation between two functions

@ The relation between X and X? is a relation between two
stochastic vectors

We have the following relation between the two stochastic variables
$(X) and ¢2(XP):

0P(XP) =1-0(1 - XP) =1 4(X).
Hence, the dual system is functioning if and only if the original system
is failed and vice versa.

We also introduce the dual component set CP = {10,... nP}, where
the dual component i is functioning if the component i is failed, wh|Ie
iP is failed if the component i is functioning. ~
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Examples of dual systems

Let ¢ be the structure function of a system of order 3 such that:

o(y) =y1 L (y2 - ya),

The dual structure function is then given by:

¢P(y)=1-9(1-y)
=1-(1—-y)I((1—y2)-(1-y3))
=1-[1-(1-01-y)A -0 —y2)-(1-y3))]
=1-[1-y-(0=-(1-)2) (1 -ys))]
=y1- (Y2l ys)
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Examples of dual systems (cont.)

oY) =yill(y2-y3), ") =y (y21lys)
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Examples of dual systems (cont.)

Let (C, ¢) be a series system of order n:
n
o(y) = v
i=1

The dual structure function is then given by:

P(y)=1-90(1-y)

n

=1-T[0-ym=]]»
=1

i=1

Thus, (CP, ¢P) is a parallel system of order n.
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Examples of dual systems (cont.)

Let (C, ¢) be a parallel system of order n:
n
o(y) =1y
i=1
The dual structure function is then given by:
$P(y)=1-9(1-y)=1 —H(1 —Yi)

—(1- H(1 —(1-y)) = Hy,--
=1 =1

Thus, (CP, ¢P) is a series system of order n.
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Dual systems (cont.)

Theorem

Let ¢ be the structure function of a binary monotone system, and let
#P be the corresponding dual structure function. Then we have:

(¢°)P = ¢.

That is, the dual of the dual system is equal to the original system.

Proof: For all y € {0,1}" we have:

(@) P(y)=1-6"(1-y)
=1-[1-¢(1-(1-y))]
= o(y)-
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Reliability of binary monotone systems
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Reliability of binary monotone systems

Let (C, ¢) be a binary monotone system, and let j € C.

pi = P(X; = 1) = The reliability of a component i
Since the state variable X is binary, we have for all i € C:
EX]=0-P(X;=0)+1-P(X;=1)=P(X;=1)=p;

Thus, the reliability of component i is equal to the expected value of its
component state variable, X;.
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Reliability of binary monotone systems (cont.)
h = P(¢(X) = 1) = The reliability of the system

Since ¢ is binary, we have:

E[p(X)] = 0- P(¢(X) = 0) +1- P(¢(X) = 1) = P(¢(X) = 1) = h.

Thus, the reliability of the system is equal to the expected value of the
structure function, ¢(X).

From this it immediately follows that the reliability of a system, at least
in principle, can be calculated as:

h=E[(X)]= ) ¢(X)P(X=x)

Xc{0,1}"
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Independent components

We now focus on the case where the component state variables can

be assumed to be independent and introduce p = (py, po, ..., Pn). We
note that:
- if xj =1
P()(/ — X/) — pl I XI 9
1-— Pi if x; = 0.

Since x; is either 0 or 1, P(X; = x;) can be written in the following more
compact form:

P(X;=x)=p'(1 —pi)' .

A. B. Huseby & K. R. Dahl (Univ. of Oslo) Lecture 2 14/25



The reliability function

Thus, when the component state variables are independent, their joint
distribution can be written as:

n

P(X=x) =[P =x)=]]p (1 —p)'".
i=1 i=1

Hence, we get the following expression for the system reliability:

h=h(p)=EX)]= > oO)[[p'(1—p)'

Xe{0,1}" i=1

The function h(p) is called the reliability function of the system.
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Reliability of a series system

Consider a series system of order n. Assuming that the component
state variables are independent, the reliability of this system is given

by:
n n
h(p) = E[¢(X)] = E[HX] [TeX1=]]e:
=1 =1
where the third equality follows since Xi, Xs, ..., X, are independent.
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Reliability of a parallel system

Consider a parallel system of order n. Assuming that the component

state variables are independent, the reliability of this system is given
by:

h(p) = E[¢(X)] = E[[ [ X1 = E[1 - [[(1 - X))
i=1 i=1

=1-[J - Ex) HE[X] e
i=1 i=1

where the fourth equality follows since Xi, X, ..., X, are independent.
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Reliability of a mixed system

Assuming independent component states the system reliability becomes:
h(p) = E[¢(X)] = E[[(Xi - X2) IT X3] - Xa]
= E[(Xi - X2) [T X3] - E[X4]
= [E[X: - Xo] LLE[X3]] - E[Xa]
= [(B[X1] - E[X2]) ME[X5]] - E[X4]

= [(p1 - p2) L ps] - pa.
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Component level changes vs. system level changes

In the following we define p- p" as (p1 - P}, ..., Pn - Pp).

Theorem

Let h(p) be the reliability function of a binary monotone system (C, ¢)
of order n. Then for all p,p’ € [0,1]" we have:

(7) h(p11p’) = h(p) I h(p’),
(i) h(p-p") < h(p) - h(p’)

If (C, ¢) is coherent, equality holds in (i) for all p, p’ € [0,1]" if and only
if (C, ¢) is a parallel system.

If (C, ¢) is coherent, equality holds in (ii) for all p, p’ € [0,1]" if and
only if (C, ¢) is a series system.

N

A. B. Huseby & K. R. Dahl (Univ. of Oslo) Lecture 2 19/25



Component level vs. system level (cont.)

Proof: Assume that X and Y are two independent component state
vectors with corresponding reliability vectors p and p’ respectively..
We then have:

h(p11p') — h(p) I h(p')
= E[¢(XTLY)] — E[¢(X)] L1 E[¢(Y)]
= E[¢(XTTY) — ¢(X) 11 ¢(Y)],

where the last expectation must be non-negative since by the
corresponding result for structure functions we know that:

¢(xILy) — ¢(x) 1 ¢(y) >0, forall x,y € {0,1}".

This completes the proof of (/). The proof of (i) is similar.
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Component level vs. system level (cont.)

We now consider the case where (C, ¢) is coherent and show that equality in
(i) holds for all p, p’ € [0,1]" if and only if (C, ¢) is a parallel system.

Assume that0 < p; < 1,0 < p; < 1fori=1,...,n. This implies that:
PX=x,Y=y)>0, forall x € {0,1}" and y € {0,1}".
From this it follows that:
E[p(XILY) — o(X) L ¢(Y)] =0
if and only if

H(x1y) — ¢(x) I p(y) =0forall x € {0,1}" and y € {0,1}".

By the corresponding result for structure functions this holds if and only if
(C, ¢) is a parallel system. The other equivalence is proved similarly.
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Component level vs. system level (cont.)
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Let (C, ¢) be a system with independent component state variables with

P(Xi=1)=pforalli e C, and where ¢(x) = x1 - (X2 LT X3).
We then get that h(p) = h(p) = p- (P11 p) = p- (p+ p — p?) = 2p* — p°.
Hence, for all 0 < p < 1, we have:

h(p11p') = 2(p11 p)? — (p11 p)°
> h(p) L h(p') = (2p* — p°) 11 (2p% — p°)
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Component level vs. system level (cont.)
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@ Redcurve: h(pIl p') = 2(p1l p)? — (p11 p)®
@ Green curve: h(p) 11 h(p') = (2p? — p®) 11 (2% — p°)

A. B. Huseby & K. R. Dahl (Univ. of Oslo) Lecture 2 23/25



Component level vs. system level (cont.)
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Let (C, ¢) be a system with independent component state variables
with P(X; =1) = pforall i € C, and where ¢(x) = xq L1 (X2 - X3).

We then get that h(p) = h(p) = pli(p-p) = pll p? = p+ p? — p°.
Hence, for all 0 < p < 1, we have:
hp-p') =p*+p* - p°
< h(p) - h(p') = (p + P* — P°)?
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Component level vs. system level (cont.)
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@ Redcurve: h(p-p') = p? +p* — p®
@ Green curve: h(p) - h(p') = (p+ p? — p°)?
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