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Network systems

Definition (Network systems)

A network system is a binary monotone system (C, φ) where the
components are objects in a network (or graph), and where the system
is functioning if the network satisfies some given connectivity
condition, i.e., that some subset of the nodes, referred to as the
terminals of the network, can communicate through the network.

In general a component can be a node or an edge in the network. In
our setting, however, the nodes are typically assumed to be perfect.
Thus, the component set C is typically equal to the set of edges in the
graph.
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Undirected network systems
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Figure: An undirected network with terminal nodes S and T .

The system is functioning if the terminals can communicate through
the network.

NOTE: In undirected networks signals can be sent both ways through
an edge.
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Directed network systems
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Figure: A directed network system with terminal nodes S and T .

The system is functioning if the terminals can communicate through
the network.

NOTE: In directed networks signals can only be sent through an edge
according to the direction of the edge.
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Contraction and restriction
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If G is an undirected or directed graph, and e is an edge in G, we define:

The contraction of G with respect to e is the graph G+e obtained from G
by deleting e and merging its endnodes.

The restriction of G with respect to e is the graph G−e obtained from G
by deleting e.

A graph H is said to be a minor of the graph G, if H can be obtained from G
by performing a sequence of contractions and restrictions.
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Contraction and restriction (cont.)

Undirected network systems
Let (C, φ) be an undirected network system with graph G, and let
e ∈ C be some edge in G. Then:

G+e represents the binary system obtained from (C, φ) by
conditioning on that e is functioning (i.e. xe = 1).

G−e represents the binary system obtained from (C, φ) by
conditioning on that e is failed (i.e. xe = 0).

The class of undirected network systems is closed under pivotal
decompositions.

For an undirected network system pivotal decompositions corresponds
to contractions and restrictions of the graph.

A. B. Huseby & K. R. Dahl (Univ. of Oslo) Lecture 7 6 / 46



Contraction and restriction (cont.)

Directed network systems
Let (C, φ) be an directed network system with graph G, and let e ∈ C
be some edge in G. Then:

G+e does not necessarily represent the binary system obtained
from (C, φ) by conditioning on that e is functioning (i.e. xe = 1).

G−e represents the binary system obtained from (C, φ) by
conditioning on that e is failed (i.e. xe = 0).

The class of directed network systems is not closed under pivotal
decompositions.

For a directed network system conditioning on that an edge e is
functioning, may result in a system which is not representable as a
network system.
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Example – A directed bridge system
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The minimal path sets of the directed network system G are:

P1 = {1,4}, P2 = {1,3,5}, P3 = {2,5}.

Given that component 3 functions, we have the following minimal path sets:

P1 = {1,4}, P ′2 = {1,5}, P3 = {2,5}.

This system can not be represented as a network system.

The minimal path sets of the network system G+3 are:

P1 = {1,4}, P ′2 = {1,5}, P3 = {2,5}, P4 = {2,4}.
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Section 4.4.

Computing the reliability of directed network systems
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Directed network systems

Definition
A Source-to-K -terminal-system (SKT-system) is a system defined
relative to a directed network where the system functions if and only if
a node S (called the source) can send information to a given set of K
nodes T1, . . . ,TK (called the terminals).

The components of the system are the directed edges of the network,
while the nodes are assumed to be functioning perfectly with
probability one.
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Directed network systems (cont.)
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Figure: An S4T system with components 1,2, . . . ,10. The node S is the
source, while the nodes T1,T2,T3,T4 are the terminals.
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Directed network systems (cont.)

Theorem

Let φ(X ) =
∑

A⊆C δ(A)
∏

i∈A Xi be the structure function of an SKT
system.

If A can be expressed as a union of minimal path sets, and the
subgraph spanned by A does not contain any directed cycle, we
have:

δ(A) = (−1)|A|−v(A)+1

where v(A) denotes the number of nodes in the subgraph
spanned by A.
In the opposite case we have:

δ(A) = 0
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Example of a directed network system
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Figure: An S1T system (C, φ) where C = {1, . . . ,7}.

The system is functioning if the source S can send signals to the
terminal T through the network.

The component state variables are independent and P(Xi = 1) = pi for
i ∈ C.
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Example of a directed network system (cont.)

The minimal path sets of this system are P1 = {1,4,6}, P2 = {1,4,5,7},
P3 = {2,3,4,6} and P4 = {2,7}. We calculate the reliability of this system by
using the inclusion-exclusion formula. Since there are 4 minimal path sets,
this formula will consist of 24 − 1 = 15 terms before we simplify:

h(p) = p1p4p6 + p1p4p5p7 + p2p3p4p6 + p2p7

− p1p4p5p6p7 − p1p2p3p4p6 − p1p2p4p6p7

− p1p2p3p4p5p6p7 − p1p2p4p5p7 − p2p3p4p6p7

+ p1p2p3p4p5p6p7 + p1p2p4p5p6p7

+ p1p2p3p4p6p7 + p1p2p3p4p5p6p7

− p1p2p3p4p5p6p7.
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Example of a directed network system (cont.)

By merging similar terms we obtain:

h(p) = p1p4p6 + p1p4p5p7 + p2p3p4p6 + p2p7

− p1p4p5p6p7 − p1p2p3p4p6 − p1p2p4p6p7

− p1p2p4p5p7 − p1p2p4p5p7

+ p1p2p4p5p6p7 + p1p2p3p4p6p7.

Here δ(A) is either +1, −1 or zero for all A ⊆ C.

Since the network contains a directed cycle {3,4,5}, δ(C) = 0.
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Example of a directed network system (cont.)

δ({1,4,6}) = (−1)3−4+1 = +1,

δ({1,4,5,7}) = (−1)4−5+1 = +1,
· · · · · ·

δ({1,4,5,6,7}) = (−1)5−5+1 = −1,

δ({1,2,3,4,6}) = (−1)5−5+1 = −1,

δ({1,2,4,6,7}) = (−1)5−5+1 = −1,
· · · · · ·

δ({1,2,4,5,6,7}) = (−1)6−5+1 = +1,

δ({1,2,3,4,6,7}) = (−1)6−5+1 = +1.
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Linear consecutive k -out-of-n systems

Let (C, φ) be a linear consecutive 2-out-of-5 system where C = {1, . . . ,5}.

Minimal path sets: P1 = {1,2}, P2 = {2,3}, P3 = {3,4}, P4 = {4,5}.

By using e.g., the inclusion-exclusion formula it is easy to see that the
reliability of this system, assuming independent component state variables, is:

h(p) = p1p2 + p2p3 + p3p4 + p4p5

− p1p2p3 − p2p3p4 − p3p4p5 − p1p2p4p5

+ p1p2p3p4p5.

It can be shown that this system is not an SKT-system.

Linear consecutive k -out-of-n systems share the property with SKT-systems
that the signed domination function is either +1, −1 or zero for all subsets of
the component set.
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Section 4.5.

Computing the reliability of undirected network systems
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Series and parallel reductions

We recall the following result:

Theorem (s-p-reductions)

Consider a binary monotone system (C, φ) and let i , j ∈ C, i 6= j .

If i and j are connected in series, then h(p) will only depend on pi
and pj through pi · pj . Hence, i and j can be replaced by a single
component with reliability pi · pj without altering the system
reliability. Such a reduction is called a series reduction.
If i and j are connected in parallel, then h(p) will only depend on
pi and pj through pi q pj . Hence, i and j can be replaced by a
single component with reliability pi q pj without altering the system
reliability. Such a reduction is called a parallel reduction.
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s-p-reducible systems

Moreover, we have the following definition:

Definition
A system is s-p-reducible if there are components in either series or
parallel in the system.

A system is s-p-complex if there are no components in either series or
parallel in the system.

An s-p system is a system which can be s-p-reduced to a single
component.
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The factoring algorithm

Let (C, φ) be a binary monotone system. Assume that at least one of its
components is relevant. To compute the reliability h(p), proceed as follows:

Step 1: Perform all possible s-p-reductions. Let the reduced system be
denoted by (Cr , φr ). Then, (Cr , φr ) must also have at least one relevant
component.

Step 2: If (Cr , φr ) contains precisely one relevant component with updated
reliability pe. Then, h(p) = pe.

If (Cr , φr ) contains several relevant components, choose a component e ∈ Cr

and do a pivotal decomposition:

h(pCr
) = peh(1e,pCr

) + (1− pe)h(0e,pCr
).

Then, compute h(1e,pCr
) and h(0e,pCr

) by repeated use of the algorithm.
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The factoring algorithm (cont.)

The factoring algorithm works best if the systems we need to handle
along the way, can be represented efficiently, e.g., by a graph.

Since the class of undirected network systems is closed under
pivotal decompositions, the factoring algorithm works very well for
such systems.
Since the class of directed network systems is not closed under
pivotal decompositions, the factoring algorithm does not work well
for such systems.

NOTE: In general, the efficiency of the factoring algorithm depends on
the choice of pivoting component.

In general it can be shown that when the factoring algorithm is applied
to undirected network systems, one should always pivot such that both
resulting substructures are coherent.
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Example

Let (C, φ) be the undirected network system G shown below.
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G is s-p-complex, so to proceed we must choose a component for
pivotal decomposition.
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Example – Factoring tree
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Example – Factoring tree (cont.)
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Example – Pivotal decomposition wrt. 4
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h(G) = p4 · h(G+4) + (1− p4) · h(G−4)
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Example – Pivotal decomposition wrt. 4 (cont.)
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Pivotal component

h(G) = p4 · h(G+4) + (1− p4) · h(G−4)
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Example – Pivotal decomposition wrt. 4 (cont.)
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h(G) = p4 · h(G+4) + (1− p4) · h(G−4)
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Example – Factoring tree (cont.)
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Example – Parallel reduction
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Example – Parallel reduction (cont.)
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Example – Parallel reduction (cont.)

1

2

53

7

6

1

2

3'

7

6

S T

S T

G+4

G+4
r

p3′ = p3 q p5

A. B. Huseby & K. R. Dahl (Univ. of Oslo) Lecture 7 32 / 46



Example – Factoring tree (cont.)
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Example – s-p-reducable system
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p1′ = h(Gr
−4) = [(p1p3)q p2] · [(p5p6)q p7]
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Example – s-p-reducable system (cont.)
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Example – Factoring tree (cont.)
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Example – Pivotal decomposition wrt. 3′
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Example – Pivotal decomposition wrt. 3′ (cont.)
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Example – Pivotal decomposition wrt. 3′ (cont.)
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Example – Factoring tree (cont.)
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Example – s-p-reducable system

1

2 7

6

1''
S T

S T

G+4+3'
r

G+4+3'
r r

p1′′ = h(Gr r
+4+3′) = (p1 q p2) · (p6 q p7)

A. B. Huseby & K. R. Dahl (Univ. of Oslo) Lecture 7 41 / 46



Example – s-p-reducable system (cont.)
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Example – Factoring tree
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Example – s-p-reducable system

1

2 7

6

1'''

S T

S T

G+4-3'
r

G+4-3'
r r

p1′′′ = h(Gr r
+4−3′) = (p1 · p6)q (p2 · p7)
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Example – s-p-reducable system (cont.)
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Example – Summary

p1′ = h(Gr
−4) = [(p1p3)q p2] · [(p5p6)q p7]

p1′′ = h(Gr r
+4+3′) = (p1 q p2) · (p6 q p7)

p1′′′ = h(Gr r
+4−3′) = (p1 · p6)q (p2 · p7)

p3′ = p3 q p5

h = p4 · [p3′p1′′ + (1− p3′)p1′′′ ] + (1− p4)p1′
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