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Chapter 7

Computing reliability using conditional Monte Carlo
methods
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Section 7.1

Monte Carlo simulation and conditioning
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Monte Carlo simulation and conditioning

Let X = (X1, . . . ,Xn) be a random vector with a known distribution, and
let φ = φ(X ). The distribution of φ cannot be derived analytically in
polynomial time with respect to n. We want to estimate:

h = E [φ(X )]

We run a Monte Carlo simulation generating N independent vectors
X 1, . . . ,X N , all having the same distribution as X , and estimate h by
the simple Monte Carlo estimate:

ĥMC =
1
N

N∑
r=1

φ(X r ).

Then E [ĥMC ] = h, and we have:

Var
(
ĥMC

)
=

1
N2

N∑
r=1

Var(φ) =
1
N

Var(φ)
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Monte Carlo simulation and conditioning (cont.)

Let S = S(X ) is a discrete variable with values in the set {s1, . . . , sk},
and with a distribution that can be calculated analytically in polynomial
time with respect to n.

We also introduce:

θj = E [φ | S = sj ], j = 1, . . . , k .

We then have:

h = E [φ] =
k∑

j=1

E [φ | S = sj ]P(S = sj) =
k∑

j=1

θjP(S = sj)
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Monte Carlo simulation and conditioning (cont.)

Instead of generating N samples from the distribution of X , we divide
the sample set into k groups, one for each possible value of S.

The j-th group has size Nj , j = 1, . . . , k , and N1 + · · ·+ Nk = N.

The samples in the j-th group, X 1,j , . . . ,X Nj ,j , are sampled from the
conditional distribution of X given that S = sj , j = 1, . . . , k .

Then θj is estimated by:

θ̂j =
1
Nj

Nj∑
r=1

φ(X r ,j), j = 1, . . . , k .
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Monte Carlo simulation and conditioning (cont.)

We then have:

E [θ̂j ] =
1
Nj

Nj∑
r=1

E [φ(X r ,j)] =
1
Nj

Nj∑
r=1

E [φ|S = sj ]

=
1
Nj

Nj∑
r=1

θj = θj , j = 1, . . . , k .

Moreover, the variances of these estimates are:

Var(θ̂j) =
1

N2
j

Nj∑
r=1

Var(φ(X r ,j)) =
1

N2
j

Nj∑
r=1

Var(φ|S = sj)

=
1
Nj

Var(φ|S = sj), j = 1, . . . , k .
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Monte Carlo simulation and conditioning (cont.)

By combining θ̂1, . . . , θ̂k , we get the conditional Monte Carlo estimate:

ĥCMC =
k∑

j=1

θ̂jP(S = sj).

Since θ̂1, . . . , θ̂k are independent, the variance of the conditional Monte
Carlo estimate is:

Var(ĥCMC) = Var[
k∑

j=1

θ̂jP(S = sj)] =
k∑

j=1

Var(θ̂j)[P(S = sj)]
2

=
k∑

j=1

1
Nj

Var(φ|S = sj)[P(S = sj)]
2.
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Monte Carlo simulation and conditioning (cont.)

NOTE: The variance of ĥCMC depends on the choices of the Nj ’s.

In order to compare the result with the variance of ĥMC , we let:

Nj ≈ N · P(S = sj), j = 1, . . . , k .

Hence:

k∑
j=1

Nj ≈
k∑

j=1

N · P(S = sj) = N ·
k∑

j=1

P(S = sj) = N.
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Monte Carlo simulation and conditioning (cont.)

With this choice we get:

Var(ĥCMC) ≈
k∑

j=1

1
N · P(S = sj)

Var(φ|S = sj)[P(S = sj)]
2

=
1
N

k∑
j=1

Var(φ|S = sj)P(S = sj) =
1
N

E [Var(φ|S)]

=
1
N
(

Var(φ)− Var[E(φ|S)]
)
≤ 1

N
Var(φ) = Var(ĥMC).

Here we have used the well-known relation:

Var(φ) = Var[E(φ|S)] + E [Var(φ|S)]
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Monte Carlo simulation and conditioning (cont.)

Since:

Var(ĥCMC) ≈
1
N
(

Var(φ)− Var[E(φ|S)]
)

≤ 1
N

Var(φ) = Var(ĥMC),

it follows that Var(ĥCMC) < Var(ĥMC) whenever Var[E(φ | S)] > 0.

Var[E(φ | S)] can be interpreted as a measure of how much
information S contains relative to φ.
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Monte Carlo simulation and conditioning (cont.)

1 S and φ independent. Then E(φ | S) = E(φ), and thus,

Var[E(φ | S)] = 0,

implying that Var(ĥCMC) = Var(ĥMC).

2 S = φ. Then E(φ | S) = φ, and thus,

Var[E(φ | S)] = Var(φ),

implying that Var(ĥCMC) = 0.

3 S = X . Then E(φ | S) = φ(X ), and thus,

Var[E(φ | S)] = Var(φ),

implying that Var(ĥCMC) = 0.
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Monte Carlo simulation and conditioning (cont.)

In order to minimize the variance of the estimate, the variable S should
contain as much information about φ as possible.

At the same time S must be chosen so that:

The distribution of S can be derived analytically in polynomial time

The number of possible values of S, i.e., k , must be bounded by a
polynomial function of n

It must be possible to sample efficiently from the distribution of X
given S
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Section 7.2

Conditioning on the sum of the component state variables
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Conditioning on the sum

Consider a binary monotone system (C, φ) where C = {1, . . . ,n}, and
let X = (X1, . . . ,Xn) be the vector of the component state variables.

Moreover, let:

S = S(X ) =
n∑

i=1

Xi

Thus, the set of possible values for S is {0,1, . . . ,n}, and we let:

θs = E [φ|S = s], s = 0,1, . . . ,n.

We must find an efficient way of sampling from the conditional
distribution of X given S = s, s = 0,1, . . . ,n.
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Conditioning on the sum (cont.)

This can be done as follows:

STEP 1. Sample X1 from the conditional distribution of X1|S = s, and
let x1 be the result.

STEP 2. Sample X2 from the conditional distribution of
X2|S = s,X1 = x1, and let x2 be the result.

· · ·

STEP n. Sample Xn from the conditional distribution of
Xn|S = s,X1 = x1, . . .Xn−1 = xn−1, and let xn be the result.

To compute the necessary conditional distributions we introduce the
partial sums, S1, . . . ,Sn:

Sm =
n∑

i=m

Xi , m = 1, . . . ,n.
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Conditioning on the sum (cont.)

We then have:

P(Xm = xm | X1 = x1, . . . ,Xm−1 = xm−1,S = s)

=
P(Xm = xm,S = s | X1 = x1, . . . ,Xm−1 = xm−1)

P(S = s | X1 = x1, . . . ,Xm−1 = xm−1)

=
P(Xm = xm,Sm+1 = s −

∑m
j=1 xj)

P(Sm = s −
∑m−1

j=1 xj)

=
pxm

m (1− pm)
1−xm P(Sm+1 = s −

∑m
j=1 xj)

P(Sm = s −
∑m−1

j=1 xj)
,

The distributions of the partial sums S1, . . . ,Sn can be calculated before
running the simulations using generating functions. See Exercise 2.10.
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Conditioning on the sum (cont.)

NOTE: We only calculate the conditional probabilities we actually need
along the way during the simulations, not the entire set of all possible
conditional probabilities corresponding to all possible combinations of
values of the Xj ’s.

Thus, in each simulation we calculate n probabilities, one for each Xj .

Each probability is calculated using a fixed number of operations
(independent of n).

Hence, sampling from the conditional distribution of X given S = s,
can be done in O(n) time, i.e., just as fast as sampling from the
unconditional distribution.
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Conditioning on the sum (cont.)

When choosing the sample sizes N0, . . . ,Nn, we may let Ns ≈ N · P(S = s),
s = 0,1, . . . ,n.

However, it is possible to improve the results slightly. By examining the
system, it is often easy to determine the size of the smallest minimal path and
cut sets, and we introduce:

d = The size of the smallest minimal path set

c = The size of the smallest minimal cut set

We then have that θs = 0 for s < d , and θs = 1 for s > n − c, implying that
Var(φ|S = s) = 0 for s < d , or s > n − c.

Hence, there is no point in spending simulations on estimating θs for s < d , or
s > n− c, so we let Ns = 0 for s < d , or s > n− c. As a result, we have more
simulations to spend on the remaining quantities.
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Conditioning on the sum (cont.)

An extreme situation occurs when the system is a k -out-of-n-system,
i.e., when φ(X ) = I(S ≥ k). For such systems d = k , and
c = (n − k + 1).

This implies that n − c = n − (n − k + 1) = k − 1.

Hence, θs = 0 for s < k and θs = 1 for s ≥ k .

Thus, the CMC-estimate is equal to the true value of the reliability, and
can be calculated without doing any simulations at all.
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Conditioning on the sum (cont.)

For all other nontrivial systems, however, it is easy to see that we
always have that d ≤ n − c. In order to ensure that we get improved
results, we assume that P(d ≤ S ≤ n − c) > 0, and let:

Ns ≈ N · P(S = s)/P(d ≤ S ≤ n − c), s = d , . . . ,n − c .

We can now show that:

Var(ĥCMC) ≤ P(d ≤ S ≤ n − c)Var(ĥMC)

Hence, if d and n − c are close, the variance is reduced considerably.
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Section 7.3

System reliability when all the component state variables
have identical reliabilities
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Identical component reliabilities

If p1 = · · · = pn = p, it is possible to improve things even further. Then S has
a binomial distribution, and the conditional distribution of X given S is given
by:

P(X = x | S = s) =
p
∑n

i=1 xi (1− p)n−
∑n

i=1 xi · I(
∑n

i=1 xi = s)( n
s

)
ps(1− p)n−s

=
1( n
s

) ,
for all x such that

∑n
i=1 xi = s.

From this it follows that:

θs = E [φ | S = s] =
∑

{x |∑n
i=1 xi=s}

φ(x)P(X = x | S = s) =
bs( n
s

) ,
where bs is the number of path sets with s components, s = 0, . . . ,n.
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Identical component reliabilities (cont.)

The system reliability, h, expressed as a function of p, is given by:

h(p) =
n∑

s=0

θsP(S = s) =
n∑

s=0

bs(n
s

) (n
s

)
ps(1− p)n−s.

NOTE 1: θ0, . . . , θn do not depend on p. Thus, by estimating these
quantities, we get an estimate of h(p) for all p ∈ [0,1].

NOTE 2: θs can be interpreted as the fraction of path sets of size s
among all sets of size s. Thus, θs can be estimated by sampling
random sets of size s and calculating the frequency of path sets
among the sampled sets.

NOTE 3: Assuming that (C, φ) is non-trivial we have θ0 = 0. Thus, we
can focus on estimating θ1, . . . , θn.
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Identical component reliabilities (cont.)
In the following we let:

φ(A) = φ(1A,0), for all A ⊆ C.

ALGORITHM: For i = 1, . . . ,N do:

STEP 1. Generate a random permutation Pi = (ci,1, . . . , ci,n) of the
component set C.

STEP 2. Let Ai,s = {ci,1, . . . , ci,s}, s = 1, . . . ,n.

STEP 3. Calculate φ(Ai,s), s = 1, . . . ,n.

Note that for s = 1, . . . ,n, Ai,s is a random set of size s, i = 1, . . . ,N. Hence,
unbiased estimators for θ1, . . . , θn are given by:

θ̂s =
1
N

N∑
i=1

φ(Ai,s), s = 1, . . . ,n.
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Identical component reliabilities (cont.)

Using the estimates θ̂1, . . . , θ̂n as well as θ̂0 = 0, we get the following
improved conditional Monte Carlo estimate:

ĥCMC(p) =
n∑

s=0

θ̂sP(S = s)

=
n∑

s=0

θ̂s

(n
s

)
ps(1− p)n−s

NOTE: With this method all the θs ’s are estimated from the full sample
of N. Thus, we do not need to partition the sample into subsamples.

The downside is that θ̂1, . . . , θ̂n become dependent. This makes it
more difficult to calculate the resulting variance of ĥCMC(p).
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Identical component reliabilities (cont.)

As a comparison we describe how we can estimate h(p) using a crude
Monte Carlo method.

If U ∼ Unif(0,1), we have:

P(U ≤ p) = p, 0 ≤ p ≤ 1.

Hence, if X (p) = I(U ≤ p), it follows that X (p) ∼ Binary(p), and in
particular:

P(X (p) = 1) = P(U ≤ p) = p.

To generate X1(p), . . . ,XN(p) so that Xi(p) ∼ Binary(p), i = 1, . . . ,N,
we generate U1, . . . ,UN , where Ui ∼ Unif(0,1), i = 1, . . . ,N, and then
let:

Xi(p) = I(Ui ≤ p), i = 1, . . . ,N.
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Identical component reliabilities (cont.)

Now let (C, φ) be a binary monotone system where C = {1, . . . ,n},
and let X = (X1, . . . ,Xn) be the vector of the component state
variables. We also assume that:

P(Xj = 1) = p, j = 1, . . . ,n.

In order to estimate h(p) = E [φ(X )] as a function of p ∈ [0,1], we
generate N vectors of independent uniformly distributed variables:

U i = (Ui,1, . . . ,Ui,n), i = 1, . . . ,N,

and let X i(p) = (Xi,1(p), . . . ,Xi,n(p)), i = 1, . . . ,N by:

Xi,j(p) = I(Ui,j ≤ p), i = 1, . . . ,N, j = 1, . . . ,n.
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Identical component reliabilities (cont.)

We then estimate h(p) = E [φ(X )] as a function of p ∈ [0,1] by:

ĥMC(p) =
1
N

N∑
i=1

φ(X i(p))

Since Xi,j(p) is non-decreasing in p and φ is non-decreasing in each
argument, it follows that ĥMC(p) is a non-decreasing function of p.

When running the simulation, it is not possible to store φ(X i(p)) for all
values of p ∈ [0,1]. Instead, we let:

0 = p0 ≤ p1 ≤ · · · ≤ pK = 1

where K is sufficiently large, and estimate:

ĥMC(pr ) =
1
N

N∑
i=1

φ(X i(pr )), r = 0,1, . . . ,K .
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