UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: \quad STK3405/4405 - Introduction to risk and reliability analysis

Day of examination: Friday December 17th 2021.
Examination hours: 09.00-13.00.
This problem set consists of 11 pages.

Appendices:
Permitted aids: Approved calculator.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All subpoints will be equally weighted in the marking.

Problem 1

Figure 1: Block diagram of (C, ϕ)
Consider the binary monotone system (C, ϕ) shown in Figure 1. The component set of the system is $C=\{1,2, \ldots, 5\}$. Let $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{5}\right)$ denote the vector of component state variables, and assume throughout this problem that $X_{1}, X_{2}, \ldots, X_{5}$ are stochastically independent. We also let $\boldsymbol{p}=\left(p_{1}, p_{2}, \ldots, p_{5}\right)$ denote the vector of component reliabilities, where $p_{i}=P\left(X_{i}=1\right), i=1,2, \ldots, 5$.
a) Find the minimal path sets (3 sets) and the minimal cut sets (5 sets) of the system.

Solution:

Minimal path sets: $\{1,2,3\},\{1,2,4\},\{2,3,4,5\}$.
Minimal cut sets: $\{1,3\},\{1,4\},\{1,5\},\{2\},\{3,4\}$
b) We let $h(\boldsymbol{p})=P(\phi=1)$ denote the reliability function of the system. Show that:

$$
h(\boldsymbol{p})=p_{2} \cdot\left[p_{1} \cdot\left(p_{3} \amalg p_{4}\right)+\left(1-p_{1}\right) \cdot p_{3} p_{4} p_{5}\right]
$$

Solution: We note that component 2 is in series with the rest of the system. Hence, $h\left(0_{2}, \boldsymbol{p}\right)=0$, and we get:

$$
h(\boldsymbol{p})=p_{2} \cdot h\left(1_{2}, \boldsymbol{p}\right)+\left(1-p_{2}\right) h\left(0_{2}, \boldsymbol{p}\right)=p_{2} \cdot h\left(1_{2}, \boldsymbol{p}\right)
$$

In order to find $h\left(1_{2}, \boldsymbol{p}\right)$ we do a pivotal decomposition with respect to component 1. If component 1 is functioning, the rest of the system is a parallel connection of components 3 and 4 , while if 1 is failed, the rest of the system is a series connection of components 3,4 and 5 . Hence, we get:

$$
\begin{aligned}
h(\boldsymbol{p}) & =p_{2} \cdot h\left(1_{2}, \boldsymbol{p}\right) \\
& =p_{2} \cdot\left[p_{1} \cdot h\left(1_{1}, 1_{2}, \boldsymbol{p}\right)+\left(1-p_{1}\right) \cdot h\left(0_{1}, 1_{2}, \boldsymbol{p}\right)\right] \\
& =p_{2} \cdot\left[p_{1} \cdot\left(p_{3} \amalg p_{4}\right)+\left(1-p_{1}\right) \cdot p_{3} p_{4} p_{5}\right]
\end{aligned}
$$

The Birnbaum measure for the reliability importance of component i is defined as:

$$
I_{B}^{(i)}=P(\text { Component } i \text { is critical for the system }), \quad i=1,2, \ldots, 5
$$

c) Show that:

$$
I_{B}^{(i)}=\frac{\partial h(\boldsymbol{p})}{\partial p_{i}}, \quad i=1,2, \ldots, 5 .
$$

Solution: Component i is critical for the system if and only if:

$$
\begin{equation*}
\phi\left(1_{i}, \boldsymbol{X}\right)=1, \text { and } \phi\left(0_{i}, \boldsymbol{X}\right)=0 \tag{1}
\end{equation*}
$$

Since ϕ is non-decreasing in each argument, we always have that: $\phi\left(1_{i}, \boldsymbol{X}\right) \geq$ $\phi\left(0_{i}, \boldsymbol{X}\right)$. Thus, the condition (1) is equivalent to:

$$
\begin{equation*}
\phi\left(1_{i}, \boldsymbol{X}\right)-\phi\left(0_{i}, \boldsymbol{X}\right)=1 \tag{2}
\end{equation*}
$$

(Continued on page 3.)

Hence, since the component state variables are assumed to be independent, it follows for $i=1,2, \ldots, 5$ that:

$$
\begin{aligned}
I_{B}^{(i)} & =P(\text { Component } i \text { is critical for the system }) \\
& =P\left(\phi\left(1_{i}, \boldsymbol{X}\right)-\phi\left(0_{i}, \boldsymbol{X}\right)=1\right) \\
& =E\left[\phi\left(1_{i}, \boldsymbol{X}\right)-\phi\left(0_{i}, \boldsymbol{X}\right)\right] \\
& =E\left[\phi\left(1_{i}, \boldsymbol{X}\right)\right]-E\left[\phi\left(0_{i}, \boldsymbol{X}\right)\right] \\
& =h\left(1_{i}, \boldsymbol{p}\right)-h\left(0_{i}, \boldsymbol{p}\right) \\
& =\frac{\partial}{\partial p_{i}}\left[p_{i} \cdot h\left(1_{i}, \boldsymbol{p}\right)+\left(1-p_{i}\right) \cdot h\left(0_{i}, \boldsymbol{p}\right)\right] \\
& =\frac{\partial h(\boldsymbol{p})}{\partial p_{i}}
\end{aligned}
$$

d) Show that:

$$
\begin{aligned}
& I_{B}^{(2)}=p_{1} \cdot\left(p_{3} \amalg p_{4}\right)+\left(1-p_{1}\right) \cdot p_{3} p_{4} p_{5} \\
& I_{B}^{(5)}=\left(1-p_{1}\right) \cdot p_{2} p_{3} p_{4}
\end{aligned}
$$

Solution: By using the result from (c) we get:

$$
\begin{aligned}
I_{B}^{(2)} & =\frac{\partial}{\partial p_{2}}\left[p_{2} \cdot\left[p_{1} \cdot\left(p_{3} \amalg p_{4}\right)+\left(1-p_{1}\right) \cdot p_{3} p_{4} p_{5}\right]\right] \\
& =p_{1} \cdot\left(p_{3} \amalg p_{4}\right)+\left(1-p_{1}\right) \cdot p_{3} p_{4} p_{5} \\
I_{B}^{(5)} & =\frac{\partial}{\partial p_{5}}\left[p_{2} \cdot\left[p_{1} \cdot\left(p_{3} \amalg p_{4}\right)+\left(1-p_{1}\right) \cdot p_{3} p_{4} p_{5}\right]\right] \\
& =\left(1-p_{1}\right) \cdot p_{2} p_{3} p_{4}
\end{aligned}
$$

In the remaining part of this problem we assume that $0<p_{i}<1$, $i=1,2, \ldots, 5$.
e) Show that if $p_{5} \geq p_{2}$, then $I_{B}^{(2)}>I_{B}^{(5)}$.

Solution: In order to compare $I_{B}^{(2)}$ and $I_{B}^{(5)}$, we consider:

$$
\begin{aligned}
I_{B}^{(2)}-I_{B}^{(5)} & =p_{1} \cdot\left(p_{3} \amalg p_{4}\right)+\left(1-p_{1}\right) \cdot p_{3} p_{4} p_{5}-\left(1-p_{1}\right) \cdot p_{2} p_{3} p_{4} \\
& =p_{1} \cdot\left(p_{3} \amalg p_{4}\right)+\left(1-p_{1}\right) \cdot p_{3} p_{4}\left(p_{5}-p_{2}\right)
\end{aligned}
$$

If $p_{5} \geq p_{2}$, we observe that both terms in the difference between $I_{B}^{(2)}$ and $I_{B}^{(5)}$ are non-negative. Moreover, since we have assumed that $0<p_{i}<1$ for all i. the first term is strictly positive. Hence, we conclude $I_{B}^{(2)}>I_{B}^{(5)}$
f) Show that if $p_{1} \geq \frac{1}{2}$, then $I_{B}^{(2)}>I_{B}^{(5)}$.

Solution: In order to compare $I_{B}^{(2)}$ and $I_{B}^{(5)}$, we again consider:

$$
I_{B}^{(2)}-I_{B}^{(5)}=p_{1} \cdot\left(p_{3} \amalg p_{4}\right)+\left(1-p_{1}\right) \cdot p_{3} p_{4}\left(p_{5}-p_{2}\right)
$$

Since we have assumed that $0<p_{i}<1$ for all i, it follows that $\left(1-p_{1}\right) \cdot p_{3} p_{4}>$ 0 and that $\left(p_{5}-p_{2}\right)>-1$. Hence, when $p_{1} \geq \frac{1}{2}$, we get that:

$$
\begin{aligned}
I_{B}^{(2)}-I_{B}^{(5)} & >p_{1} \cdot\left(p_{3} \amalg p_{4}\right)-\left(1-p_{1}\right) \cdot p_{3} p_{4} \\
& \geq \frac{1}{2} \cdot\left(p_{3} \amalg p_{4}\right)-\frac{1}{2} \cdot p_{3} p_{4} \\
& =\frac{1}{2}\left(p_{3}+p_{4}-p_{3} p_{4}-p_{3} p_{4}\right) \\
& =\frac{1}{2}\left[p_{3}\left(1-p_{4}\right)+p_{4}\left(1-p_{3}\right)\right]>0
\end{aligned}
$$

Here the second inequality follow since both $p_{1} \cdot\left(p_{3} \amalg p_{4}\right)$ and $-\left(1-p_{1}\right) \cdot p_{3} p_{4}$ are increasing functions of p_{1} combined with the assumption that $p_{1} \geq \frac{1}{2}$. Moreover, the last inequality again follows since $0<p_{i}<1$ for all i. From this we conclude that $I_{B}^{(2)}>I_{B}^{(5)}$
g) In this point we assume more specifically that $p_{1}=p_{5}=\frac{1}{10}$ and that $p_{2}=p_{3}=p_{4}=\frac{9}{10}$. Calculate $I_{B}^{(2)}$ and $I_{B}^{(5)}$ and compare the results. Comment your findings.

Solution: By using the result from (d) we get:

$$
\begin{aligned}
I_{B}^{(2)} & =p_{1} \cdot\left(p_{3} \amalg p_{4}\right)+\left(1-p_{1}\right) \cdot p_{3} p_{4} p_{5} \\
& =\frac{1}{10} \cdot\left(\frac{9}{10}+\frac{9}{10}-\frac{9}{10} \frac{9}{10}\right)+\frac{9}{10} \cdot \frac{9}{10} \frac{9}{10} \frac{1}{10} \\
& =\frac{990}{10000}+\frac{729}{10000}=\frac{1719}{10000} \\
I_{B}^{(5)} & =\left(1-p_{1}\right) \cdot p_{2} p_{3} p_{4} \\
& =\frac{9}{10} \cdot \frac{9}{10} \frac{9}{10} \frac{9}{10}=\frac{6561}{10000}
\end{aligned}
$$

Thus, in this case we have $I_{B}^{(2)}<I_{B}^{(5)}$ which is the opposite ranking compared to the cases considered in the two previous points. We note that with these component reliabilities we have:

$$
\begin{array}{ll}
p_{1}<\frac{1}{2} & \text { (Thus, the result from (f) does not apply in this case) } \\
p_{5}<p_{2} & \text { (Thus, the result from (e) does not apply in this case) }
\end{array}
$$

Indeed when p_{1} is small, then the system is, with a high probability, reduced to a series connection of the components $2,3,4,5$. In a series system the
most important component is the one with the smallest reliability, i.e., component 5 in this case

The Birnbaum measure for the structural importance of component i is defined as:

$$
J_{B}^{(i)}=\frac{1}{2^{5-1}} \sum_{(\cdot i, \boldsymbol{x})}\left[\phi\left(1_{i}, \boldsymbol{x}\right)-\phi\left(0_{i}, \boldsymbol{x}\right)\right], \quad i=1,2, \ldots, 5 .
$$

h) Explain briefly why: $J_{B}^{(2)}>J_{B}^{(i)}$ for $i=1,3,4,5$.

Solution: It is obviously possible to solve this problem by calculating $J_{B}^{(i)}$ for all i, and then compare $J_{B}^{(2)}$ to $J_{B}^{(i)}$ for $i=1,3,4,5$. However, we observe that component 2 is in series with the rest of the system, while none of the other components are in series with the rest of the system. From this it follows that the structural importance of component 2 is greater than the structural importance of any of the other components. See Exercise 5.3 in the text book. A formal proof of this result is as follows:

Since component 2 is in series with the rest of the system, we have:

$$
\phi\left(0_{2}, \boldsymbol{x}\right)=0, \quad \text { for all }\left(\cdot{ }_{2}, \boldsymbol{x}\right) \in\{0,1\}^{4}
$$

We then choose another component $j \neq 2$. Since j is not in series with the rest of the system, we have:

$$
\phi\left(0_{j}, \boldsymbol{x}\right)=1, \quad \text { for at least one }\left(\cdot{ }_{j}, \boldsymbol{x}\right) \in\{0,1\}^{4}
$$

Hence, we then get:

$$
\begin{aligned}
2^{4} J_{B}^{(2)} & =\sum_{(\cdot 2, \boldsymbol{x})}\left[\phi\left(1_{2}, \boldsymbol{x}\right)-\phi\left(0_{2}, \boldsymbol{x}\right)\right]=\sum_{(\cdot 2, \boldsymbol{x})}\left[\phi\left(1_{2}, \boldsymbol{x}\right)+\phi\left(0_{2}, \boldsymbol{x}\right)\right] \\
& =\sum_{\boldsymbol{x}} \phi(\boldsymbol{x})=\sum_{(\cdot j, \boldsymbol{x})}\left[\phi\left(1_{j}, \boldsymbol{x}\right)+\phi\left(0_{j}, \boldsymbol{x}\right)\right] \\
& >\sum_{(\cdot j, \boldsymbol{x})}\left[\phi\left(1_{j}, \boldsymbol{x}\right)-\phi\left(0_{j}, \boldsymbol{x}\right)\right]=2^{4} J_{B}^{(j)}
\end{aligned}
$$

Problem 2

Let X_{1}, \ldots, X_{n} be n binary associated random variables.
a) Show that:

$$
\begin{align*}
& E\left[\prod_{i=1}^{n} X_{i}\right] \geq \prod_{i=1}^{n} E\left[X_{i}\right] \tag{3}\\
& E\left[\coprod_{i=1}^{n} X_{i}\right] \leq \coprod_{i=1}^{n} E\left[X_{i}\right] \tag{4}
\end{align*}
$$

(Continued on page 6.)

Solution: We introduce $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$. Since X_{1}, \ldots, X_{n} are binary associated random variables, we know that:

$$
\operatorname{Cov}(\Gamma(\boldsymbol{X}), \Delta(\boldsymbol{X})) \geq 0,
$$

for all binary, non-decreasing functions, Γ and Δ. Hence, in particular:

$$
\operatorname{Cov}\left(X_{1}, \prod_{i=2}^{n} X_{i}\right)=E\left[\prod_{i=1}^{n} X_{i}\right]-E\left[X_{1}\right] \cdot E\left[\prod_{i=2}^{n} X_{i}\right] \geq 0
$$

Hence, it follows that:

$$
E\left[\prod_{i=1}^{n} X_{i}\right] \geq E\left[X_{1}\right] \cdot E\left[\prod_{i=2}^{n} X_{i}\right]
$$

Repeated use of the same argument yields that:

$$
E\left[\prod_{i=1}^{n} X_{i}\right] \geq \prod_{i=1}^{n} E\left[X_{i}\right]
$$

and thus, (3) is proved. In order to prove (4) we note that since X_{1}, \ldots, X_{n} are binary associated random variables, it follows that $\left(1-X_{1}\right), \ldots,\left(1-X_{n}\right)$ are binary associated random variables as well. Hence, by using (3) it follows that:

$$
E\left[\prod_{i=1}^{n}\left(1-X_{i}\right)\right] \geq \prod_{i=1}^{n}\left(1-E\left[X_{i}\right]\right)
$$

Hence, we get that:

$$
E\left[\coprod_{i=1}^{n} X_{i}\right]=1-E\left[\prod_{i=1}^{n}\left(1-X_{i}\right)\right] \leq 1-\prod_{i=1}^{n}\left(1-E\left[X_{i}\right]\right)=\coprod_{i=1}^{n} E\left[X_{i}\right],
$$

and thus, (4) is proved as well
Let X_{1}, \ldots, X_{n} be the associated component state variables of a binary monotone system (C, ϕ) with minimal path sets P_{1}, \ldots, P_{p} and minimal cut sets K_{1}, \ldots, K_{k}.
b) Show that:

$$
\begin{equation*}
\max _{1 \leq j \leq p} \prod_{i \in P_{j}} E\left[X_{i}\right] \leq E[\phi] \leq \min _{1 \leq j \leq k} \coprod_{i \in K_{j}} E\left[X_{i}\right] \tag{5}
\end{equation*}
$$

Solution: We have that:

$$
\min _{i \in P_{r}} X_{i} \leq \max _{1 \leq r \leq p} \min _{i \in P_{r}} X_{i}=\phi(\boldsymbol{X})=\min _{1 \leq s \leq k} \max _{i \in K_{s}} X_{i} \leq \max _{i \in K_{s}} X_{i},
$$

for all $r=1, \ldots, p$ and all $s=1, \ldots, k$. This implies that:

$$
E\left[\min _{i \in P_{r}} X_{i}\right] \leq E[\phi] \leq E\left[\max _{i \in K_{s}} X_{i}\right]
$$

for all $r=1, \ldots, p$ and all $s=1, \ldots, k$. Hence, we must have:

$$
\begin{equation*}
\max _{1 \leq j \leq p} E\left[\min _{i \in P_{r}} X_{i}\right] \leq E[\phi] \leq \min _{1 \leq j \leq k} E\left[\max _{i \in K_{s}} X_{i}\right] . \tag{6}
\end{equation*}
$$

Furthermore, since X_{1}, \ldots, X_{n} are associated, we may use the result from (a) and get:

$$
\begin{aligned}
& E\left[\min _{i \in P_{r}} X_{i}\right]=E\left[\prod_{i \in P_{r}} X_{i}\right] \geq \prod_{i \in P_{r}} E\left[X_{i}\right] \\
& E\left[\max _{i \in K_{s}} X_{i}\right]=E\left[\coprod_{i \in K_{s}} X_{i}\right] \leq \coprod_{i \in K_{s}} E\left[X_{i}\right]
\end{aligned}
$$

Inserting these inequalities into the bounds (6) we get:

$$
\max _{1 \leq j \leq p} \prod_{i \in P_{j}} E\left[X_{i}\right] \leq E[\phi] \leq \min _{1 \leq j \leq k} \coprod_{i \in K_{j}} E\left[X_{i}\right]
$$

and thus, (5) is proved
c) Show that:

$$
\begin{equation*}
\prod_{j=1}^{k} E\left[\coprod_{i \in K_{j}} X_{i}\right] \leq E[\phi] \leq \coprod_{j=1}^{p} E\left[\prod_{i \in P_{j}} X_{i}\right] \tag{7}
\end{equation*}
$$

Solution: We introduce:

$$
\begin{aligned}
& \rho_{j}(\boldsymbol{X})=\prod_{i \in P_{j}} X_{i}, \quad j=1, \ldots, p \\
& \kappa_{j}(\boldsymbol{X})=\coprod_{i \in K_{j}} X_{i}, \quad j=1, \ldots, k
\end{aligned}
$$

Since $\rho_{1}, \ldots, \rho_{p}$ and $\kappa_{1}, \ldots, \kappa_{k}$ are non-decreasing functions of \boldsymbol{X}, they are associated. Hence, by the result in (a) we have:

$$
\begin{aligned}
& E[\phi]=E\left[\coprod_{j=1}^{p} \prod_{i \in P_{j}} X_{i}\right]=E\left[\coprod_{j=1}^{p} \rho_{j}(\boldsymbol{X})\right] \leq \coprod_{j=1}^{p} E\left[\rho_{j}(\boldsymbol{X})\right]=\coprod_{j=1}^{p} E\left[\prod_{i \in P_{j}} X_{i}\right] \\
& E[\phi]=E\left[\prod_{j=1}^{k} \coprod_{i \in K_{j}} X_{i}\right]=E\left[\prod_{j=1}^{k} \kappa_{j}(\boldsymbol{X})\right] \geq \prod_{j=1}^{k} E\left[\kappa_{j}(\boldsymbol{X})\right]=\prod_{j=1}^{k} E\left[\coprod_{i \in K_{j}} X_{i}\right]
\end{aligned}
$$

Hence, (7) is proved
(Continued on page 8.)

We denote the lower and upper bounds on $E[\phi]$ given in (5) by L_{1} and U_{1} respectively. Similarly, we denote the lower and upper bounds on $E[\phi]$ given in (7) by L_{2} and U_{2} respectively.

In the rest of this problem we assume that (C, ϕ) is a 2 -out-of- 3 system. That is, $C=\{1,2,3\}$ and the structure function, ϕ, is given by:

$$
\phi(\boldsymbol{X})=X_{1} X_{2}+X_{1} X_{3}+X_{2} X_{3}-2 X_{1} X_{2} X_{3},
$$

where $\boldsymbol{X}=\left(X_{1}, X_{2}, X_{3}\right)$. Moreover, we assume that the joint distribution of the component state variables satisfies the following properties:

$$
\begin{aligned}
E\left[X_{1}\right]=E\left[X_{2}\right] & =E\left[X_{3}\right]=p, \\
E\left[X_{1} X_{2}\right]=E\left[X_{1} X_{3}\right] & =E\left[X_{2} X_{3}\right]=p^{2-\alpha}, \\
E\left[X_{1} X_{2} X_{3}\right] & =p^{3-2 \alpha},
\end{aligned}
$$

where $0<p<1$ and $0 \leq \alpha \leq 1$. It can be shown that these properties imply that X_{1}, X_{2}, X_{3} are associated random variables.
d) We now consider the correlation between the component state variables. Show that:

$$
\operatorname{Corr}\left(X_{i}, X_{j}\right)=\frac{p^{2-\alpha}-p^{2}}{p(1-p)}, \quad \text { for } i \neq j .
$$

Moreover, show that the correlation is increasing in α. In particular, calculate the correlation for the cases $\alpha=0$ and $\alpha=1$. Comment your findings.

Solution: For $i \neq j$ we have that:

$$
\begin{aligned}
\operatorname{Var}\left(X_{i}\right) & =E\left[X_{i}^{2}\right]-\left(E\left[X_{i}\right]\right)^{2}=E\left[X_{i}\right]-\left(E\left[X_{i}\right]\right)^{2}=p-p^{2}=p(1-p) \\
\operatorname{Var}\left(X_{j}\right) & =E\left[X_{j}^{2}\right]-\left(E\left[X_{j}\right]\right)^{2}=E\left[X_{j}\right]-\left(E\left[X_{j}\right]\right)^{2}=p-p^{2}=p(1-p) \\
\operatorname{Cov}\left(X_{i}, X_{j}\right) & =E\left[X_{i} X_{j}\right]-E\left[X_{i}\right] E\left[X_{j}\right]=p^{2-\alpha}-p^{2}
\end{aligned}
$$

Hence, we get that:

$$
\operatorname{Corr}\left(X_{i}, X_{j}\right)=\frac{\operatorname{Cov}\left(X_{i}, X_{j}\right)}{\sqrt{\operatorname{Var}\left(X_{i}\right) \cdot \operatorname{Var}\left(X_{j}\right)}}=\frac{p^{2-\alpha}-p^{2}}{p(1-p)}
$$

Obviously, showing that $\operatorname{Corr}\left(X_{i}, X_{j}\right)$ is increasing in α is equivalent to showing that $p^{2-\alpha}$ is increasing in α. In order to show this, we compute the derivative with respect to α :

$$
\frac{\partial}{\partial \alpha} p^{2-\alpha}=(-\ln (p)) p^{2-\alpha}
$$

Since $0<p<1$, we have that $(-\ln (p))>0$. Hence, it follows that $p^{2-\alpha}$ is increasing in α.

If $\alpha=0$ we get:

$$
\operatorname{Corr}\left(X_{i}, X_{j}\right)=\frac{p^{2-\alpha}-p^{2}}{p(1-p)}=\frac{p^{2}-p^{2}}{p(1-p)}=0
$$

Thus, in this case X_{i} and X_{j} are independent.
If $\alpha=1$ we get:

$$
\operatorname{Corr}\left(X_{i}, X_{j}\right)=\frac{p^{2-\alpha}-p^{2}}{p(1-p)}=\frac{p(1-p)}{p(1-p)}=1
$$

Thus, in this case X_{i} and X_{j} are completely dependent
e) Show that:

$$
L_{1}=p^{2} \quad \text { and } \quad U_{1}=1-(1-p)^{2}
$$

and that:

$$
L_{2}=\left(2 p-p^{2-\alpha}\right)^{3} \quad \text { and } \quad U_{2}=1-\left(1-p^{2-\alpha}\right)^{3}
$$

and that:

$$
E[\phi]=3 p^{2-\alpha}-2 p^{3-2 \alpha}
$$

Solution: We note that the minimal path and cut sets of (C, ϕ) are:
Minimal path sets: $\{1,2\},\{1,3\},\{2,3\}$
Minimal cut sets: $\{1,2\},\{1,3\},\{2,3\}$
Hence, by using the properties of the joint distribution of X_{1}, X_{2} and X_{3} we get:

$$
\begin{aligned}
& L_{1}=\max _{1 \leq j \leq 3} \prod_{i \in P_{j}} E\left[X_{i}\right]=p^{2} \\
& U_{1}=\min _{1 \leq j \leq 3} \coprod_{i \in K_{j}} E\left[X_{i}\right]=1-(1-p)^{2}
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
& L_{2}=\prod_{j=1}^{3} E\left[\coprod_{i \in K_{j}} X_{i}\right]=\prod_{j=1}^{3} E\left[X_{1}+X_{2}-X_{1} X_{2}\right]=\left(2 p-p^{2-\alpha}\right)^{3} \\
& U_{2}=\coprod_{j=1}^{3} E\left[\prod_{i \in P_{j}} X_{i}\right]=\coprod_{j=1}^{3} E\left[X_{1} X_{2}\right]=1-\left(1-p^{2-\alpha}\right)^{3}
\end{aligned}
$$

Finally,

$$
E[\phi]=E\left[X_{1} X_{2}+X_{1} X_{3}+X_{2} X_{3}-2 X_{1} X_{2} X_{3}\right]=3 p^{2-\alpha}-2 p^{3-2 \alpha}
$$

f) Show that L_{2} is decreasing in α while U_{2} is increasing in α. What can you say about the quality of these bounds when the correlation between the component state variables increases?

Solution: We recall from (e) that:

$$
\begin{aligned}
& L_{2}=\left(2 p-p^{2-\alpha}\right)^{3} \\
& U_{2}=1-\left(1-p^{2-\alpha}\right)^{3}
\end{aligned}
$$

We observe that L_{2} is decreasing in α is equivalent to that $p^{2-\alpha}$ is increasing in α which was shown in (d). Similarly, that U_{2} is increasing in α is equivalent to that $p^{2-\alpha}$ is increasing in α which was also shown in (d).

When the lower bound, L_{2}, is decreasing, while the upper bound U_{2}, is increasing, the difference between L_{2} and U_{2} is increasing. Thus, the quality of these bounds become worse when the correlation between the component state variables increases
g) Assume that $\alpha=1$. Show that we in this case have:

$$
L_{2}<L_{1}<E[\phi]<U_{1}<U_{2}
$$

Which bounds would you recommend in this case?

Solution: When $\alpha=1$, we get that:

$$
\begin{aligned}
L_{2} & =\left(2 p-p^{2-\alpha}\right)^{3}=(2 p-p)^{3}=p^{3} \\
U_{2} & =1-\left(1-p^{2-\alpha}\right)^{3}=1-(1-p)^{3} \\
E[\phi] & =3 p^{2-\alpha}-2 p^{3-2 \alpha}=3 p-2 p=p
\end{aligned}
$$

At the same time $L_{1}=p^{2}$ while $U_{1}=1-(1-p)^{2}$ (since these bounds do not depend on α). Combining all this, and the assumption that $0<p<1$, we get:

$$
p^{3}<p^{2}<p<1-(1-p)^{2}<1-(1-p)^{3}
$$

Hence, it follows that:

$$
L_{2}<L_{1}<E[\phi]<U_{1}<U_{2}
$$

Obviously the bounds should to be chosen as close as possible to the true value, $E[\phi]$. Thus, we recommend using L_{1} as lower bound and U_{1} as upper bound
h) Assume that $\alpha=0$. What kind of bounds would you recommend in this case?
(Continued on page 11.)

Solution: When $\alpha=0$, we get that:

$$
\begin{aligned}
L_{2} & =\left(2 p-p^{2-\alpha}\right)^{3}=\left(2 p-p^{2}\right)^{3} \\
U_{2} & =1-\left(1-p^{2-\alpha}\right)^{3}=1-\left(1-p^{2}\right)^{3} \\
E[\phi] & =3 p^{2-\alpha}-2 p^{3-2 \alpha}=3 p^{2}-2 p^{3}
\end{aligned}
$$

At the same time $L_{1}=p^{2}$ while $U_{1}=1-(1-p)^{2}$ (since these bounds do not depend on α).

In this case it can be shown that $L_{1}<L_{2}$ for some values of p while the opposite inequality holds for other values of p. Moreover, it can be shown that $U_{1}<U_{2}$ for some values of p while the opposite inequality holds for other values of p. To ensure that we get the best bounds, we recommend using the lower bound L^{*} and the upper bound U^{*} given by:

$$
\begin{aligned}
L^{*} & =\max \left(L_{1}, L_{2}\right) \\
U^{*} & =\min \left(U_{1}, U_{2}\right)
\end{aligned}
$$

