STK3405 - Lecture 4

A. B. Huseby \& K. R. Dahl

Department of Mathematics
University of Oslo, Norway

Section 3.1

Pivotal decompositions

Pivotal decompositions

Theorem
Let (C, ϕ) be a binary monotone system. We then have:

$$
\begin{equation*}
\phi(\boldsymbol{x})=x_{i} \phi\left(1_{i}, \boldsymbol{x}\right)+\left(1-x_{i}\right) \phi\left(0_{i}, \boldsymbol{x}\right), \quad i \in C . \tag{1}
\end{equation*}
$$

Similarly, for the reliability function of a binary monotone system where the component state variables are independent, we have

$$
\begin{equation*}
h(\boldsymbol{p})=p_{i} h\left(1_{i}, \boldsymbol{p}\right)+\left(1-p_{i}\right) h\left(0_{i}, \boldsymbol{p}\right), \quad i \in C . \tag{2}
\end{equation*}
$$

Series and parallel components

Definition

Let (C, ϕ) be a binary monotone system, and let $i, j \in C$.
We say that i and j are in series if ϕ depends on the component state variables, x_{i} and x_{j}, only through the product $x_{i} \cdot x_{j}$.
We say that i and j are in parallel if ϕ depends on the component state variables, x_{i} and x_{j}, only through the coproduct $x_{i} \amalg x_{j}$.

Series and parallel components (cont.)

Theorem
Let (C, ϕ) be a binary monotone system, and let $i, j \in C$. Moreover, assume that the component state variables are independent.

If i and j are in series, then the reliability function, h, depends on p_{i} and p_{j} only through $p_{i} \cdot p_{j}$.

If i and j are in parallel, then the reliability function, h, depends on p_{i} and p_{j} only through $p_{i} \amalg p_{j}$.

Pivotal decompositions and s-p-reductions

Let (C, ϕ) be the bridge structure shown above. In order to derive the structure function of this system, we note that:
$\phi\left(1_{3}, \boldsymbol{X}\right)=$ The system state given that component 3 is functioning
$\phi\left(0_{3}, \boldsymbol{X}\right)=$ The system state given that component 3 is failed

Pivotal decompositions and s-p-reductions (cont.)

Given that component 3 is functioning, the system becomes a series connection of two parallel systems. Hence, by using s-p-reductions, we get that:

$$
\phi\left(1_{3}, \boldsymbol{X}\right)=\left(X_{1} \amalg X_{2}\right) \cdot\left(X_{4} \amalg X_{5}\right) .
$$

Pivotal decompositions and s-p-reductions (cont.)

Given that component 3 is failed, the system becomes a parallel connection of two series systems. Hence, by using s-p-reductions, we get that:

$$
\phi\left(0_{3}, \boldsymbol{X}\right)=\left(X_{1} \cdot X_{4}\right) \amalg\left(X_{2} \cdot X_{5}\right) .
$$

Pivotal decompositions and s-p-reductions (cont.)

By the pivotal decomposition theorem it follows that ϕ can be written as:

$$
\phi(\boldsymbol{X})=X_{3} \cdot \phi\left(1_{3}, \boldsymbol{X}\right)+\left(1-X_{3}\right) \cdot \phi\left(0_{3}, \boldsymbol{X}\right) .
$$

Combining all this we get that ϕ is given by:

$$
\phi(\boldsymbol{X})=X_{3} \cdot\left(X_{1} \amalg X_{2}\right) \cdot\left(X_{4} \amalg X_{5}\right)+\left(1-X_{3}\right) \cdot\left(\left(X_{1} \cdot X_{4}\right) \amalg\left(X_{2} \cdot X_{5}\right)\right) .
$$

Moreover, assuming that the component state variables are independent, the reliability of the systems is:

$$
h(\boldsymbol{p})=p_{3} \cdot\left(p_{1} \amalg p_{2}\right) \cdot\left(p_{4} \amalg p_{5}\right)+\left(1-p_{3}\right) \cdot\left(\left(p_{1} \cdot p_{4}\right) \amalg\left(p_{2} \cdot p_{5}\right)\right) .
$$

Pivotal decompositions and s-p-reductions

Let (C, ϕ) be the system shown above. In order to derive the structure function of this system, we note that:
$\phi\left(1_{1}, \boldsymbol{X}\right)=$ The system state given that component 1 is functioning
$\phi\left(0_{1}, \boldsymbol{X}\right)=$ The system state given that component 1 is failed

Pivotal decompositions and s-p-reductions (cont.)

Given that component 1 is functioning, the system becomes a parallel system of components 2 and 3 (since the lower path $\{2,3,4\}$ can be ignored in this case). Hence, by using s-p-reductions, we get that:

$$
\phi\left(1_{1}, \boldsymbol{X}\right)=X_{2} \amalg X_{3} .
$$

NOTE: In this subsystem component 4 is irrelevant. Thus, $\left(\{2,3,4\}, \phi\left(1_{1}, \boldsymbol{X}\right)\right)$ is not coherent.

Pivotal decompositions and s-p-reductions (cont.)

Given that component 1 is failed, the system becomes a series system of components 2,3 and 4 . Hence, by using s-p-reductions, we get that:

$$
\phi\left(0_{1}, \boldsymbol{X}\right)=X_{2} \cdot X_{3} \cdot X_{4}
$$

Pivotal decompositions and s-p-reductions (cont.)

By the pivotal decomposition theorem it follows that ϕ can be written as:

$$
\phi(\boldsymbol{X})=X_{1} \cdot \phi\left(1_{1}, \boldsymbol{X}\right)+\left(1-X_{1}\right) \cdot \phi\left(0_{1}, \boldsymbol{X}\right) .
$$

Combining all this we get that ϕ is given by:

$$
\phi(\boldsymbol{X})=X_{1} \cdot\left(X_{2} \amalg X_{3}\right)+\left(1-X_{1}\right) \cdot\left(X_{2} \cdot X_{3} \cdot X_{4}\right) .
$$

Moreover, assuming that the component state variables are independent, the reliability of the systems is:

$$
h(\boldsymbol{p})=p_{1} \cdot\left(p_{2} \amalg p_{3}\right)+\left(1-p_{1}\right) \cdot\left(p_{2} \cdot p_{3} \cdot p_{4}\right) .
$$

Pivotal decompositions and s-p-reductions

Let (C, ϕ) be the system shown above. In order to derive the structure function of this system, we note that:
$\phi\left(1_{4}, \boldsymbol{X}\right)=$ The system state given that component 4 is functioning
$\phi\left(0_{4}, \boldsymbol{X}\right)=$ The system state given that component 4 is failed

Pivotal decompositions and s-p-reductions (cont.)

Given that component 4 is functioning, the system becomes a 2 -out-of-3 system of components 1,2 and 3 . Hence, we get that:

$$
\begin{aligned}
\phi\left(1_{4}, \boldsymbol{X}\right) & =\left(X_{1} \cdot X_{2}\right) \amalg\left(X_{1} \cdot X_{3}\right) \amalg\left(X_{2} \cdot X_{3}\right) \\
& =X_{1} X_{2}+X_{1} X_{3}+X_{2} X_{3}-2 X_{1} X_{2} X_{3}
\end{aligned}
$$

Pivotal decompositions and s-p-reductions (cont.)

Given that component 4 is failed, the system becomes an s-p-system of components 1,2 and 3 . Hence, by using s-p-reductions, we get that:

$$
\phi\left(0_{4}, \boldsymbol{X}\right)=X_{1} \cdot\left(X_{2} \amalg X_{3}\right) .
$$

Pivotal decompositions and s-p-reductions (cont.)

By the pivotal decomposition theorem it follows that ϕ can be written as:

$$
\phi(\boldsymbol{X})=X_{4} \cdot \phi\left(1_{4}, \boldsymbol{X}\right)+\left(1-X_{4}\right) \cdot \phi\left(0_{4}, \boldsymbol{X}\right) .
$$

Combining all this we get that ϕ is given by:
$\phi(\boldsymbol{X})=X_{4} \cdot\left(X_{1} X_{2}+X_{1} X_{3}+X_{2} X_{3}-2 X_{1} X_{2} X_{3}\right)+\left(1-X_{4}\right) \cdot X_{1} \cdot\left(X_{2} \amalg X_{3}\right)$.
Moreover, assuming that the component state variables are independent, the reliability of the systems is:

$$
h(\boldsymbol{p})=p_{4} \cdot\left(p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}-2 p_{1} p_{2} p_{3}\right)+\left(1-p_{4}\right) \cdot p_{1} \cdot\left(p_{2} \amalg p_{3}\right) .
$$

NOTE: This expression is more complex than the one we obtained by doing a pivotal decomposition with respect to component 1 .

Strict monotonicity

Theorem

Let $h(\boldsymbol{p})$ be the reliability function of a binary monotone system (C, ϕ) of order n, and assume that $0<p_{j}<1$ for all $j \in C$. If component i is relevant, then $h(\boldsymbol{p})$ is strictly increasing in p_{i}.

PROOF: Using pivotal decomposition wrt. component i it follows that:

$$
\begin{aligned}
\frac{\partial h(\boldsymbol{p})}{\partial p_{i}} & =\frac{\partial}{\partial p_{i}}\left[p_{i} h\left(1_{i}, \boldsymbol{p}\right)+\left(1-p_{i}\right) h\left(0_{i}, \boldsymbol{p}\right)\right] \\
& =h\left(1_{i}, \boldsymbol{p}\right)-h\left(0_{i}, \boldsymbol{p}\right) \\
& =E\left[\phi\left(1_{i}, \boldsymbol{X}\right)\right]-E\left[\phi\left(0_{i}, \boldsymbol{X}\right)\right]=E\left[\phi\left(1_{i}, \boldsymbol{X}\right)-\phi\left(0_{i}, \boldsymbol{X}\right)\right] \\
& =\sum_{(\cdot i, \boldsymbol{X}) \in\{0,1\}^{n-1}}\left[\phi\left(1_{i}, \boldsymbol{x}\right)-\phi\left(0_{i}, \boldsymbol{x}\right)\right] P\left((\cdot i, \boldsymbol{X})=\left(\cdot{ }_{i}, \boldsymbol{x}\right)\right)
\end{aligned}
$$

Strict monotonicity (cont.)

Since ϕ is non-decreasing in each argument it follows that:

$$
\left[\phi\left(1_{i}, \boldsymbol{x}\right)-\phi\left(0_{i}, \boldsymbol{x}\right)\right] \geq 0, \text { for all }(\cdot i, \boldsymbol{x}) \in\{0,1\}^{n-1}
$$

If i is relevant, there exists at least one $(\cdot i, \boldsymbol{y}) \in\{0,1\}^{n-1}$ such that:

$$
\left[\phi\left(1_{i}, \boldsymbol{y}\right)-\phi\left(0_{i}, \boldsymbol{y}\right)\right]>0 .
$$

Since $0<p_{j}<1$ for all $j \in C$, we have:

$$
P\left(\left(\cdot_{i}, \boldsymbol{X}\right)=(\cdot i, \boldsymbol{x})\right)>0, \text { for all }(\cdot i, \boldsymbol{x}) \in\{0,1\}^{n-1}
$$

From this it follows that:

$$
\frac{\partial h(\boldsymbol{p})}{\partial p_{i}}>0
$$

That is, $h(\boldsymbol{p})$ is strictly increasing in p_{i}.

Section 3.2

Representation of binary monotone systems by paths and cuts

Path and cut sets

NOTATION: Let $\boldsymbol{x}, \boldsymbol{y} \in\{0,1\}^{n}$. Then $\boldsymbol{y}<\boldsymbol{x}$ means that:

$$
\begin{aligned}
& y_{i} \leq x_{i}, \text { for all } i \in\{1, \ldots, n\} . \\
& y_{i}<x_{i}, \text { for at least one } i \in\{1, \ldots, n\} .
\end{aligned}
$$

Let (C, ϕ) be a binary monotone system of order n. For a given vector $\boldsymbol{x} \in\{0,1\}^{n}$ the component set C can be divided into two subsets

$$
\begin{aligned}
& C_{0}(\boldsymbol{x})=\left\{i: x_{i}=0\right\}=\text { The set of failed components } \\
& C_{1}(\boldsymbol{x})=\left\{i: x_{i}=1\right\}=\text { The set of functioning components }
\end{aligned}
$$

Path and cut sets (cont.)

Let (C, ϕ) be a binary monotone system.

- A vector \boldsymbol{x} is a path vector if and only if $\phi(\boldsymbol{x})=1$. The corresponding path set is $C_{1}(\boldsymbol{x})$.
- A minimal path vector is a path vector, \boldsymbol{x}, such that $\boldsymbol{y}<\boldsymbol{x}$ implies that $\phi(\boldsymbol{y})=0$. The corresponding minimal path set is $\boldsymbol{C}_{1}(\boldsymbol{x})$.
- A vector \boldsymbol{x} is a cut vector if and only if $\phi(\boldsymbol{x})=0$. The corresponding cut set is $C_{0}(\boldsymbol{x})$.
- A minimal cut vector is a cut vector, \boldsymbol{x}, such that $\boldsymbol{x}<\boldsymbol{y}$ implies that $\phi(\boldsymbol{y})=1$. The corresponding minimal cut set is $C_{0}(\boldsymbol{x})$.

Path and cut sets (cont.)

MINIMAL PATH SETS:

$$
P_{1}=\{1,4\}, \quad P_{2}=\{2,5\}, \quad P_{3}=\{1,3,5\}, \quad P_{4}=\{2,3,4\} .
$$

MINIMAL CUT SETS:

$$
K_{1}=\{1,2\}, \quad K_{2}=\{4,5\}, \quad K_{3}=\{1,3,5\}, \quad K_{4}=\{2,3,4\} .
$$

Path and cut sets (cont.)

MINIMAL PATH SETS:

$$
P_{1}=\{1,2\}, \quad P_{2}=\{1,3\}, \quad P_{3}=\{2,3,4\} .
$$

MINIMAL CUT SETS:

$$
K_{1}=\{1,2\}, \quad K_{2}=\{1,3\}, \quad K_{3}=\{1,4\}, \quad K_{4}=\{2,3\} .
$$

Path and cut sets (cont.)

Consider a binary monotone system (C, ϕ) with minimal path sets P_{1}, \ldots, P_{p}, and minimal cut sets K_{1}, \ldots, K_{k}.
For $j=1, \ldots, p$ the j-th minimal path series structure is a binary monotone system $\left(P_{j}, \rho_{j}\right)$ where:

$$
\rho\left(\boldsymbol{x}^{P_{j}}\right)=\prod_{i \in P_{j}} x_{i} .
$$

For $j=1, \ldots, k$ the j-th minimal cut parallel structure is a binary monotone system (K_{j}, κ_{j}) where:

$$
\kappa\left(\boldsymbol{x}^{K_{j}}\right)=\coprod_{i \in K_{j}} x_{i} .
$$

Path and cut sets (cont.)

We now claim that:

$$
\begin{aligned}
\phi(\boldsymbol{x}) & =\coprod_{j=1}^{p} \rho_{j}\left(\boldsymbol{x}^{P_{j}}\right)=\coprod_{j=1}^{p} \prod_{i \in P_{j}} x_{i} \\
& =\prod_{j=1}^{k} \kappa_{j}\left(\boldsymbol{x}^{K_{j}}\right)=\prod_{j=1}^{k} \coprod_{i \in K_{j}} x_{i}
\end{aligned}
$$

EXPLANATION: The system functions if and only if at least one of the minimal path series structures functions. Moreover, the system functions if and only if all the minimal cut series structures function.

Minimal path series structures of 2-out-of-3 system

The minimal path sets of a 2-out-of-3 systems are : $P_{1}=\{1,2\}$, $P_{2}=\{1,3\}, P_{3}=\{2,3\}$.

Minimal cut parallel structures of 2-out-of-3 system

The minimal cut sets of a 2-out-of-3 systems are: $K_{1}=\{1,2\}$, $K_{2}=\{1,3\}, K_{3}=\{2,3\}$.

Minimal path series structures of a bridge system

The minimal path sets of a bridge systems are:

$$
P_{1}=\{1,4\}, P_{2}=\{1,3,5\}, P_{3}=\{2,3,4\}, P_{4}=\{2,5\} .
$$

Minimal cut parallel structures of a bridge system

The minimal cut sets of a bridge systems are:

$$
K_{1}=\{1,2\}, K_{2}=\{1,3,5\}, K_{3}=\{2,3,4\}, K_{4}=\{4,5\} .
$$

Path and cut sets in dual systems

Theorem

Let (C, ϕ) be a binary monotone system, and let $\left(C^{D}, \phi^{D}\right)$ be its dual.
Then the following statements hold:

- \boldsymbol{x} is a path vector (alternatively, cut vector) for (C, ϕ) if and only if \boldsymbol{x}^{D} is a cut vector (path vector) for $\left(C^{D}, \phi^{D}\right)$.
- A minimal path set (alternatively, cut set) for (C, ϕ) is a minimal cut set (path set) for $\left(C^{D}, \phi^{D}\right)$.

