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Section 4.1.

State space enumeration
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State space enumeration

We know that the reliability of a binary monotone system (C, φ) is
simply the expected value of φ(X ).

Thus, by standard probability theory this can be calculated as:

h = E [φ(X )] =
∑

x∈{0,1}n

φ(x)P(X = x)

NOTE:
Calculating reliability using state space enumeration implies
summing 2n terms.
If the components are dependent, the entire joint distribution of X
is needed.
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State space enumeration (cont.)

If the component reliabilities are p1, . . . ,pn, we may write:

P(Xi = xi) = pxi
i (1− pi)

1−xi , xi = 0,1, i = 1, . . . ,n.

Thus, if the components are independent, we have:

P(X = x) =
n∏

i=1

pxi
i (1− pi)

1−xi

Inserting this into the state space enumeration formula we get:

h(p) =
∑

x∈{0,1}n

φ(x)
n∏

i=1

pxi
i (1− pi)

1−xi .
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State space enumeration (cont.)

NOTE: Due to the large number of terms in the expansion, the
algorithm is at least of order O(2n). The order is typically greater since
the work of computing φ(·) for each x must be included as well.

It is possible to improve the algorithm by utilising that φ is
non-decreasing in each argument:

If e.g., φ(x0) = 0, it follows that φ(x) = 0 for all x < x0 as well. Hence,
any state vector such that x < x0 can be eliminated from the sum.
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State space enumeration (cont.)

Let C = {1,2,3}, and let:

φ(x) = (x1 q x2) · x3.

The component state variables are independent, and the component
reliabilities are P(Xi = 1) = pi , i = 1,2,3.

We then have:

h(p) = φ(0,0,0) · (1− p1)(1− p2)(1− p3)

+ φ(1,0,0) · p1(1− p2)(1− p3) + · · ·+ φ(1,1,1) · p1p2p3

= p1(1− p2)p3 + (1− p1)p2p3 + p1p2p3.
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State space enumeration (cont.)

NOTE: There are exactly 3 vectors such that φ(x) = 1:

x1 = (1,0,1), x2 = (0,1,1), x3 = (1,1,1).

Hence, the reliability function contains just 3 terms, not 23 = 8 terms.

NOTE: All terms have p3 as a common factor, and:

p1(1− p2) + (1− p1)p2 + p1p2 = p1 q p2

Hence, h(p) can be simplified to:

h(p) = [p1(1− p2) + (1− p1)p2 + p1p2] · p3

= (p1 q p2)p3

The last expression can be obtained directly from the structure
function since the system is an s-p-system.
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Section 4.2.

The multiplication method
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The multiplication method

Consider a binary monotone system with minimal path sets:

P1, . . . ,Pp,

and minimal cut sets:
K1, . . . ,Kk .

We then have:

φ(X ) =

p∐
j=1

∏
i∈Pj

Xi = 1− [

p∏
j=1

(1−
∏
i∈Pj

Xi)]

=
k∏

j=1

∐
i∈Kj

Xi =
k∏

j=1

[1−
∏
i∈Kj

(1− Xi)].

A. B. Huseby & K. R. Dahl (Univ. of Oslo) Lecture 6 9 / 29



The multiplication method (cont.)

By expanding either the formula based on the minimal path sets, or the
formula based on the minimal cut sets, and using that X r

i = Xi ,
i = 1, . . . ,n, r = 1,2, . . ., we eventually get an expression of the form:

φ(X ) =
∑
A⊆C

δ(A)
∏
i∈A

Xi

where for all A ⊆ C, δ(A) denotes the coefficient of the term
associated with

∏
i∈A Xi . The δ-function is called the signed domination

function of the structure.

A. B. Huseby & K. R. Dahl (Univ. of Oslo) Lecture 6 10 / 29



The multiplication method (cont.)

By taking the expectation on both sides, and assuming that the
component state variables are independent, we obtain:

h(p) = E [φ(X )] =
∑
A⊆C

δ(A)
∏
i∈A

E [Xi ] =
∑
A⊆C

δ(A)
∏
i∈A

pi

The sum contains 2n terms.

Hence, the multiplication method also has at least order O(2n).

Typically, many of the terms vanish since we may have δ(A) = 0 for
many of the sets A. Improved versions of this method utilizes this.

A. B. Huseby & K. R. Dahl (Univ. of Oslo) Lecture 6 11 / 29



The multiplication method (cont.)

Introduce the following version of the structure function of a binary
monotone system (C, φ):

φ(B) = φ(1B,0B̄), for all B ⊆ C.

Thus, φ(B) represents the state of the system given that all the
components in the set B are functioning, while all the components in
the set B̄ = C \ B are failed.

We now have:

δ(A) =
∑
B⊆A

(−1)|A|−|B|φ(B), for all A ⊆ C.

NOTE: This formula allows us to compute the signed domination
function without using the minimal path and cut sets. For certain
classes of systems this can be used to establsih formulas allowing
much faster calculations.
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Properties of the signed domination

Theorem
Let (C, φ) be a binary monotone system, and let A ⊆ C.

If φ(A) = 0, then δ(A) = 0 as well.

PROOF: Since φ is nondecreasing in each argument, it follows from
the assumption that φ(B) = 0 for all B ⊆ A. Hence,

δ(A) =
∑
B⊆A

(−1)|A|−|B|φ(B) = 0.
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Properties of the signed domination (cont.)

Theorem
Let (C, φ) be a binary monotone system, let A ⊆ C, and let i ∈ A.

If φ(B ∪ i) = φ(B) for all B ⊆ A \ i , then δ(A) = 0.

PROOF:

δ(A) =
∑
B⊆A

(−1)|A|−|B|φ(B)

=
∑

B⊆A\i

(−1)|A|−|B|φ(B) +
∑

B⊆A\i

(−1)|A|−|B∪i|φ(B ∪ i)

=
∑

B⊆A\i

(−1)|A|−|B|φ(B)−
∑

B⊆A\i

(−1)|A|−|B|φ(B) = 0
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Properties of the signed domination (cont.)

Theorem
Let (C, φ) be a binary monotone system, let P ⊆ C be a minimal path
set.

Then δ(P) = 1.

PROOF: Since P is a minimal path set, it follows that φ(P) = 1 and
that φ(B) = 0 for all B ⊂ P. Hence,

δ(P) =
∑
B⊆P

(−1)|P|−|B|φ(B)

= (−1)|P|−|P|φ(P) = 1.
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The multiplication method (cont.)

Consider a binary monotone system (C, φ) where C = {1,2,3}, with
minimal path sets P1 = {1,2} and P2 = {1,3}. Using the multiplication
method we obtain:

φ(X ) = (X1X2)q (X1X3) = 1− (1− X1X2)(1− X1X3)

= 1− (1− X1X2 − X1X3 + X 2
1 X2X3)

= X1X2 + X1X3 − X1X2X3,

where we have used that X 2
1 = X1.

Thus, δ({1,2}) = δ({1,3}) = 1, δ({1,2,3}) = −1, while δ(A) = 0 for all
other subsets of C.

A. B. Huseby & K. R. Dahl (Univ. of Oslo) Lecture 6 16 / 29



The multiplication method (cont.)

Note that these coefficients can be obtained using the signed
domination formula and the theorems as well since:

δ({1,2}) = 1, since {1,2} is a minimal path set

δ({1,3}) = 1, since {1,3} is a minimal path set

δ({1,2,3}) = (−1)|{1,2,3}|−|{1,2}|φ({1,2}) + (−1)|{1,2,3}|−|{1,3}|φ({1,3})

+ (−1)|{1,2,3}|−|{1,2,3}|φ({1,2,3}) = −1− 1 + 1 = −1.

Having derived the formula for the structure function φ, we immediately
obtain the reliability function:

h(p) = p1p2 + p1p3 − p1p2p3.
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Section 4.3.

The inclusion-exclusion method
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The inclusion-exclusion method

Consider a binary monotone system (C, φ) with minimal path sets
P1, . . . ,Pp. We then introduce the events

Ej = {All of the components in Pj are functioning}, j = 1, . . . ,p.

Since the system is functioning if and only if at least one of the minimal
path sets is functioning, we have:

φ = 1 if and only if
p⋃

j=1

Ej holds true.
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The inclusion-exclusion method (cont.)

We then use the inclusion-exclusion formula and get:

h = P(

p⋃
j=1

Ej)

= P(E1) + P(E2) + · · ·+ P(Ep)

− P(E1 ∩ E2)− P(E1 ∩ E3)− · · · − P(Ep−1 ∩ Ep)

+ P(E1 ∩ E2 ∩ E3) + · · ·+ P(Ep−2 ∩ Ep−1 ∩ Ep)

· · ·
+ (−1)p−1P(E1 ∩ · · · ∩ Ep).

NOTE: The number of terms is 2p − 1. However, typically many of the
terms can be merged as they correspond to the same component set.
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The inclusion-exclusion method (cont.)

NOTE: An event of form Ei1 ∩ · · · ∩ Eir occurs if and only if all the
components in the set Pi1 ∪ · · · ∪ Pir are functioning. When the
component state variables are independent, we get:

P(Ei1 ∩ · · · ∩ Eir ) =
∏

i∈Pi1
∪···∪Pir

pi .
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The inclusion-exclusion method (cont.)

Consider a binary monotone system (C, φ) where C = {1,2,3,4} with
minimal path sets P1 = {1,2}, P2 = {1,3}, P3 = {2,3,4}.

Assuming that the component state variables are independent, we
then get:

P(E1) = p1p2, P(E2) = p1p3, P(E3) = p2p3p4

P(E1 ∩ E2) = p1p2p3, P(E1 ∩ E3) = P(E2 ∩ E3) = p1p2p3p4

P(E1 ∩ E2 ∩ E3) = p1p2p3p4.

Hence, the reliability of the system is:

h(p) = p1p2 + p1p3 + p2p3p4 − p1p2p3 − 2p1p2p3p4 + p1p2p3p4

= p1p2 + p1p3 + p2p3p4 − p1p2p3 − p1p2p3p4.
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The inclusion-exclusion method (cont.)

NOTE: The final expression for the reliability function is exactly the
same as we get using the multiplication methods:

h(p) =
∑
A⊆C

δ(A)
∏
i∈A

pi ,

where δ denotes the signed domination function. However, the steps
we take in order to get this expression is different.

By using the inclusion-exclusion formula we see that all terms in the
expansion correspond to sets A ⊆ C which are unions of minimal path
sets.

If a set A ⊆ C is not a union of minimal path sets, it follows that
δ(A) = 0.
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The inclusion-exclusion method (cont.)

If Pi1 , . . . ,Pir is a collection of minimal path sets such that:

r⋃
j=1

Pij = A,

the collection is said to be a formation of the set A.

The formation is odd if r is odd, and even if r is even.

An odd formation contributes with a coefficient +1, while an even
formation contributes with a coefficient −1.
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The inclusion-exclusion method (cont.)

Simplifying the expansion, all terms corresponding to formations of the same
set are merged. Hence, it follows that we have:

Theorem

Let (C, φ) be a binary monotone system with minimal path sets P1, . . . ,Pp,
and let δ denote the signed domination function of the system. Then for all
A ⊆ C we have:

δ(A) = The number of odd formations of A
− The number of even formations of A.

In particular δ(A) = 0 if A is not a union of minimal path sets.

As a corollary we obtain the following result:

Corollary

If (C, φ) is a binary monotone system which is not coherent, then δ(C) = 0.
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An upper bound on the system reliability

Skipping all higher order terms and keeping the probabilities of the
individual events E1, . . . ,Ep only, we get an upper bound on the
system reliability:

h ≤
p∑

j=1

P(Ej).

Given that p is moderate, and that we are given the minimal path sets,
this upper bound is easy to calculate.
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An lower bound on the system reliability
We then consider the minimal cut sets of the system K1, . . . ,Kk , and
introduce:

Fj = {All the components in Kj are failed}, j = 1, . . . , k .

Since the system is failed if and only if all the components in at least one cut
set are failed, we have:

1− h = P(
k⋃

j=1

Fj ).

An upper bound on 1− h is then given by:

1− h ≤
k∑

j=1

P(Fj ).

Combining the upper and lower bounds, we get:

1−
k∑

j=1

P(Fj ) ≤ h ≤
p∑

j=1

P(Ej ).
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Bounds on the system reliability (cont.)

If the components are independent, we get:

1−
k∑

j=1

∏
i∈Kj

(1− pi) ≤ h(p) ≤
p∑

j=1

∏
i∈Pj

pi .

If the component reliabilites are close to 1, the lower bound turns out to
be very good, while the upper bound will be crude and possibly greater
than 1.

If the component reliabilites are close to 0, the lower bound will be
crude and possibly less than 0, while the upper bound turns out to be
very good.
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Bounds on the system reliability (cont.)

In order to avoid bounds outside of the interval [0,1], one would
typically replace the bounds by:

max(1−
k∑

j=1

∏
i∈Kj

(1− pi), 0) ≤ h(p) ≤ min(

p∑
j=1

∏
i∈Pj

pi , 1).
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