STK3405 - Lecture 3

A. B. Huseby \& K. R. Dahl

Department of Mathematics
University of Oslo, Norway

Section 2.5

k-out-of- n systems

k-out-of- n systems

A k-out-of- n system is a binary monotone system (C, ϕ) where $C=\{1, \ldots, n\}$ which functions if and only if at least k out of the n components are functioning.

Let the component state variable of component i be $X_{i}, i \in C$, and let the vector of component state variables be $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$.

The structure function, ϕ, can then be written:

$$
\phi(\boldsymbol{X})= \begin{cases}1 & \text { if } \sum_{i=1}^{n} X_{i} \geq k \\ 0 & \text { otherwise }\end{cases}
$$

An n-out-of- n system $=$ A series system

An n-out-of- n system is the same as a series system:

Figure: A reliability block diagram of an n-out-of- n system.

A 1-out-of- n system $=$ A parallel system

A 1-out-of- n system is the same as a parallel system:

Figure: A reliability block diagram of an 1-out-of- n system.

A 2-out-of-3 system

Figure: A reliability block diagram of a 2-out-of-3 system.

For a 2-out-of-3 system to function 2 out of 3 components must function. There are 3 possible subsets of components which contains 2 components: $\{1,2\},\{1,3\},\{2,3\}$.

A 2-out-of-3 system

Figure: A reliability block diagram of a 2-out-of-3 system.

For a 2-out-of-3 system to fail 2 out of 3 components must fail. There are 3 possible subsets of components which contains 2 components: $\{1,2\},\{1,3\},\{2,3\}$.

A 3-out-of-4 system

Figure: A reliability block diagram of a 3-out-of-4 system.

For a 3-out-of-4 system to function 3 out of 4 components must function. There are 4 possible subsets of components which contains 3 components: $\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\}$.

A 2-out-of-4 system

Figure: A reliability block diagram of a 2-out-of-4 system.

For a 2-out-of-4 system to fail 3 out of 4 components must fail. There are 4 possible subsets of components which contains 3 components: $\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\}$.

The reliability of a k-out-of- n system

In order to evaluate the reliability of a k-out-of- n system it is convenient to introduce the following random variable:

$$
S=\sum_{i=1}^{n} x_{i} .
$$

Thus, S is the number of functioning components. This implies that:

$$
h=P(\phi(\boldsymbol{X})=1)=P(S \geq k) .
$$

The reliability of a k-out-of- n system (cont.)

If the component states are independent, and the component reliabilities are all equal, i.e., $p_{1}=\cdots=p_{n}=p$, the random variable S is a binomially distributed random variable, and we have:

$$
P(S=i)=\binom{n}{i} p^{i}(1-p)^{n-i}
$$

Hence, the reliability of the system is given by:

$$
h(\boldsymbol{p})=h(p)=P(S \geq k)=\sum_{i=k}^{n}\binom{n}{i} p^{i}(1-p)^{n-i}
$$

The reliability of a 2-out-of-3 system

EXAMPLE: Let (C, ϕ) be a 2-out-of-3 system where the component states are independent, and where $p_{1}=p_{2}=p_{3}=p$. We then have:

$$
\begin{aligned}
& P(S=2)=\binom{3}{2} p^{2}(1-p)^{1}=3 p^{2}(1-p) \\
& P(S=3)=\binom{3}{3} p^{3}(1-p)^{0}=p^{3} .
\end{aligned}
$$

Hence, the reliability of the system is:

$$
h=P(S \geq 2)=3 p^{2}(1-p)+p^{3}=3 p^{2}-2 p^{3}
$$

The reliability of a 3-out-of-4 system

EXAMPLE: Let (C, ϕ) be a 3 -out-of- 4 system where the component states are independent, and where $p_{1}=p_{2}=p_{3}=p_{4}=p$. We then have:

$$
\begin{aligned}
& P(S=3)=\binom{4}{3} p^{3}(1-p)^{1}=4 p^{3}(1-p) \\
& P(S=4)=\binom{4}{4} p^{4}(1-p)^{0}=p^{4} .
\end{aligned}
$$

Hence, the reliability of the system is:

$$
h=P(S \geq 3)=4 p^{3}(1-p)+p^{4}=4 p^{3}-3 p^{4} .
$$

The reliability of a k-out-of- n system (cont.)

When the component reliabilities are unequal, explicit analytical expressions for the distribution of S is not so easy to derive.

Let S be a stochastic variable with values in $\{0,1, \ldots, n\}$. We then define the generating function of S as:

$$
G_{S}(y)=E\left[y^{s}\right]=\sum_{s=0}^{n} y^{s} P(S=s)
$$

When a random variable S is the sum of a set of independent random variables X_{1}, \ldots, X_{n}, the generating function of S is the product of the generating functions of X_{1}, \ldots, X_{n}. By using this property it is possible to construct a very efficient algorithm for calculating the distribution of S.

We will return to this issue in an exercise.

The reliability of a 2-out-of-3 system

EXAMPLE: Let (C, ϕ) be a 2 -out-of-3 system where the component states are independent with reliabilities p_{1}, p_{2}, p_{3}, We then have:

$$
\begin{aligned}
& P(S=2)=p_{1} p_{2}\left(1-p_{3}\right)+p_{1}\left(1-p_{2}\right) p_{3}+\left(1-p_{1}\right) p_{2} p_{3} \\
& P(S=3)=p_{1} p_{2} p_{3}
\end{aligned}
$$

Hence, the reliability of the system is:

$$
\begin{aligned}
h & =p_{1} p_{2}\left(1-p_{3}\right)+p_{1}\left(1-p_{2}\right) p_{3}+\left(1-p_{1}\right) p_{2} p_{3}+p_{1} p_{2} p_{3} \\
& =p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}-2 p_{1} p_{2} p_{3} .
\end{aligned}
$$

The reliability of a 3-out-of-4 system

EXAMPLE: Let (C, ϕ) be a 3 -out-of-4 system where the component states are independent with reliabilities $p_{1}, p_{2}, p_{3}, p_{4}$, We then have:

$$
\begin{aligned}
P(S=3) & =p_{1} p_{2} p_{3}\left(1-p_{4}\right)+p_{1} p_{2}\left(1-p_{3}\right) p_{4} \\
& +p_{1}\left(1-p_{2}\right) p_{3} p_{4}+\left(1-p_{1}\right) p_{2} p_{3} p_{4} \\
P(S=4) & =p_{1} p_{2} p_{3} p_{4}
\end{aligned}
$$

Hence, the reliability of the system is:

$$
\begin{aligned}
h & =p_{1} p_{2} p_{3}\left(1-p_{4}\right)+p_{1} p_{2}\left(1-p_{3}\right) p_{4} \\
& +p_{1}\left(1-p_{2}\right) p_{3} p_{4}+\left(1-p_{1}\right) p_{2} p_{3} p_{4} \\
& +p_{1} p_{2} p_{3} p_{4} \\
& =p_{1} p_{2} p_{3}+p_{1} p_{2} p_{4}+p_{1} p_{3} p_{4}+p_{2} p_{3} p_{4}-3 p_{1} p_{2} p_{3} p_{4}
\end{aligned}
$$

Chapter 3

Basic reliability calculation methods

Section 3.1

Pivotal decompositions

Pivotal decompositions

Theorem

Let (C, ϕ) be a binary monotone system. We then have:

$$
\begin{equation*}
\phi(\boldsymbol{x})=x_{i} \phi\left(1_{i}, \boldsymbol{x}\right)+\left(1-x_{i}\right) \phi\left(0_{i}, \boldsymbol{x}\right), \quad i \in C . \tag{1}
\end{equation*}
$$

Similarly, for the reliability function of a binary monotone system where the component state variables are independent, we have

$$
\begin{equation*}
h(\boldsymbol{p})=p_{i} h\left(1_{i}, \boldsymbol{p}\right)+\left(1-p_{i}\right) h\left(0_{i}, \boldsymbol{p}\right), \quad i \in C . \tag{2}
\end{equation*}
$$

Pivotal decompositions (cont.)

PROOF: Let $i \in C$, and consider two cases:
CASE 1. $x_{i}=1$. Then the right-hand side of (1) becomes:

$$
\phi\left(1_{i}, \boldsymbol{x}\right) .
$$

Hence, $\phi(\boldsymbol{x})=\phi\left(1_{i}, \boldsymbol{x}\right)$, so (1) holds in this case.
CASE 2. $x_{i}=0$. Then the right-hand side of (1) becomes:

$$
\phi\left(0_{i}, \boldsymbol{x}\right),
$$

Hence, $\phi(\boldsymbol{x})=\phi\left(0_{i}, \boldsymbol{x}\right)$, so (1) holds in this case as well.
Equation (2) is proved by replacing the vector \boldsymbol{x} by \boldsymbol{X} in (1), and taking the expectation.

Pivotal decompositions (cont.)

EXAMPLE: Let (C, ϕ) be a 2 -out-of-3 system where the component states are independent with reliabilities p_{1}, p_{2}, p_{3}, We then have:

$$
\begin{aligned}
\phi(\boldsymbol{x}) & =x_{1} \phi\left(1_{1}, \boldsymbol{x}\right)+\left(1-x_{1}\right) \phi\left(0_{1}, \boldsymbol{x}\right) \\
& =x_{1}\left[x_{2} \amalg x_{3}\right]+\left(1-x_{1}\right)\left[x_{2} \cdot x_{3}\right] \\
& =x_{1}\left[x_{2}+x_{3}-x_{2} \cdot x_{3}\right]+\left(1-x_{1}\right)\left[x_{2} \cdot x_{3}\right]
\end{aligned}
$$

From this it follows that:

$$
\begin{aligned}
h(\boldsymbol{p}) & =p_{1}\left[p_{2}+p_{3}-p_{2} \cdot p_{3}\right]+\left(1-p_{1}\right)\left[p_{2} \cdot p_{3}\right] \\
& =p_{1} p_{2}+p_{1} p_{3}-p_{1} p_{2} p_{3}+p_{2} p_{3}-p_{1} p_{2} p_{3} \\
& =p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}-2 p_{1} p_{2} p_{3}
\end{aligned}
$$

Pivotal decompositions (cont.)

Corollary

Let (C, ϕ) be a binary monotone system. We then have:

$$
\begin{aligned}
\phi(\boldsymbol{x}) & =x_{i} x_{j} \phi\left(1_{i}, 1_{j}, \boldsymbol{x}\right)+x_{i}\left(1-x_{j}\right) \phi\left(1_{i}, 0_{j}, \boldsymbol{x}\right) \\
& +\left(1-x_{i}\right) x_{j} \phi\left(0_{i}, 1_{j}, \boldsymbol{x}\right)+\left(1-x_{i}\right)\left(1-x_{j}\right) \phi\left(0_{i}, 0_{j}, \boldsymbol{x}\right), \quad i, j \in C .
\end{aligned}
$$

Similarly, for the reliability function of a binary monotone system where the component state variables are independent, we have:

$$
\begin{aligned}
h(\boldsymbol{p}) & =p_{i} p_{j} h\left(1_{i}, 1_{j}, \boldsymbol{p}\right)+p_{i}\left(1-p_{j}\right) h\left(1_{i}, 0_{j}, \boldsymbol{p}\right) \\
& +\left(1-p_{i}\right) p_{j} h\left(0_{i}, 1_{j}, \boldsymbol{p}\right)+\left(1-p_{i}\right)\left(1-p_{j}\right) h\left(0_{i}, 0_{j}, \boldsymbol{p}\right), \quad i, j \in C .
\end{aligned}
$$

PROOF: Use the pivotal decomposition theorem. Then apply the same theorem to $\phi\left(1_{i}, \boldsymbol{x}\right)$ and $\phi\left(0_{i}, \boldsymbol{x}\right)$.

Series and parallel components

Definition

Let (C, ϕ) be a binary monotone system, and let $i, j \in C$.
We say that i and j are in series if ϕ depends on the component state variables, x_{i} and x_{j}, only through the product $x_{i} \cdot x_{j}$.
We say that i and j are in parallel if ϕ depends on the component state variables, x_{i} and x_{j}, only through the coproduct $x_{i} \amalg x_{j}$.

Series and parallel components (cont.)

In this system components 1 and 2 are in series, while components 3 and 4 are in parallel. Note, however, that components 5 and 6 are not in series since component 5 is also connected via component 7 . Moreover, components 6 and 7 are in parallel.

Series and parallel components (cont.)

Theorem
Let (C, ϕ) be a binary monotone system, and let $i, j \in C$. Moreover, assume that the component state variables are independent.

If i and j are in series, then the reliability function, h, depends on p_{i} and p_{j} only through $p_{i} \cdot p_{j}$.

If i and j are in parallel, then the reliability function, h, depends on p_{i} and p_{j} only through $p_{i} \amalg p_{j}$.

Series and parallel components (cont.)

PROOF: If i and j are in series, we have:

$$
\phi\left(1_{i}, 0_{j}, \boldsymbol{x}\right)=\phi\left(0_{i}, 1_{j}, \boldsymbol{x}\right)=\phi\left(0_{i}, 0_{j}, \boldsymbol{x}\right)
$$

Thus, by pivotal decomposition we have:

$$
\begin{aligned}
\phi(\boldsymbol{x}) & =x_{i} x_{j} \phi\left(1_{i}, 1_{j}, \boldsymbol{x}\right)+x_{i}\left(1-x_{j}\right) \phi\left(1_{i}, 0_{j}, \boldsymbol{x}\right) \\
& +\left(1-x_{i}\right) x_{j} \phi\left(0_{i}, 1_{j}, \boldsymbol{x}\right)+\left(1-x_{i}\right)\left(1-x_{j}\right) \phi\left(0_{i}, 0_{j}, \boldsymbol{x}\right) \\
& =\left(x_{i} x_{j}\right) \cdot \phi\left(1_{i}, 1_{j}, \boldsymbol{x}\right)+\left(1-\left(x_{i} x_{j}\right)\right) \cdot \phi\left(0_{i}, 0_{j}, \boldsymbol{x}\right) .
\end{aligned}
$$

Hence, by replacing the vector \boldsymbol{x} by \boldsymbol{X} and taking expectations we get:

$$
h(\boldsymbol{p})=\left(p_{i} p_{j}\right) \cdot h\left(1_{i}, 1_{j}, \boldsymbol{p}\right)+\left(1-\left(p_{i} p_{j}\right)\right) \cdot h\left(0_{i}, 0_{j}, \boldsymbol{p}\right)
$$

That is, h, depends on p_{i} and p_{j} only through $p_{i} \cdot p_{j}$.

Series and parallel components (cont.)

If i and j are in parallel, we have:

$$
\phi\left(1_{i}, 1_{j}, \boldsymbol{x}\right)=\phi\left(1_{i}, 0_{j}, \boldsymbol{x}\right)=\phi\left(0_{i}, 1_{j}, \boldsymbol{x}\right) .
$$

Thus, by pivotal decomposition we have:

$$
\begin{aligned}
\phi(\boldsymbol{x}) & =x_{i} x_{j} \phi\left(1_{i}, 1_{j}, \boldsymbol{x}\right)+x_{i}\left(1-x_{j}\right) \phi\left(1_{i}, 0_{j}, \boldsymbol{x}\right) \\
& +\left(1-x_{i}\right) x_{j} \phi\left(0_{i}, 1_{j}, \boldsymbol{x}\right)+\left(1-x_{i}\right)\left(1-x_{j}\right) \phi\left(0_{i}, 0_{j}, \boldsymbol{x}\right) \\
& =\left(x_{i} \amalg x_{j}\right) \cdot \phi\left(1_{i}, 1_{j}, \boldsymbol{x}\right)+\left(1-\left(x_{i} \amalg x_{j}\right)\right) \cdot \phi\left(0_{i}, 0_{j}, \boldsymbol{x}\right) .
\end{aligned}
$$

Hence, by replacing the vector \boldsymbol{x} by \boldsymbol{X} and taking expectations we get:

$$
h(\boldsymbol{p})=\left(p_{i} \amalg p_{j}\right) \cdot h\left(1_{i}, 1_{j}, \boldsymbol{p}\right)+\left(1-\left(p_{i} \amalg p_{j}\right)\right) \cdot h\left(0_{i}, 0_{j}, \boldsymbol{p}\right) .
$$

That is, h, depends on p_{i} and p_{j} only through $p_{i} \amalg p_{j}$.

s-p-reductions

Consider a binary monotone system, (C, ϕ) where the component state variables are independent, and let $i, j \in C$.

SERIES REDUCTION: If the components i and j are in series, then we may replace i and j by a single component i^{\prime} with reliability $p_{i^{\prime}}=p_{i} p_{j}$ without altering the system reliability.
PARALLEL REDUCTION: If the components i and j are in parallel, then we may replace i and j by a single component i^{\prime} with reliability $p_{i^{\prime}}=p_{i} \amalg p_{j}$ without altering the system reliability.

Series and parallel reductions are referred to as $s-p$-reductions. Each $\mathrm{s}-\mathrm{p}$-reduction reduces the number of components in the system by one.

A system that can be reduced to a single component by applying a sequence of s-p-reductions is called an s-p-system.

s-p-reductions (cont.)

This 7-component system is an s-p-system. Its reliability function can be derived using s-p-reductions only and is given by:

$$
h(\boldsymbol{p})=\left[p_{1} p_{2}\left(p_{3} \amalg p_{4}\right)\right] \amalg\left[p_{5}\left(p_{6} \amalg p_{7}\right)\right]
$$

