### STK3405 - Lecture 5

A. B. Huseby & K. R. Dahl

Department of Mathematics University of Oslo, Norway





### Section 3.3

Modules of monotone systems





# Modules of monotone systems

If  $A \subseteq C$ , then the complement set of A, i.e.,  $C \setminus A$ , is denoted by  $\bar{A}$ . We also let  $\mathbf{x}^A$  and  $\mathbf{x}^{\bar{A}}$  denote the subvectors of  $\mathbf{x}$  corresponding to the sets A and  $\bar{A}$  respectively.

#### **Definition**

Let  $(C, \phi)$  be a binary monotone system, and  $A \subseteq C$ . The monotone system  $(A, \chi)$  is a *module* of  $(C, \phi)$  if and only if the structure function  $\phi$  can be written as:

$$\phi(\mathbf{x}) = \psi(\chi(\mathbf{x}^A), \mathbf{x}^{\bar{A}}), \quad \text{ for all } \mathbf{x} \in \{0, 1\}^n,$$

where  $\psi$  is a monotone structure function. The set A is called a *modular set* of  $(C, \phi)$ .



### Example: Series and parallel components

Example (Series and parallel components)

Let  $(C, \phi)$  be a binary monotone system, and let  $i, j \in C$ .

We say that i and j are in series if  $\phi$  depends on the component state variables,  $x_i$  and  $x_i$ , only through the product  $x_i \cdot x_i$ .

Thus, if *i* and *j* are *in series*, then  $(A, \chi)$ , where  $A = \{i, j\}$  and  $\chi(x_i, x_j) = x_i \cdot x_j$ , is a *module* of  $(C, \phi)$ .

We say that i and j are in parallel if  $\phi$  depends on the component state variables,  $x_i$  and  $x_j$ , only through the coproduct  $x_i \coprod x_j$ .

Thus, if i and j are in parallel, then  $(A, \chi)$ , where  $A = \{i, j\}$  and  $\chi(x_i, x_j) = x_i \coprod x_j$ , is a module of  $(C, \phi)$ .





## Modules of monotone systems

#### Definition

A modular decomposition of a monotone system  $(C, \phi)$  is a set of modules  $\{(A_j, \chi_j)\}_{j=1}^r$  connected by a binary monotone organisation structure function  $\psi$ . The following conditions must be satisfied:

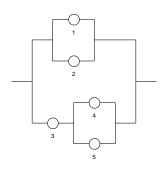
- $C = \bigcup_{j=1}^r A_j$ , and  $A_j \cap A_k = \emptyset$  for  $j \neq k$ .

We observe that a modular decomposition is a disjoint partition of the component set into modules such that the structure function of the whole system is a function of the structure functions of these modules.





## Modules of monotone systems (cont.)



**Modules:**  $(A_1, \chi_1)$  and  $(A_2, \chi_2)$  where  $A_1 = \{1, 2\}$  and  $A_2 = \{3, 4, 5\}$ , and:

$$\chi_1(x_1, x_2) = x_1 \coprod x_2,$$
  
 $\chi_2(x_3, x_4, x_5) = x_3 \cdot (x_4 \coprod x_5)$   
 $\psi(\chi_1, \chi_2) = \chi_1 \coprod \chi_2$ 





### Section 3.4

Dynamic system analysis





# Dynamic system analysis

Let  $(C, \phi)$  be a binary monotone system, and introduce for  $t \ge 0$ :

 $X_i(t)$  = the state of component i at time t,  $i \in C$ ,  $\phi(X(t))$  = the state of the system at time t.

- $X_i(t)$  is a random variable (for any given t).
- $\{X_i(t): t \ge 0\}$ , is a stochastic process.
- $\phi(\mathbf{X}(t))$  is a random variable (for any given t).
- $\{\phi(\mathbf{X}(t)): t \geq 0\}$  is a stochastic process.

We assume that the stochastic processes  $\{X_i(t): t \geq 0\}_{i=1}^n$  are independent.





### Dynamic system analysis (cont.)

We also introduce:

$$p_i(t) = P(X_i(t) = 1) = \text{ The reliability of component } i \text{ at time } t,$$
  
 $h(\mathbf{p}(t)) = P(\phi(\mathbf{X}(t)) = 1) = \text{ The reliability of the system at time } t.$ 

We assume that the components cannot be repaired and let:

 $T_i$  = The lifetime of component i,

S = The lifetime of the system.

NOTE:

$$P(X_i(t) = 1) = P(T_i > t), i \in C,$$
  
 $P(\phi(X(t)) = 1) = P(S > t).$ 





### Dynamic system analysis (cont.)

We denote the cumulative distribution of  $T_i$  by  $F_i$ ,  $i \in C$ , and the cumulative distribution of  $\phi$  by G. We then have the following relations:

$$p_i(t) = P(X_i(t) = 1) = P(T_i > t) = 1 - F_i(t) =: \bar{F}_i(t), \quad i \in C,$$
  
 $h(t) = P(\phi(X(t)) = 1) = P(S > t) = 1 - G(t) =: \bar{G}(t).$ 

NOTE: Determining the lifetime distribution for the system is the same as finding the reliability of the system at time t, i.e., h(t), for all time  $t \ge 0$ , and then letting G(t) = 1 - h(t).





### Dynamic system analysis (cont.)

#### **Theorem**

For a monotone system  $(C, \phi)$  with minimal path sets  $P_1, \ldots, P_p$  and minimal cut sets  $K_1, \ldots, K_k$  we have:

$$\mathcal{S} = \begin{cases} \max_{1 \leq j \leq p} \min_{i \in P_j} T_i \\ \min_{1 \leq j \leq k} \max_{i \in K_j} T_i \end{cases}$$

PROOF: The lifetime of the system equals the lifetime of the minimal path series structure which lives the longest.

The lifetime of a minimal path series structure equals the lifetime of the shortest living component in this path set.

The second equality can be proved similarly.



### Chapter 4

Exact computation of reliability of binary monotone systems





# Computational complexity

#### Let:

n = The size of the problem (e.g., number of components)

t(n) = The worst case running time of the algorithm as a function of n

f(n) = Some known non-negative increasing function of n

The order of the algorithm is said to be O(f(n)) if and only if there exists a positive constant M and a positive integer  $n_0$  such that:

$$t(n) \leq Mf(n)$$
, for all  $n \geq n_0$ .

If f is a polynomial in n, we say that the algorithm is a *polynomial time* algorithm, while if f is an exponential function of n, we say that the algorithm is an *exponential time* algorithm.

# Computational complexity (cont.)

- NP (for nondeterministic polynomial time) is a complexity class used to describe certain types of problems.
- NP contains many important problems, the hardest of which are called NP-complete problems.
- Open question: Is it possible to find a polynomial time algorithm for solving NP-complete problems. Conjecture: NO.
- The class of *NP-hard* problems is a class of problems that are, informally, at least as hard as the hardest problems in *NP*.
- The problem of computing the reliability of a binary monotone system is known to be NP-hard in the general case.





## Computational complexity (cont.)

**EXAMPLE:** In order to calculate the reliability of k-out-of-n system we need to do:

- $2 \cdot (2 + 3 + \cdots + n) = (n+2)(n-1)$  multiplications
- $1 + 2 + \cdots (n-1) = \frac{n(n-1)}{2}$  additions

Thus, we have:

$$t(n) = (n+2)(n-1) + \frac{n(n-1)}{2}$$
$$= \frac{3}{2}n^2 + \frac{1}{2}n - 2 \le 2n^2$$

This shows that the reliability of a k-out-of-n system can be calculated in  $O(n^2)$  time.

## Threshold systems

A *threshold system* is a binary monotone system  $(C, \phi)$ , where the structure function has the following form:

$$\phi(\mathbf{x}) = I(\sum_{i=1}^n a_i x_i \ge b),$$

where  $a_1, \ldots, a_n$  and b are non-negative real numbers, and  $I(\cdot)$  denotes the indicator function, i.e., a function defined for any event A which is 1 if A is true and zero otherwise.

NOTE: If  $a_1 = \cdots = a_n = 1$  and b = k, the threshold system is reduced to a k-out-of-n system. Thus, threshold systems are a generalisation of k-out-of-n systems.

It can be shown that calculating the reliability of a threshold system in general is NP-hard.

Let  $(C, \phi)$  a threshold system where  $a_1, \ldots, a_n$  and b are positive integers, and introduce:

$$S_j=\sum_{i=1}^j a_iX_i,\quad j=1,2,\ldots,n.$$

By the assumptions it follows that  $S_1, \ldots, S_n$  are integer valued stochastic variables.

Thus, the generating function for  $S_j$ , i.e.,  $G_{S_j}(y) = E[y^{S_j}]$  is a polynomial, and the distribution of  $S_j$  can be derived directly from the coefficients of  $G_{S_j}(y)$ , j = 1, ..., n.



We also introduce:

$$d_j = \sum_{i=1}^j a_i, \quad j = 1, 2, \dots, n.$$

It follows that:

$$\deg(G_{S_j}(y))=d_j,\quad j=1,2,\ldots,n.$$

Assuming  $G_{S_i}(y)$  has been calculated, we can find  $G_{S_{i+1}}(y)$  as:

$$G_{\mathcal{S}_{j+1}}(y) = G_{\mathcal{S}_j}(y) \cdot G_{a_{j+1}X_{j+1}}(y)$$

In the worst case this would require  $2(d_j + 1)$  multiplications and  $d_j$  additions.





**EXAMPLE:** Assume that  $a_j = 2^{j-1}$ , j = 1, ..., n. We then have:

$$\deg(G_{S_j}(y)) = d_j = \sum_{i=1}^j 2^{i-1} = 2^j - 1, \quad j = 1, 2, \dots, n.$$

In fact, in this case  $G_{S_j}(y)$  consists of  $2^j$  non-zero terms (including the constant term)!

Calculating  $G_{S_{j+1}}(y)$  from  $G_{S_j}(y)$  would require  $2^{j+1}$  multiplications and  $2^j - 1$  additions.

Thus, using generating functions for calculating the reliability of this threshold system takes  $O(2^n)$  time.





**EXAMPLE:** Assume that  $a_j \le A$ , j = 1, ..., n, where A is a fixed positive integer. We then have:

$$\deg(G_{S_j}(y)) = d_j \leq \sum_{j=1}^{j} A = Aj, \quad j = 1, 2, ..., n.$$

Calculating  $G_{S_{j+1}}(y)$  from  $G_{S_j}(y)$  would require at most 2(Aj+1) multiplications and Aj additions.

Since A is a fixed constant, it follows that calculating the reliability of such a threshold system takes  $O(n^2)$  time.



