
RISK- AND RELIABILITY ANALYSIS

WITH APPLICATIONS

by

ARNE BANG HUSEBY and KRISTINA ROGNLIEN DAHL

Department of Mathematics
Faculty of Mathematics and Natural Sciences

University of Oslo

ii

iii

Abstract

This is a compendium intended for use in the course STK3405
and STK4405 at the Department of Mathematics, University of
Oslo, from fall 2022. The compendium provides the foundation
of probability theory needed to compute the reliability of a sys-
tem, i.e., the probability that a system is functioning, when the
reliabilities of the components which the system is composed of
are known. Examples of systems are energy systems and net-
works. In addition, various examples of the use of risk analysis
for industrial applications are studied. The material is illustrated
by different simulation techniques. This material can serve as an
introduction to more advanced studies, but is also suitable as sup-
port literature to studies in other fields and as further education
for realists and engineers.

iv

Contents

Abstract . iii

1 Introduction 1

2 System analysis 3
2.1 Binary monotone systems . 3
2.2 Coherent systems . 8
2.3 Dual systems . 13
2.4 Reliability of binary monotone systems 15
2.5 k-out-of-n systems . 20
2.6 Exercises . 22

3 Basic reliability calculation methods 25
3.1 Pivotal decompositions . 25
3.2 Representation by paths and cuts 29
3.3 Modules of monotone systems 34
3.4 Exercises . 36

4 Exact computation of reliabilities 39
4.1 State space enumeration . 40
4.2 The multiplication method . 42
4.3 The inclusion-exclusion method 44
4.4 k-out-of-n systems . 47
4.5 Threshold systems . 49
4.6 Directed network systems . 55
4.7 Undirected network systems 58

v

vi CONTENTS

4.8 Binary decision diagrams . 63
4.8.1 Threshold systems . 74
4.8.2 Consecutive threshold systems 77
4.8.3 Undirected network systems 82

4.9 Exercises . 85

5 Structural and reliability importance 93
5.1 Structural importance of a component 93
5.2 Reliability importance of a component 96
5.3 Exercises . 101

6 Conditional Monte Carlo methods 103
6.1 Monte Carlo simulation and conditioning 103
6.2 Conditioning on the sum . 107
6.3 Identical component reliabilities 109

7 Dynamic System Analysis 117
7.1 Non-repairable binary monotone systems 118

7.1.1 The Weibull distribution 119
7.1.2 Plotting system reliability 124

7.2 The time-dependent Birnbaum measure 131
7.3 The Barlow-Proschan measure 135
7.4 The Natvig measure . 141
7.5 Pure jump processes . 148
7.6 Repairable binary monotone systems 151
7.7 Simulating repairable systems 153
7.8 Estimating availability and importance 156
7.9 Exercises . 162

8 Association and reliability bounds 165
8.1 Associated random variables 165
8.2 Bounds for the system reliability 172
8.3 Exercises . 182

9 Applications 185
9.1 Case study: Fishing boat engines 185
9.2 Case study: Transmission of electronic pulses 193
9.3 Exercises . 201

CONTENTS vii

A Notations 203

B Python scripts 205
B.1 k-out-of-n systems and threshold systems 205
B.2 Binary decision diagrams . 213
B.3 Dynamic System reliability . 253
B.4 Transmission of electronic pulses 296

Bibliography 301

viii CONTENTS

List of Figures

2.1 A reliability block diagram of a series system of order 5 with
component set C = {1, . . . , 5} 5

2.2 A parallel system of order 2 7
2.3 A system with an irrelevant component. 9
2.4 A componentwise parallel structure: “better” than systemwise

parallel. 12
2.5 A systemwise parallel structure: “worse” than componentwise

parallel. 12
2.6 A mixed parallel and series system 17
2.7 h(p∐ p) (red curve) versus h(p)∐ h(p) (green curve). 19
2.8 h(p · p) (red curve) versus h(p) · h(p) (green curve). 20
2.9 A reliability block diagram of a 2-out-of-3 system. 21
2.10 An alternative reliability block diagram of a 2-out-of-3 system. 22
2.11 A mixed parallel and series system. 23

3.1 A bridge structure. 27
3.2 A bridge structure. 31
3.3 The reliability block diagram of a bridge structure in Exam-

ple 3.2.3 represented as a parallel structure of its minimal path
series structures. 32

3.4 The reliability block diagram of a bridge structure in Exam-
ple 3.2.3 represented as a series structure of its minimal cut
parallel structures. 33

3.5 A monotone system which can be modularly decomposed. . . 35

ix

x LIST OF FIGURES

3.6 A series connection of a parallel system, a bridge system and
a single component. 37

3.7 A system suited for modular decompostition. 38

4.1 An S4T system . 56
4.2 An S1T system . 57
4.3 A reliability block diagram of a mixed parallel and series system. 60
4.4 An undirected network system 61
4.5 Subsystems (C \ 4,φ+4) and (C \ 4,φ−4) obtained by pivotal

decomposition with respect to component 4 62
4.6 The subsystem ((C \ 4)r, (φ+4)

r) obtained by a parallel reduc-
tion of (C \ 4,φ+4) with respect to components 3 and 5 62

4.7 Subsystems ((C \ 4)r \ 3′, (φ+4)
r
+3′) and ((C \ 4)r \ 3′, (φ+4)

r
−3′)

obtained from the subsystem ((C \ 4)r, (φ+4)
r) by a pivotal

decomposition with respect to component 3′ 63
4.8 An ordered binary decision diagram of a 2-out-of-3 system. . . 64
4.9 An unordered binary decision diagram of a 2-out-of-3 system. 68
4.10 A reduced ordered binary decision diagram of a 2-out-of-3 sys-

tem. 71
4.11 An S1T system. 88
4.12 An undirected network system with components 1, 2, . . . , 8 and

terminals S and T . 88
4.13 An undirected network system with components 1, 2, . . . , 7 and

terminals S and T . 89
4.14 A series system of bridge structures. 89
4.15 A bridge system. 91

5.1 . 94

6.1 A 2-terminal undirected network system 113
6.2 System reliability as a function of the common component reli-

ability p. Crude Monte Carlo estimate (red curve), conditional
Monte Carlo estimate (green curve) and true reliability (blue
curve). 115

7.1 Weibull densities for different shape parameters. 121
7.2 Weibull survival probabilities for different shape parameters. . 121
7.3 Weibull cumulative failure rates for different shape parameters. 122
7.4 Weibull failure rates for different shape parameters. 122

LIST OF FIGURES xi

7.5 The reliability of a 2-out-of-3 system as a function of the time
t ≥ 0. 125

7.6 The reliability of a bridge system as a function of the time t ≥ 0.128
7.7 The reliability of a threshold system as a function of the time

t ≥ 0. 129
7.8 The reliability of an undirected network system as a function

of the time t ≥ 0. 130
7.9 The Birnbaum importance of the components of a 2-out-of-3

system as a function of the time t ≥ 0. 131
7.10 The Birnbaum importance of the components of a bridge sys-

tem as a function of the time t ≥ 0. See Example 7.1.3. 133
7.11 The Birnbaum importance of the components of a threshold

system as a function of the time t ≥ 0. See Example 7.1.4. . . 134
7.12 The Birnbaum importance of the components of an undirected

network system as a function of the time t ≥ 0. See Example
7.1.5. 134

7.13 The Barlow-Proschan importance measure for the components
in a bridge system. 138

7.14 The Barlow-Proschan importance measure for the components
in a threshold system. 140

7.15 The Barlow-Proschan importance measure for the components
in an undirected network system. 140

7.16 The Natvig importance measure for the components in a bridge
system. 146

7.17 The Natvig importance measure for the components in a thresh-
old system. 147

7.18 The Natvig importance measure for the components in an
undirected network system. 147

7.19 A bridge system. 159
7.20 Interval estimate (black curve) and pointwise estimate (gray

curve) of the availability curve. 160
7.21 Interval estimate (black curve) and pointwise estimate (gray

curve) of the importance curve. 160
7.22 A binary monotone system (C,φ). 163

8.1 The binary component state process Xi(t) plotted as a func-
tion of the time t ≥ 0. 175

xii LIST OF FIGURES

8.2 The binary component state process Xi(t) plotted as a func-
tion of the lifetime Ti for a given t ≥ 0. 175

8.3 Illustration of the bounds in Example 8.2.9. 182
8.4 Illustration of the network for Exercise 8.2.6. 183

9.1 Fault tree for the first boat engine. 186
9.2 System equivalent to the fault tree. 188
9.3 Fault tree for the second boat engine. 190
9.4 System equivalent to the fault tree for the two-engine system. 192
9.5 A network for transmission of electronic pulses. 195
9.6 Subsystem of a network for transmission of electronic pulses. . 198

Chapter 1
Introduction

The purpose of these notes is to provide the reader with a basic knowledge
on the theoretical foundations of risk- and reliability analysis. In addition,
the compendium covers a wide array of current applications of these fields
as well as simulation techniques and an introduction to software suitable for
applying the theory to practical problems.

Today, various aspects of risk- and reliability theory are used in many dif-
ferent sectors. Examples include transport, project planning, time schedul-
ing, energy networks and aerospace. At the core of all these applications is
a need to quantify and control risk, determine how reliable a system is and
how to monitor and maintain systems is the best way possible. Clever use
of the risk- and reliability theory can provide safer and more efficient sys-
tems which are supervised in an optimal way. This leads to financial savings,
well-functioning systems and prevention of accidents.

These notes are suitable for a bachelor or master level course in modern
risk- and reliability theory, but also as further education for practitioners
(engineers, risk analysts etc.).

The structure of the notes is as follows: In Chapter 2 we introduce the
theoretical foundation of system analysis. We define a system of components
and study various kinds of systems. The structure/reliability function of the
system is defined based on component reliabilities. The chapter also includes
important defining properties of systems such as monotonicity, coherency
and duality. In Chapter 3 we introduce the basic tools for calculating relia-
bility, including pivotal decompositions, path and cut sets as well as modular
decompositions. Then, in Chapter 4, we consider different methods for exact

1

2 CHAPTER 1. INTRODUCTION

computation of the reliability of systems. In Chapter 5 we introduce various
measures for computing the structural and the reliability importance of the
system components.

In Chapter 7 we show how to analyse systems where the states of the
components, and hence also the state of the system, evolve over time. We
also introduce discrete event simulation and show how this can be used to
estimate availability and importance in systems with repairable components.

In some cases, computing the exact reliability is too time-consuming, so in
Chapter 8 we give upper and lower bounds for the system reliabilities. In this
chapter, we also define a specific kind of dependence between the components
of a system called association, and study how this property can be used to
derive bounds for the system reliability without requiring independence of
components.

In Chapter 9 we present various applications and examples of practical use
of risk- and reliability theory. Some examples include project management
and time scheduling, analyzing a network for the transmission of electronic
pulses and a conditional Monte Carlo approach to system reliability evalua-
tion.

Throughout the notes, there are various exercises intended to provide the
reader with a deeper understanding of the material. Some of the exercises
are more theoretical, some are oriented towards analyzing smaller systems
by hand and other rely on simulation techniques and use of Riscue.

The notation used in the compendium is summarized in Chapter A.

Parts of these notes are based on the compendium by Natvig [50] (in Nor-
wegian). In particular, this is the case for Chapter 2. However, compared
to Natvig [50] there are several new examples, exercises, some new topics
are included and some others are excluded. The presentation has also been
reorganized and reworked.

Chapter 2
System analysis

In this chapter, we will introduce the basic concepts of system analysis and
reliability theory. In contrast to several other books on this topic, for in-
stance Barlow and Proschan [7] and Natvig [50], we will begin by introduc-
ing stochastic systems (i.e., when the component states are random). The
more classical approach is to first consider deterministic system analysis (i.e.,
where the component states are deterministic), and then move on to the
stochastic case. However, as the two are very similar, we go straight to the
general stochastic case, and highlight important aspects of the deterministic
case whenever necessary. This hopefully saves the reader some work and
also makes the presentation more unified. At first, we analyse systems at
a particular time. We then move on to dynamic system analysis where we
consider the development of the systems over time.

2.1 Binary monotone systems

When we use the term system, we think of some technological unit consisting
of a finite set C = {1, . . . , n} of components which are operating together. A
binary system has only two possible states: functioning or failed. Moreover,
each component is either functioning or failed as well1. For each component

1More generally, multistate reliability theory, handles cases where the system and its
components have more than two potential states are considered. Much of the theory for
binary systems can be extended to multistate systems. Still such systems typically are
more computationally challenging. See Natvig [51].

3

4 CHAPTER 2. SYSTEM ANALYSIS

i ∈ C we introduce the component state variable xi denoting the state of
component i and defined as:

xi =

!
1 if component i is functioning
0 otherwise.

(2.1)

The vector x = (x1, . . . , xn) is referred to as the component state vector.
Note that we sometimes use upper case letters for the component state
variables and the component state vector when these are considered to be
stochastic variables. In such cases specific values of the stochastic component
state variables will be denoted by lower case letters, x1, . . . , xn. Similarly, x
denotes a specific value of the stochastic vector X.

The state of the system is denoted by φ defined as:

φ =

!
1 if the system is functioning
0 otherwise.

(2.2)

The variables xi, i = 1, . . . , n and φ are said to be binary, since they only
have two possible values, 0 and 1.

The state of the system is assumed to be uniquely determined by the
component state vector, x. That is, φ is a stochastic variable which can be
expressed as a function of x:

φ = φ(x).

The function φ : {0, 1}n → {0, 1} is called the structure function of the sys-
tem. For a specific value of the component state vector x = (x1, x2, . . . , xn),
the resulting system state is given by φ = φ(x).

Intuitively, repairing a component should not make the system worse,
and breaking a component should not make system better. Mathematically
this property implies that the structure function should be non-decreasing
in each argument. This property is an essential part of the definition of a
binary monotone system which can be stated as follows:

Definition 2.1.1 A binary monotone system is an ordered pair (C,φ), where
C = {1, . . . , n} is the component set and φ is the structure function. The
function φ is assumed to be non-decreasing in each argument. The number
of components, n, is referred to as the order of the system.

2.1. BINARY MONOTONE SYSTEMS 5

Note that according to this definition the class of binary monotone systems
includes systems where the structure function is constant, i.e., systems where
either φ(x) = 1 for all x ∈ {0, 1}n or φ(x) = 0 for all x ∈ {0, 1}n. We will
refer to such systems as trivial systems2.

We let 0 denote the vector where all entries are 0, and similarly, let 1
be the vector where all entries are 1. The following result provides a useful
property of non-trivial systems.

Theorem 2.1.2 Let (C,φ) be a non-trivial binary monotone system. Then
φ(0) = 0 and φ(1) = 1.

Proof: Since (C,φ) is assumed to be non-trivial, there exists at least one
vector x0 such that φ(x0) = 0 and another vector x1 such that φ(x1) = 1.
Since (C,φ) is assumed to be monotone, it follows that 0 ≤ φ(0) ≤ φ(x0) = 0
and 1 = φ(x1) ≤ φ(1) ≤ 1. Hence, it follows that φ(0) = 0 and φ(1) = 1 □

In order to describe the logical relation between the components and the
system, we often use a reliability block diagram. In such diagrams components
are represented as circles and connected by lines. The system is functioning if
and only it is possible to find a way from the left-hand side to the right-hand
side of the diagram passing only functioning components. Note that in order
to represent arbitrarily complex binary monotone systems, it is sometimes
necessary to allow components to occur multiple places in the block diagram.
In such cases the reliability block diagram should not be interpreted as a
picture of a physical system.

1 4 52 3

Figure 2.1: A reliability block diagram of a series system of order 5 with
component set C = {1, . . . , 5}

2Some textbooks exclude trivial systems from the class of monotone systems. We have
chosen not to do so in order to have a class which is closed with respect to conditioning.

6 CHAPTER 2. SYSTEM ANALYSIS

Example 2.1.3 Figure 2.1 shows a reliability block diagram of a series sys-
tem of order 5. From the diagram we see that the series system is function-
ing if and only if all of its components are functioning, i.e., if and only if
x1 = · · · = x5 = 1. Hence, the state of the system can be expressed as a
function of the component state variables as follows:

φ = x1 · x2 · x3 · x4 · x5 =
5"

i=1

xi.

Alternatively, the structure function of the series system can be written as:

φ(x) = min{x1, . . . , x5}

since the minimum of x1, . . . , x5 is 1 if and only if x1 = · · · = x5 = 1.

It may be useful to think of the product operator (·) of binary variables
as representing the logical and-operation. Thus, for the series system to
function, components 1 and 2 and · · · and 5 all need to function.

Both the product-expression and the minimum-expression can be extended
to series systems of arbitrary orders. Thus, the structure function of a series
system of order n can be written as:

φ(x) =
n"

i=1

xi = min
1≤i≤n

xi. (2.3)

In order to derive convenient representations of structure functions of
other types of binary monotone system, we also need another operator, called
the coproduct operator. This operator is denoted by the symbol ∐ and defined
as follows:

Notation 2.1.4 For any a1, a2, . . . , an where ai ∈ [0, 1], i = 1, 2, . . . , n, we
define:

a1 ∐ a2 = 1− (1− a1)(1− a2),
n#

i=1

ai = 1−
n"

i=1

(1− ai).

2.1. BINARY MONOTONE SYSTEMS 7

1

2

Figure 2.2: A parallel system of order 2

It is easy to verify that 1 ∐ 1 = 1 ∐ 0 = 0 ∐ 1 = 1, while 0 ∐ 0 = 0. More
generally, if a1, . . . , an are binary numbers (i.e., either 0 or 1), their coproduct
is 1 if ai = 1 for at least one i, and 0 if ai = 0 for all i.

Example 2.1.5 Figure 2.2 shows a reliability block diagram of a parallel
system of order 2. We see that the parallel system functions if and only if
at least one of its components is functioning. The structure function of this
system can be written as:

φ(x) = x1 ∐ x2 = 1− (1− x1) · (1− x2). (2.4)

To see this, note that the only way the system is not functioning is that x1

and x2 are both zero. In this case, the right hand side of (2.4) is clearly 0.
For any other combination of values for x1 and x2, the right hand side of
(2.4) is 1.

Alternatively, the structure function of the parallel system can be written
as:

φ(x) = max{x1, x2}

since the maximum of x1 and x2 is 0 if and only if x1 = x2 = 0.

From Example 2.1.5 we see that the coproduct-operator, ∐, may be
though of as representing the logical or-operation. Thus, for the above par-
allel system to function components 1 or 2 must function.

Both the coproduct-expression and the maximum-expression can be ex-
tended to parallel systems of arbitrary orders. Thus, the structure function

8 CHAPTER 2. SYSTEM ANALYSIS

of a parallel system of order n can be written as:

φ(x) =
n#

i=1

xi = max
1≤i≤n

xi. (2.5)

2.2 Coherent systems
Every component of a binary monotone system should have some impact
on the system state. More precisely, if i is a component in a system, there
should ideally exist at least some state of the rest of the system where the
state of component i is crucial for the system state. Before we formalise this
concept further, we introduce some notation:

(1i,x) = (x1, . . . , xi−1, 1, xi+1, . . . , xn),

(0i,x) = (x1, . . . , xi−1, 0, xi+1, . . . , xn),

(·i,x) = (x1, . . . , xi−1, ·, xi+1, . . . , xn).

Definition 2.2.1 Let (C,φ) be a binary monotone system, and let i ∈ C.
The component i is said to be relevant for the system (C,φ) if:

0 = φ(0i,x) < φ(1i,x) = 1 for some (·i,x).

If this is not the case, component i is said to be irrelevant for the system.

Relevance of components plays a very important role in reliability theory.
Based on this concept we also introduce the following crucial concept.

Definition 2.2.2 A binary monotone system (C,φ) is coherent if all its
components are relevant.

Note that a coherent system is obviously non-trivial as well, since in a
trivial system all components are irrelevant.

One might think that all binary monotone systems we encounter should
be coherent. However, coherency should be viewed a dynamic property. As
parts of a system breaks, some of the remaining components may become
irrelevant. Similarly, if we, e.g., as part of a reliability calculation, condition
on the state of a component, the resulting system may not be coherent.

Finally, depending on how we model a system, we may encounter com-
ponents which improve the performance of the system even though they are
not relevant according to our definition.

2.2. COHERENT SYSTEMS 9

Electrical unit

Condensator

Figure 2.3: A system with an irrelevant component.

Example 2.2.3 Figure 2.3 shows a part of a large machine consisting of
an electrical unit and a condensator. The condensator’s job is to prevent the
electrical unit from being broken due to high voltage. Viewed as a component,
the condensator is irrelevant. However, this does not mean that it is not
important! The condensator can prolong the lifetime of the electrical unit,
and hence also the lifetime of the whole machine.

Note that for this example, the problem can be avoided by considering the
electrical unit and the condensator as one component instead of two.

We now prove the intuitively reasonable result that within the class of
non-trivial monotone systems, the parallel structure is "the best" while the
series system is "the worst".

Theorem 2.2.4 Let (C,φ) be a non-trivial binary monotone system of order
n. Then for all x ∈ {0, 1}n we have:

n"

i=1

xi ≤ φ(x) ≤
n#

i=1

xi. (2.6)

Proof: We focus on the left-hand inequality. If
$n

i=1 xi = 0, this inequality
is trivial since φ(x) ∈ {0, 1} for all x ∈ {0, 1}n. If on the other hand$n

i=1 xi = 1, we must have x = 1. Since (C,φ) is assumed to be non-trivial,
it follows by Theorem 2.1.2 that φ(1) = 1. Thus, the inequality is valid in
this case as well. This completes the proof of the left-hand inequality. The
right-hand inequality is proved in a similar fashion and is left as an exercise.

□

10 CHAPTER 2. SYSTEM ANALYSIS

By introducing redundancy into a system one could improve the reliability.
However, there are many different ways of doing this. In particular, we may
introduce redundancy at the component level or at the system level. The
next result shows that redundancy at the component level is better than
redundancy at the system level. Moreover, the opposite is true for series
connections. In order to prove this result, we introduce the product and
coproduct operators for vectors:

x · y = (x1 · y1, x2 · y2, . . . , xn · yn),
x∐ y = (x1 ∐ y1, x2 ∐ y2, . . . , xn ∐ yn).

Theorem 2.2.5 Let (C,φ) be a binary monotone system of order n. Then
for all x,y ∈ {0, 1}n we have:

(i) φ(x∐ y) ≥ φ(x)∐ φ(y),

(ii) φ(x · y) ≤ φ(x) · φ(y).

Moreover, assume that (C,φ) is coherent. Then equality holds in (i) for
all x,y ∈ {0, 1}n if and only if (C,φ) is a parallel system. Similarly, equality
holds in (ii) for all x,y ∈ {0, 1}n if and only if (C,φ) is a series system.

Proof: Since φ is non-decreasing and xi ∐ yi ≥ xi for i = 1, . . . , n, it follows
that:

φ(x∐ y) ≥ φ(x).

Similarly, we see that
φ(x∐ y) ≥ φ(y).

Hence,
φ(x∐ y) ≥ max{φ(x),φ(y)} = φ(x)∐ φ(y).

This proves (i). The proof of (ii) is similar and is left as an exercise.

We then assume that (C,φ) is coherent. We shall prove the first equiva-
lence, i.e., that equality holds in (i) for all x,y ∈ {0, 1}n if and only if (C,φ)
is a parallel system.

2.2. COHERENT SYSTEMS 11

If (C,φ) is a parallel system, it follows that:

φ(x∐ y) =
n#

i=1

(xi ∐ yi) = max
1≤i≤n

%
max{xi, yi}

&

= max
%
max
1≤i≤n

xi, max
1≤i≤n

yi
&
= φ(x)∐ φ(y),

which proves the "if"-part of the equivalence.
Assume conversely that φ(x ∐ y) = φ(x) ∐ φ(y) for all x,y ∈ {0, 1}n.

Since (C,φ) is coherent it follows that for any i ∈ C there exists a vector
(·i,x) such that:

φ(1i,x) = 1 and φ(0i,x) = 0.

For this particular vector (·i,x) we have:

1 = φ(1i,x) = φ
'
(1i,0)∐ (0i,x)

(

= φ(1i,0)∐ φ(0i,x) = φ(1i,0)∐ 0

= φ(1i,0).

Since φ(0) = 0, it follows that:

φ((xi)i,0) = xi xi = 0, 1; i = 1, . . . , n.

Hence, for any x, we have:

φ(x) = φ
'
((x1)1,0)∐ ((x2)2,0)∐ . . .∐ ((xn)n,0)

(

= φ((x1)1,0)∐ φ((x2)2,0)∐ . . .∐ φ((xn)n,0)

= x1 ∐ x2 ∐ . . .∐ xn =
n#

i=1

xi.

Thus, we have shown that (C,φ) is a parallel system which proves the "only
if"-part of the equivalence. The other equivalence is proved similarly and is
left as an exercise. □

Example 2.2.6 To illustrate Theorem 2.2.5, let φ be a series system of order
2. Then the statement of the theorem is that componentwise connection of
the nodes provides a better result than systemwise connection, i.e.,

(x1 ∐ y1) · (x2 ∐ y2) ≥ (x1 · x2)∐ (y1 · y2).

12 CHAPTER 2. SYSTEM ANALYSIS

Figure 2.4: A componentwise parallel structure: “better” than systemwise
parallel.

Figure 2.5: A systemwise parallel structure: “worse” than componentwise
parallel.

See Figures 2.4 and 2.5 for an illustration of this result. Here x1 and x2

represent the states of the circular nodes, while y1 and y2 represent the states
of the square nodes.

Assume e.g., that x1 = y2 = 1 while x2 = y1 = 0. Then the componentwise
parallel structure is functioning, while the systemwise parallel structure is
failed. By Theorem 2.2.5 the converse will never hold true. If the systemwise
parallel structure is functioning, the componentwise parallel structure must
be functioning as well. Similarly, if the componentwise parallel structure is
failed, then the systemwise parallel structure must be failed as well.

2.3. DUAL SYSTEMS 13

2.3 Dual systems
In this section we will introduce a concept of duality :

Definition 2.3.1 Let φ be a structure function of a binary monotone system
of order n. We then define the dual structure function, φD for all y ∈ {0, 1}n
as3:

φD(y) = 1− φ(1− y).

Furthermore, if X is the component state vector of a binary monotone
system, we define the dual component state vector XD as:

XD = (XD
1 , . . . , XD

n) = (1−X1, . . . , 1−Xn) = 1−X

Note that the relation between φ and φD should be interpreted as a relation
between two functions, while the relation between X and XD is a relation
between two stochastic vectors. Corresponding to the dual component state
vector XD we introduce the dual component set CD = {1D, . . . , nD}, where
it is understood that the dual component iD is functioning if the component
i is failed, while iD is failed if the component i is functioning.

By combining duality on the component level and on the system level, we
see that we have the following relation between the two stochastic variables
φ(X) and φD(XD):

φD(XD) = 1− φ(1−XD) = 1− φ(X).

Hence, the dual system is functioning if and only if the original system is
failed and vice versa.

Example 2.3.2 Let φ be the structure function of a system of order 3 where:

φ(y) = y1 ∐ (y2 · y3),
The dual structure function is then given by:

φD(y) = 1− φ(1− y)

= 1− (1− y1)∐ ((1− y2) · (1− y3))

= 1− [1− (1− (1− y1))(1− (1− y2) · (1− y3))]

= 1− [1− y1 · (1− (1− y2) · (1− y3))]

= y1 · (y2 ∐ y3)
3Note that we use y as argument instead of X here to emphasize that we are describing

a relation between the two binary functions φ and φD. This should not be confused with
the relation between the two random variables φ(X) and φD(XD).

14 CHAPTER 2. SYSTEM ANALYSIS

Example 2.3.3 Let (C,φ) be a series system of order n. That is, φ is given
by:

φ(y) =
n"

i=1

yi.

The dual structure function is then given by:

φD(y) = 1− φ(1− y)

= 1−
n"

i=1

(1− yi)

=
n#

i=1

yi.

Thus, (CD,φD) is a parallel system of order n.

Example 2.3.4 Let (C,φ) be a parallel system of order n. That is, φ is
given by:

φ(y) =
n#

i=1

yi.

The dual structure function is then given by:

φD(y) = 1− φ(1− y)

= 1−
n#

i=1

(1− yi)

= 1− (1−
n"

i=1

(1− (1− yi))

=
n"

i=1

yi.

Thus, (CD,φD) is a series system of order n.

We close this section by a result showing that if we take the dual of the
dual system, we get the original system back.

2.4. RELIABILITY OF BINARY MONOTONE SYSTEMS 15

Theorem 2.3.5 Let φ be the structure function of a binary monotone sys-
tem, and let φD be the corresponding dual structure function. Then we have:

(φD)D = φ.

That is, the dual of the dual system is equal to the original system.

Proof: For all y ∈ {0, 1}n we have:

(φD)D(y) = 1− φD(1− y)

= 1− [1− φ(1− (1− y))]

= φ(y).

□

2.4 Reliability of binary monotone systems
If (C,φ) is a binary monotone system, the reliability of a component i ∈ C,
denoted by pi, is defined as the probability that component i is functioning.
That is, pi = P (Xi = 1), for all i ∈ C. Obviously, a component with high
reliability is likely to be functioning, while a component with low reliability
is more likely to fail. Note that since Xi is binary, we have:

E[Xi] = 0 ·P (Xi = 0)+1 ·P (Xi = 1) = P (Xi = 1) = pi, for all i ∈ C. (2.7)

Thus, the reliability of component i is equal to the expected value of its
component state variable, Xi.

Similarly, the reliability of the system, denoted by h, is defined as the
probability that the system is functioning. That is, h = P (φ = 1). Again,
since φ is binary, we have:

E[φ(X)] = 0 · P (φ(X) = 0) + 1 · P (φ(X) = 1) = P (φ(X) = 1) = h. (2.8)

Thus, the reliability of the system is equal to the expected value of the struc-
ture function, φ(X). From this it immediately follows that the reliability of
a system, at least in principle, can be calculated as:

h = E[φ(X)] =
)

x∈{0,1}n
φ(x)P (X = x) (2.9)

16 CHAPTER 2. SYSTEM ANALYSIS

In the case where the component state variables are dependent, the system
reliability h will depend on the full joint distribution of the component state
vector. Hence, if we only know the component reliabilities, the best we can
do is to establish upper and lower bounds for h. See Section 8.2 for more on
this. In the remaining part of this section we instead consider the case where
the component state variables can be assumed to be independent. In order to
do so we introduce the vector of component reliabilities, p = (p1, p2, . . . , pn),
and note that:

P (Xi = xi) =

!
pi if xi = 1,

1− pi if xi = 0.

Since xi is either 0 or 1, this probability can be written in the following more
compact form:

P (Xi = xi) = pxi
i (1− pi)

1−xi .

If the component state variables X1, X2, . . . , Xn are independent, we can use
this in order to write the joint distribution of X in terms of p as follows:

P (X = x) =
n"

i=1

P (Xi = xi) =
n"

i=1

pxi
i (1− pi)

1−xi . (2.10)

Thus, when the component state variables are independent, we may insert
(2.10) into (2.9) and get the following expression for the system reliability:

h = E[φ(X)] =
)

x∈{0,1}n
φ(x)

n"

i=1

pxi
i (1− pi)

1−xi (2.11)

Note that in this case the reliability of the system is a function of the com-
ponent reliabilities, so we may write

h = h(p). (2.12)

The function h(p) is called the reliability function of the system.

Example 2.4.1 Consider a series system of order n. Assuming that the
component state variables are independent, the reliability of this system is
given by:

h(p) = E[φ(X)] = E[
n"

i=1

Xi] =
n"

i=1

E[Xi] =
n"

i=1

pi,

where the third equality follows by using that X1, X2, . . . , Xn are assumed to
be independent.

2.4. RELIABILITY OF BINARY MONOTONE SYSTEMS 17

Example 2.4.2 Consider a parallel system of order n. Assuming that the
component state variables are independent, the reliability of this system is
given by:

h(p) = E[φ(X)] = E[
n#

i=1

Xi] = E[1−
n"

i=1

(1−Xi)]

= 1−
n"

i=1

(1− E[Xi]) =
n#

i=1

E[Xi] =
n#

i=1

pi,

where the fourth equality follows by using that X1, X2, . . . , Xn are assumed
to be independent.

1 2

4

3

Figure 2.6: A mixed parallel and series system

Example 2.4.3 The structure function for the system in Figure 2.6 is

φ(X) =
*
(X1 ·X2)∐X3

+
·X4, (2.13)

because for the system to function ((components 1 and 2 must function) or
(component 3 must function)) and component 4 must function.

Alternatively, we see that components 1 and 2 are in series implying that
the structure function depends on components 1 and 2 through X1 ·X2. Fur-
thermore, the part of the system containing components 1, 2 is in parallel
with component 3 implying that the structure function depends on compo-
nents 1, 2 and 3 through (X1 · X2) ∐ X3. Finally, the part of the system
containing components 1, 2 and 3 is in series with component 4, implying
that the structure function is as in equation (2.13).

18 CHAPTER 2. SYSTEM ANALYSIS

Assuming that the component state variables are independent it is easy to
verify, using a similar argument as we used for the structure function, that
the reliability of the system is given by:

h(p) =
*
(p1 · p2)∐ p3

+
· p4.

Theorem 2.2.5 can be extended to reliability functions as well. That is,
we have the following result:

Theorem 2.4.4 Let h(p) be the reliability function of a monotone system
(C,φ) of order n. Then for all p,p′ ∈ [0, 1]n we have:

(i) h(p∐ p′) ≥ h(p)∐ h(p′),

(ii) h(p · p′) ≤ h(p) · h(p′)

If in addition (C,φ) is coherent, equality holds in (i) for all p,p′ ∈ [0, 1]n if
and only if (C,φ) is a parallel system. Similarly, equality holds in (ii) for all
p,p′ ∈ [0, 1]n if and only if (C,φ) is a series system.

Proof: Note that the theorem implicitly assumes independence, since we can
write h(p). Then, for independent X,Y (corresponding to p,p′), we have:

h(p∐ p′)− h(p)∐ h(p′)

= E[φ(X ∐ Y)]− E[φ(X)]∐ E[φ(Y)]

= E[φ(X ∐ Y)− φ(X)∐ φ(Y)],

where the last expectation must be non-negative since by Theorem 2.2.5 we
know that:

φ(x∐ y)− φ(x)∐ φ(y) ≥ 0,

for all x,y ∈ {0, 1}n. This completes the proof of (i). The proof of (ii) is
similar and is left as an exercise.

We now show that equality in (i) holds for all p,p′ ∈ [0, 1]n if and only
if (C,φ) is a parallel system. In order to do so, we may choose p and p′

arbitrary such that 0 < pi < 1, 0 < p′i < 1 for i = 1, . . . , n. This implies that:

P (X = x,Y = y) > 0, for all x ∈ {0, 1}n and y ∈ {0, 1}n.

Hence, E[φ(X∐Y)−φ(X)∐φ(Y)] = 0 if and only if φ(x∐y)−φ(x)∐φ(y) =
0 for all x ∈ {0, 1}n and y ∈ {0, 1}n. By Theorem 2.2.5 this holds if and
only if (C,φ) is a parallel system. The other equivalence is proved similarly,
and left as an exercise. □

2.4. RELIABILITY OF BINARY MONOTONE SYSTEMS 19

Example 2.4.5 Consider the system (C,φ) of order 3 where:

φ(x) = x1 · (x2 ∐ x3),

and where the component state variables are independent and P (Xi = 1) = p
for all i ∈ C. Then it is easy to verify that h(p) = p · (p ∐ p) = 2p2 − p3.
From Theorem 2.4.4, it follows that for all 0 ≤ p ≤ 1, we have:

h(p∐ p) = 2(p∐ p)2 − (p∐ p)3

≥ h(p)∐ h(p) = (2p2 − p3)∐ (2p2 − p3)

In Figure 2.7 we have plotted the reliabilities of the two systems as functions
of p. We see that indeed h(p ∐ p) is greater than or equal to h(p) ∐ h(p) for
all 0 ≤ p ≤ 1. In fact the inequality is strict when 0 < p < 1.

0.00 0.20 0.40 0.60 0.80 1.00

1.00

0.80

0.60

0.40

0.20

0.00

Figure 2.7: h(p∐ p) (red curve) versus h(p)∐ h(p) (green curve).

Example 2.4.6 Consider the system (C,φ) of order 3 where:

φ(x) = x1 ∐ (x2 · x3),

and where the component state variables are independent and P (Xi = 1) = p
for all i ∈ C. In this case h(p) = p∐ p2 = p+ p2 − p3. From Theorem 2.4.4,
it follows that for all 0 ≤ p ≤ 1, we have:

h(p · p) = p2 + p4 − p6

≤ h(p) · h(p) = (p+ p2 − p3)2

20 CHAPTER 2. SYSTEM ANALYSIS

In Figure 2.8 we have plotted the reliabilities of the two systems as functions
of p. We see that indeed h(p · p) is less than or equal to h(p) · h(p) for all
0 ≤ p ≤ 1, and that the inequality is strict when 0 < p < 1.

0.00 0.20 0.40 0.60 0.80 1.00

1.00

0.80

0.60

0.40

0.20

0.00

Figure 2.8: h(p · p) (red curve) versus h(p) · h(p) (green curve).

2.5 k-out-of-n systems

A k-out-of-n system is a binary monotone system (C,φ) where C = {1, . . . , n}
which is functioning if and only if at least k out of the n components are
functioning. Note that an n-out-of-n system is a series structure, while a
1-out-of-n system is a parallel structure.

We observe that in order to evaluate the structure function of a k-out-of-n
system, we need to count the number of functioning components and check
if this number is greater than or equal to k. The number of functioning
components is simply the sum of the component state variables. Hence, the
structure function can be written as:

φ(X) =

,
-

.
1 if

/n
i=1 Xi ≥ k

0 otherwise.
(2.14)

2.5. K-OUT-OF-N SYSTEMS 21

In order to evaluate the reliability of a k-out-of-n system it is convenient to
introduce the following random variable:

S =
n)

i=1

Xi.

Thus, S is the number of functioning components. This implies that:

h = P (φ(X) = 1) = P (S ≥ k).

If the component state variables are independent, it is easy to derive the
distribution of S. In particular, if p1 = · · · = pn = p, S is a binomially
distributed random variable. Thus, we have:

P (S = i) =

0
n

i

1
pi(1− p)n−i.

Hence, the reliability of the system is given by:

h(p) = h(p) = P (S ≥ k) =
n)

i=k

0
n

i

1
pi(1− p)n−i (2.15)

In the general case with unequal component reliabilities, an explicit an-
alytical expression for the distribution of S is a bit more complicated. We
will return to this problem in Section 4.4.

1

2

2

3

31

Figure 2.9: A reliability block diagram of a 2-out-of-3 system.

A k-out-of-n system can represented by a reliability block diagram in
several ways. The first type of diagram is shown for a 2-out-of-3 system in

22 CHAPTER 2. SYSTEM ANALYSIS

1

2

2

3

1

3

Figure 2.10: An alternative reliability block diagram of a 2-out-of-3 system.

Figure 2.9. Here, we consider a parallel connection of several series structures.
Each of the series structures corresponds to a minimal way in which a signal
can pass through the system, i.e. any way two out of three components are
functioning. The second type of diagram is shown for the same 2-out-of-3
system in Figure 2.10. In this case, we draw a series connection of several
parallel structures. Each of the parallel structures corresponds to a minimal
way to make the system fail. Again, this happens if any two out of the three
components are not working.

2.6 Exercises
Exercise 1. What is the reliability function of a series system of order n
where the component states are assumed to be independent?

Exercise 2. Consider the parallel structure of order 2 in Figure 2.2. Assume
that the component states are independent.
a) If you know that p1 = P (X1 = 1) = 0.5 and p2 = P (X2 = 1) = 0.7, what
is the reliability of the parallel system?
b) What is the system reliability if p1 = 0.9 and p2 = 0.1?
c) Can you give an interpretation of these results?

Exercise 3. Consider a binary monotone system (C,φ), where the compo-
nent set is C = {1, . . . , 4} and where φ is given by:

φ(X) = X1 ·X2 · (X3 ∐X4).

a) Draw a reliability block diagram of this system.
b) Assume that the components in the system are independent. What is the
corresponding reliability function?

2.6. EXERCISES 23

Exercise 4. Consider the system shown in Figure 2.11.

1 2

3

4

5

Figure 2.11: A mixed parallel and series system.

a) What is the structure function of this system?
b) Assume that the components in the system are independent. What is the
corresponding reliability function?

Exercise 5. There are 8 different coherent systems of order less than or
equal to 3 (not counting permutations in the numbering of components).
What are they?
(Hint: Here are a couple to get you started φ(X) = X1 · X2 · X3, φ(X) =
X1 ∐X2.)

Exercise 6. Consider a monotone system (C,φ) of order n, and let A ⊂ C
the set of irrelevant components. Furthermore, let (C \ A,φ′), be a binary
monotone system of order m = n− |A|, where φ′ is a binary non-decreasing
function defined for all m-dimensional binary vectors x ∈ {0, 1}m such that:

φ′(x) = φ(1A,xĀ)

Show that (C \ A,φ′) is coherent.

Exercise 7. Prove the right-hand inequality in Theorem 2.2.4.

Exercise 8. Prove item (ii) in Theorem 2.2.5 as well as the equivalence
which is not proved in the text.

Exercise 9. Prove that the dual structure of a k-out-of-n structure is an
(n− k + 1)-out-of-n structure.

24 CHAPTER 2. SYSTEM ANALYSIS

Chapter 3
Basic reliability calculation methods

In this chapter we will present various methods for simplifying reliability
calculations by structuring the problems in certain ways. The first method
involves conditioning on the state of a given component. This enables us to
decompose the system into simpler building blocks. Furthermore, we will see
that the structure function of monotone systems can be represented via its
so-called paths and cuts; roughly, this is the components which ensure that
the system functions or fails. Another useful way to represent monotone
systems is via modules. The idea here is to divide a complicated system
into parts which may then be analysed separately. Finally, we will comment
briefly on how to include time into this framework by looking at dynamic
system analysis.

3.1 Pivotal decompositions

Sometimes reliability calculations can be simplified by dividing the problem
into two simpler problems. By considering these simpler problems and com-
bining the results afterwards, even very complex systems can be analysed
successfully. The following result shows how a structure and reliability func-
tion of order n can be expressed via two corresponding functions of order
n− 1. This is called pivotal decomposition, and allows us to reduce the order
of the system at hand. This is particularly useful when computing the exact
system reliability, see Chapter 4:

25

26 CHAPTER 3. BASIC RELIABILITY CALCULATION METHODS

Theorem 3.1.1 Let (C,φ) be a binary monotone system of order n. Then
we have:

φ(x) = xiφ(1i,x) + (1− xi)φ(0i,x), i = 1, 2, . . . , n. (3.1)

Similarly, for the reliability function of a monotone system where the com-
ponent state variables are independent, we have

h(p) = pih(1i,p) + (1− pi)h(0i,p), i = 1, 2, . . . , n. (3.2)

Proof: Let i ∈ C. Since xi is binary, we consider two cases: xi = 1 and
xi = 0. If xi = 1, then the right-hand side of (3.1) becomes φ(1i,x). Hence
(3.1) holds in this case. On the other hand, if xi = 0, the right-hand side
of (3.1) becomes φ(0i,x), so (3.1) holds in this case as well. Equation (3.2)
is proved by replacing the vector x by the stochastic vector X in (3.1), and
taking the expected value on both sides of this equation. □

Note that (3.1) and (3.2) can alternatively be written respectively as:

φ(x) = φ(0i,x) + [φ(1i,x)− φ(0i,x)]xi, i = 1, . . . n, (3.3)
h(p) = h(0i,p) + [h(1i,p)− h(0i,p)]pi i = 1, . . . n. (3.4)

From these expressions it follows that φ is a linear function of xi, while h
is a linear function of pi, i = 1, . . . , n. A function which is linear in each
argument is said to be multilinear.

When we do a pivotal decomposition of a binary monotone system (C,φ)
of order n with respect to a component i ∈ C, we express the structure func-
tion as a linear combination of two simpler functions, φ(0i,x) and φ(1i,x).
These functions can be interpreted as structure functions of the binary mono-
tone systems (C\i,φ(0i, ·) and (C\i,φ(1i, ·)) respectively, both of order n−1.
The system (C \ i,φ(0i, ·)) is called the restriction of (C,φ) with respect to
component i, while (C \ i,φ(1i, ·) is called the contraction of (C,φ) with re-
spect to component i. Restriction and contraction are also referred to as
minor operations, and we say that a system (D,ψ) is a minor of (C,φ) if
(D,ψ) can be obtained from (C,φ) by a sequence of minor operations.

If C is a class of binary monotone systems such that if (C,φ) ∈ C implies
that (D,ψ) ∈ C for all minors (D,ψ) of (C,φ), then we say that the class
C is closed under minor operations. Obviously, the class of all binary mono-
tone systems is closed under minor operations since any minor of a binary

3.1. PIVOTAL DECOMPOSITIONS 27

monotone system is itself a binary monotone system. Interestingly, the same
does not hold for the class of non-trivial binary monotone systems. It is easy
to find examples where (D,ψ) is a minor of a non-trivial binary monotone
system (C,φ), but where (D,ψ) is trivial. Assume e.g., that (C,φ) is the
binary system where C = {1, 2} and φ(x) = x1 ∐ x2, and let (D,ψ) be
the contraction of (C,φ) with respect to component 1. Then D = {2} and
ψ(x2) ≡ 1. Thus, (D,ψ) is trivial. This example also shows that the class of
coherent systems is not closed under minor operations.

 3

1 4

2 5

Figure 3.1: A bridge structure.

Example 3.1.2 Let (C,φ) be the bridge structure shown in Figure 3.1,
where C = {1, . . . , 5}. In order to derive the structure function of this sys-
tem, we note that:

φ(13,X) = The state of the system given that component 3 is functioning,
φ(03,X) = The state of the system given that component 3 is failed.

Given that component 3 is functioning, the system becomes a series connec-
tion of two parallel systems, the first one is the parallel system of component
1 and 2, while the second one is the parallel system of component 4 and 5.
Hence, we get that:

φ(13,X) = (X1 ∐X2) · (X4 ∐X5).

28 CHAPTER 3. BASIC RELIABILITY CALCULATION METHODS

If on the other hand, component 3 is failed, the system becomes a parallel
connection of two series systems, the first one is the series system of compo-
nent 1 and 4, while the second one is the parallel system of component 2 and
5. From this it follows that:

φ(03,X) = (X1 ·X4)∐ (X2 ·X5).

By Theorem 3.1.1 it follows that φ can be written as:

φ(X) = X3 · φ(13,X) + (1−X3) · φ(03,X).

Combining all this we get that φ is given by:

φ(X) = X3 · (X1 ∐X2)(X4 ∐X5) + (1−X3) · (X1 ·X4 ∐X2 ·X5). (3.5)

Assuming that the component state variables are independent, we get that:

h(p) = E[φ(X)]

= E[X3(X1 ∐X2)(X4 ∐X5) + (1−X3)(X1X4 ∐X2X5)]

= p3(p1 ∐ p2)(p4 ∐ p5) + (1− p3)(p1p4 ∐ p2p5)

A consequence of Theorem 3.1.1 is that for coherent systems, the reliability
function is strictly increasing if the reliabilities are strictly between 0 and 1:

Theorem 3.1.3 Let h(p) be the reliability function of a binary monotone
system (C,φ) of order n, and assume that 0 < pj < 1 for j ∈ C. If component
i is relevant, then h(p) is strictly increasing in pi.

Proof: From equation (3.2), it follows that

∂h(p)

∂pi
= h(1i,p)− h(0i,p) (3.6)

= E[φ(1i,X)]− E[φ(0i,X)] = E[φ(1i,X)− φ(0i,X)]

=
)

(·i,x)∈{0,1}n−1

2
φ(1i,x)− φ(0i,x)

3
P
'
(·i,X) = (·i,x)

(

3.2. REPRESENTATION BY PATHS AND CUTS 29

Since (C,φ) is a monotone system, φ is non-decreasing in each argument,
and hence all the terms in this sum are non-negative. We then assume that
component i is relevant. That is, there exists (·i,y) such that φ(1i,y) −
φ(0i,y) = 1. Moreover, since we have assumed that 0 < pj < 1 for j ∈ C we
have:

P
'
(·i,X) = (·i,y)

(
=

n"

j=1,j ∕=i

p
yj
j (1− pj)

1−yj > 0

Thus, at least one of the terms in the last sum in (3.6) is positive which
implies that

∂h(p)

∂pi
> 0.

Hence, we conclude that h(p) is strictly increasing in each pi. □

Note that if (C,φ) is coherent and 0 < pj < 1 for j ∈ C, it follows from
Theorem 3.1.3 that h is strictly increasing in each argument, since in this
case, all components are relevant.

3.2 Representation of binary monotone systems
by paths and cuts

Now, we will look at a way to represent monotone systems via certain subsets
of the component set, called path and cut sets. This turns out to be very
useful in order to compute the exact system reliability, which will be done in
Chapter 4.

In the following, we consider deterministic vectors x,y. We say that a
vector y is smaller than another vector x, that is y < x if yi ≤ xi for
i = 1, . . . , n and yi < xi for at least one i.

Notation 3.2.1 For any binary monotone system (C,φ) of order n, and
vector x ∈ {0, 1}n the component set C can be divided into two subsets

C0(x) = {i : xi = 0}, C1(x) = {i : xi = 1}.

Thus, if X = x, the subset C1(x) denotes the set of components which are
functioning, while C0(x) denotes the set of components which are failed.

30 CHAPTER 3. BASIC RELIABILITY CALCULATION METHODS

Definition 3.2.2 Let (C,φ) be a binary monotone system.

• A vector x is a path vector if and only if φ(x) = 1. The corresponding
path set is C1(x).

• A minimal path vector is a path vector, x, such that y < x implies
that φ(y) = 0. The corresponding minimal path set is C1(x).

• A vector x is a cut vector if and only if φ(x) = 0. The corresponding
cut set is C0(x).

• A minimal cut vector is a cut vector, x, such that x < y implies that
φ(y) = 1. The corresponding minimal cut set is C0(x).

Thus, a path vector is a vector x1 such that the system is functioning
if X = x1. A cut vector is a vector x0 such that the system is failed if
X = x0. A minimal path vector is a path vector which cannot be decreased
in any way and still be a path vector. Similarly, a minimal cut vector is a
cut vector which cannot be increased in any way and still be a cut vector.
A minimal path set is a minimal set of components which ensures that the
system is working if these components are working. A minimal cut set is a
minimal set of components such that if these are sabotaged, the system will
be sabotaged.

Example 3.2.3 Consider the bridge structure in Figure 3.2. To find the
minimal path sets, look at Figure 3.2 and try to locate paths where it is
possible to send a signal through the system. For instance, one such path is
through components 1 and 4. Hence, {1, 4} is a path set. We then see that this
set is in fact minimal, because if only components 1 and 4 are functioning,
and one of them fails, the system will fail as well. Similarly, we can argue
for e.g. the path through components 2 and 5. Continuing like this, we find
that the minimal path sets are:

P1 = {1, 4}, P2 = {2, 5}, P3 = {1, 3, 5} and P4 = {2, 3, 4}.

(Verify that these are in fact minimal!)
To find the minimal cut sets, look at Figure 3.2 and see what combination

of components not functioning will sabotage the whole system. For example,
if components 1 and 2 are not functioning, the system is sabotaged because
there is no way for a signal to make it past the initial point. The set {1, 2}

3.2. REPRESENTATION BY PATHS AND CUTS 31

is in fact a minimal cut set, because if all other components are functioning
except 1 and 2, and one of them is fixed, the system will start to function. A
similar argument shows that {4, 5} is a minimal cut set. Continuing in the
same way, we find that the minimal cut sets are:

K1 = {1, 2}, K2 = {4, 5}, K3 = {1, 3, 5} and K4 = {2, 3, 4}.

(Make sure you can explain why all of these are minimal cut sets!)

 3

1 4

2 5

Figure 3.2: A bridge structure.

Before we continue with how to represent structures via their minimal
paths and cuts, we need some notation:

Notation 3.2.4 Let A ⊂ C, A = {a1, a2, . . . , ak}, where k is the number of
elements in A. Also, let x be some component state vector. Then, we let xA

be the vector where we select the k components from x corresponding to the
components in A:

xA = (xa1 , xa2 , . . . , xak).

Now, we are ready to explain how structures can be represented via their
minimal path and cut sets. In order to do so, we consider a binary monotone
system (C,φ), and let Pj ⊆ C be the jth minimal path set of this system.
Then we can define the following binary monotone system (Pj, ρj), where
ρj = ρj(x

Pj) is given by:
ρj(x

Pj) =
"

i∈Pj

xi. (3.7)

32 CHAPTER 3. BASIC RELIABILITY CALCULATION METHODS

(Pj, ρj) is referred to as the jth minimal path series structure of the system,
j = 1, . . . , p. From this, we find that:

φ(x) =

p#

j=1

ρj(x
Pj) =

p#

j=1

"

i∈Pj

xi. (3.8)

That is, the system (C,φ) can be represented as a parallel structure of the
minimal path series structures. See Figure 3.2 for an illustration of how the
bridge structure in Example 3.2.3 can be represented as a parallel structure
of its minimal path series structures. The reason for this is that the system
functions if and only if at least one of the minimal path series structures are
functioning.

1

2

4

3

5

4

1 5

32

Figure 3.3: The reliability block diagram of a bridge structure in Exam-
ple 3.2.3 represented as a parallel structure of its minimal path series struc-
tures.

Similarly, let Kj ⊆ C be the jth minimal cut set of this system. Then
we can define the following binary monotone system (Kj,κj), where κj =
κj(x

Kj) is given by:
κj(x

Kj) =
#

i∈Kj

xi. (3.9)

(Kj,κj) is referred to as the jth minimal cut parallel structure of the system,

3.2. REPRESENTATION BY PATHS AND CUTS 33

2

4

5

1

5

1

3

4

3

2

Figure 3.4: The reliability block diagram of a bridge structure in Exam-
ple 3.2.3 represented as a series structure of its minimal cut parallel struc-
tures.

j = 1, . . . , k. From this, we find that:

φ(x) =
k"

j=1

κj(x
Kj) =

k"

j=1

#

i∈Kj

xi. (3.10)

That is, the system (C,φ) can be represented as a series structure of the
minimal cut parallel structures. See Figure 3.4. The reason for this is that
for the system to be failed, it suffices for one of the minimal cut parallel
structures is failed.

These representations of the structure function are very useful, and will
be applied in Chapter 4 to compute the exact system reliability. However, a
major challenge is that computing the minimal path and cut sets for a large
system is computationally very time consuming. Therefore, it is important
to derive fast algorithms for finding the minimal path and cut sets. This is
an important challenge in applied reliability theory, but beyond the scope of
this book.

The proof of the following theorem is left as an exercise:

Theorem 3.2.5 Let (C,φ) be a binary monotone system, and let (CD,φD)
be its dual. Then the following statements hold:

(i) x is a path vector (alternatively, cut vector) for (C,φ) if and only if
xD is a cut vector (path vector) for (CD,φD).

(ii) A minimal path set (alternatively, cut set) for (C,φ) is a minimal cut
set (path set) for (CD,φD).

34 CHAPTER 3. BASIC RELIABILITY CALCULATION METHODS

We close this section by noting that by using the relation (2.3) between
the product and minimum operators, and the relation (2.5) between the
coproduct and maximum operators, the equations (3.8) and (3.10) can be
exprressed as follows:

φ(X) = min
1≤j≤k

max
i∈Kj

Xi = max
1≤j≤p

min
i∈Pj

Xi. (3.11)

3.3 Modules of monotone systems
Sometimes, it is possible to divide a monotone system into subsystems which
are analysed separately before finally analysing how these subsystems are
connected.

Let A ⊆ C. Then, the complement set of A, i.e., C \ A, is denoted by Ā.
We have the following formal definition of a module:

Definition 3.3.1 Let (C,φ) be a binary monotone system, and A ⊆ C. The
monotone system (A,χ) is a module of (C,φ) if and only if the structure
function φ can be written as:

φ(x) = ψ(χ(xA),xĀ), for all x ∈ {0, 1}n,

where ψ is a monotone structure function. The set A is called a modular set
of (C,φ).

The structure function χ expresses the state of the module as a function of
the states of the components in the modular set, while ψ expresses how the
state of the system depends on the state of the module as well as on the states
of components outside of the module. You can think of a module as a "large
component" which can be circled in and separated out from the rest of the
system. More precisely, a module consists of a subset of the component set
which is such that the structure function of the system depends on the states
of the components within this set only through the structure function of the
module. Thus, in order to determine the state of the system, we only need
to know the state of the module, not the states of the individual components
within the module.

Definition 3.3.2 A modular decomposition of a monotone system (C,φ) is
a set of modules {(Aj,χj)}rj=1 connected by a binary monotone organisation
structure function ψ. The following conditions must be satisfied:

3.3. MODULES OF MONOTONE SYSTEMS 35

(i) C =
4r

j=1 Aj, where Aj ∩ Ak = ∅ for j ∕= k.

(ii) φ(x) = ψ[χ1(x
A1), . . . ,χr(x

Ar)].

We observe that a modular decomposition is a disjoint partition of the
component set into modules such that the structure function of the whole
system is a function of the structure functions of these modules.

1

2

3

4

5

Figure 3.5: A monotone system which can be modularly decomposed.

Example 3.3.3 In order to find a modular decomposition for the system in
Figure 3.5, we can let A1 = {1, 2}, A2 = {3, 4, 5},

χ1(X
A1) = X1 ∐X2, χ2(X

A2) = X3 ∐X4 ∐X5

and
ψ(χ1(X

A1),χ2(X
A2)) = χ1(X

A1) · χ2(X
A2).

If the component state variables are independent, we may calculate the
reliability of the system in a two-step process. In the first step we compute
the reliability of the modules. Then in the second step we treat the modules
as components and compute the system reliability by using the reliabilities
of the modules as input. Thus, whenever one can identify modules in a
system, this can be utilised in order to simplify and speed up the reliability
calculations.

Modular decompositions can also be used in cases where it is not possible
to compute the system reliability exactly as it is too time consuming. In
such cases, we may have to resort to finding upper and lower bounds for the
system reliability. It turns out that modules may be used to improve bounds.
We will return to this in Section 8.2.

36 CHAPTER 3. BASIC RELIABILITY CALCULATION METHODS

3.4 Exercises
Exercise 1. Prove equation (3.2) in another way than what is done in the
proof of Theorem 3.1.1.
(Hint: Condition on the state of component i.)

Exercise 2. Prove Theorem 3.2.5.

Exercise 3. Find the minimal path sets and minimal cut sets of the brigde
structure in Figure 3.2.

Exercise 4. Find the representations via the minimal path sets and the
minimal cut sets of the following systems:

(i) The 2-out-of-3 system.

(ii) The 3-out-of-4 system.

(iii) The series system of 3 components.

(iv) The parallel system of 4 components.

Exercise 5. Consider a coherent system (C,φ) with minimal path sets
P1, . . . , Pp and minimal cut sets K1, . . . , Kk. Prove that

p5

j=1

Pj = C =
k5

j=1

Kj.

Exercise 6. Find the minimal path sets and the minimal cut sets of the
system in Figure 3.6. Find two different expressions for the structure function
of this system.

Exercise 7. Show that if (C,φ) is a bridge system (see Figure 3.1), then
(CD,φD) is a bridge system as well. [Hint : Compare the minimal path and
cut sets of (C,φ).]

Exercise 8. Let (A,χ) be a module of (C,φ). Assume that x1 and x0 are
such that χ(xA

1) = 1 and χ(xA
0) = 0. Prove that for all (·A,xĀ) we have:

φ(xA
1 ,x

Ā
1) = φ(1A,xĀ

1) and φ(xA
0 ,x

Ā
0) = φ(0A,xĀ

1).

Exercise 9. Find all the modules of the following structure function:

3.4. EXERCISES 37

1

2

8

3

7

6

4

5

Figure 3.6: A series connection of a parallel system, a bridge system and a
single component.

φ(x) = (x1(x2 ∐ x3))∐ (x4 ∐ x5).

Exercise 10. What are the modules of a k-out-of-n system where 1 < k < n?
Give a reason for your answer.
Does this mean that a k-out-of-n system is well suited for modular decom-
position?

Exercise 11. Consider the system shown in Figure 3.7.
a) Find the structure function of the system by dividing the system into
modules.
b) Find the structure function of the system without dividing the system into
modules.
c) Compare the computational efforts in a) and b).

38 CHAPTER 3. BASIC RELIABILITY CALCULATION METHODS

1 4

2 5

3

6

8

7

Figure 3.7: A system suited for modular decompostition.

Chapter 4
Exact computation of the reliability of
binary monotone systems

In this chapter, we will look at various methods for computing the exact
reliability of a binary monotone system. In the general case this is a hard
problem in the sense that the running time of all known algorithms grows
exponentially in the size of the problem, i.e., in the order of the system.

If the running time of an algorithm grows approximately proportionally
to a positive function f(n), where n is measuring the size of the problem (i.e,
the number of components in a binary monotone system), we say that the
algorithm is of order O(f(n)). More formally, let t(n) denote the worst case
running time of the algorithm as a function of the size n. Then the order
of the algorithm is O(f(n)) if and only if there exists a positive constant M
and a positive integer n0 such that:

t(n) ≤ Mf(n), for all n ≥ n0.

If f is a polynomial in n, we say that the algorithm is a polynomial time
algorithm, while if f is an exponential function of n, we say that the algorithm
is an exponential time algorithm.

In computational complexity theory, NP (for nondeterministic polyno-
mial time) is a complexity class used to describe certain types of problems.
NP contains many important problems, the hardest of which are called NP-
complete problems. The most important open question in complexity theory
is whether polynomial time algorithms actually exist for solving NP-complete

39

40 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

problems. It is widely believed that this is not the case. The class of NP-hard
problems is a class of problems that are, informally, at least as hard as the
hardest problems in NP. A comprehensive treatment of complexity is beyond
the scope of this book. See Garey and Johnson [27] for more on this.

Unfortunately, the problem of computing the reliability of a binary mono-
tone system is known to be NP-hard in the general case. See Rosenthal [60]
and Ball [3] for details. Thus, all known algorithms for analytical reliability
calculations typically has a computational complexity which grows exponen-
tially with the order of the system. Still for moderately sized systems it is
possible to calculate the reliability using standard methods. Moreover, for
certain classes of systems faster algorithms are available.

In the next sections we present both general algorithms as well as special-
ized algorithms tailored for certain classes of systems.

4.1 State space enumeration
The idea of this method is simple. We know that the reliability of a binary
monotone system (C,φ) is simply the expected value of φ(X). Thus, by
standard probability theory this can be calculated as:

h = E[φ(X)] =
)

x∈{0,1}n
φ(x)P (X = x) (4.1)

Note that in order to calculate the reliability using (4.1) we must enumerate
all possible states of the component vector (i.e., all x ∈ {0, 1}n). Moreover, if
the components are dependent, we must know the entire joint distribution of
X in order to compute the system reliability using (4.1). As this distribution
is usually not known, this method is unsuitable for the case of dependent
components. However, if the components are independent, we have:

P (X = x) =
n"

i=1

pxi
i (1− pi)

1−xi

Inserting this into equation (4.1) we get:

h(p) =
)

x∈{0,1}n
φ(x)

n"

i=1

pxi
i (1− pi)

1−xi . (4.2)

4.1. STATE SPACE ENUMERATION 41

To compute the system reliability via (4.2), it suffices to know the individual
component reliabilities. However, since we need to enumerate all the possible
states of the component state vector x, the number of terms in the sum (4.2)
is 2n. Thus, this algorithm is at least of order O(2n). In fact the order may be
even greater since we have not included the work of computing φ(·) for each
of the possible states of the component state vector x. For some structure
functions this may also represent a considerable task.

While the order of the algorithm cannot be changed, there are still ways
to improve the method. Sometimes it is possible to run through the states
in a clever order. For example, if we come across x0 such that φ(x0) = 0,
we do not have to include any of the states x such that x < x0 since φ is
non-decreasing (as it is assumed to be monotone), so φ(x) must be 0 as well.
Note also that since φ(0) = 0, the maximum amount of terms we need to
compute in (4.2) is 2n − 1.

Example 4.1.1 Consider a binary monotone system (C,φ) where C = {1, 2, 3},
and where the structure function φ is given by:

φ(x) = (x1 · x2)∐ x3.

We assume that the component state variables are independent, and that the
component reliabilities are P (Xi = 1) = pi, i = 1, 2, 3. By using (4.2) we
find that:

h(p) = φ(0, 0, 0) · (1− p1)(1− p2)(1− p3)

+ φ(1, 0, 0) · p1(1− p2)(1− p3) + · · ·+ φ(1, 1, 1) · p1p2p3

= p1p2(1− p3)

+ (1− p1)(1− p2)p3 + p1(1− p2)p3 + (1− p1)p2p3 + p1p2p3.

Note that the last expression contains just 5 terms, not 23 = 8 terms. The
reason for this is that there are exactly 5 vectors such that φ(x) = 1. The
other 3 terms vanish in the final formula. Moreover, we observe that the last
4 terms have p3 as a common factor. Thus, the expression for h(p) can be
simplified to:

h(p) = p1p2(1− p3)

+ [(1− p1)(1− p2) + p1(1− p2) + (1− p1)p2 + p1p2] · p3
= p1p2(1− p3) + p3

This example shows that the expansion obtained by state space enumeration
may not be the most efficient expression for the reliability function.

42 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

4.2 The multiplication method
The first step of the multiplication method for computing the exact system
reliability, it to find the minimal path sets or alternatively, the minimal cut
sets of the system. Denote these by respectively P1, . . . , Pp and K1, . . . , Kk.
Now, from the formula (3.8) and (3.10), we know that:

φ(X) =

p#

j=1

"

i∈Pj

Xi = 1− [

p"

j=1

(1−
"

i∈Pj

Xi)]

=
k"

j=1

#

i∈Kj

Xi =
k"

j=1

[1−
"

i∈Kj

(1−Xi)].

By expanding either the formula based on the minimal path sets, or the
formula based on the minimal cut sets, and using that Xr

i = Xi, i = 1, . . . , n,
r = 1, 2, . . ., we eventually get an expression of the form:

φ(X) =
)

A⊆C

δ(A)
"

i∈A

Xi (4.3)

where for all A ⊆ C, δ(A) denotes the coefficient of the term associated
with

$
i∈A Xi. The δ-function is called the signed domination function of

the structure. The fact that we end up with an expression of the form (4.3)
follows since φ is multilinear (see the comments after Theorem 3.1.1), and
all multilinear functions can be written in this form.

By taking the expectation on both sides of (4.3), and assuming that the
component state variables are independent, we obtain the following expres-
sion:

h(p) = E[φ(X)] =
)

A⊆C

δ(A)
"

i∈A

E[Xi] =
)

A⊆C

δ(A)
"

i∈A

pi (4.4)

As for the state space enumeration method, we again end up with a sum
containing 2n terms. Thus, calculating the reliability of the system using
(4.4) also has the order O(2n). In a given case, however, there will typically
be far less terms in this expansion since δ(A) = 0 for many of the sets A.

Note, that when using this method, we also need to determine the signed
domination function before we can use (4.4). It turns out that identifying
all the minimal path or cut sets is another operation which has the order
O(2n). Moreover, depending on the number of minimal path or cut sets, the

4.2. THE MULTIPLICATION METHOD 43

task of expanding the structure function into the form (4.3) is yet another
complicated task.

The multiplication method can be improved by avoiding identifying the
minimal path or cut sets as well as the multiplication step. In order to explain
this, we introduce the following alternative way of expressing the structure
function of a binary monotone system (C,φ):

φ(B) = φ(1B,0B̄), for all B ⊆ C.

Thus, for all B ⊆ C, φ(B) denotes the state of the system given that all the
components in the set B are functioning, while all the components in the set
B̄ = C \B are failed. In Huseby [32] the following formula was proved:

δ(A) =
)

B⊆A

(−1)|A|−|B|φ(B), for all A ⊆ C. (4.5)

This formula allows us to compute the signed domination function without
using the minimal path and cut sets. In its most general form the sum in (4.5)
still contains 2n terms. Thus, evaluating this formula is yet another complex
operation of order 2n. However, for certain classes of systems (4.5) can be
used as basis for deriving simpler formulas allowing much faster calculations.
We will return to this in Section 4.6.

Example 4.2.1 Consider a binary monotone system (C,φ) where C = {1, 2, 3},
and where the minimal path sets of the system are P1 = {1, 2} and P2 =
{1, 3}. Using the multiplication method we obtain:

φ(X) = (X1X2)∐ (X1X3) = 1− (1−X1X2)(1−X1X3)

= 1− (1−X1X2 −X1X3 +X2
1X2X3)

= X1X2 +X1X3 −X1X2X3,

where we have used that X2
1 = X1. Thus, we see that φ is of the form (4.3),

where δ({1, 2}) = δ({1, 3}) = 1, δ({1, 2, 3}) = −1, while δ(A) = 0 for all
other subsets of C.

Note that these coefficients can be obtained using (4.5) as well since:

δ({1, 2}) = (−1)|{1,2}|−|{1,2}|φ({1, 2}) = 1,

δ({1, 3}) = (−1)|{1,3}|−|{1,3}|φ({1, 3}) = 1,

δ({1, 2, 3}) = (−1)|{1,2,3}|−|{1,2}|φ({1, 2}) + (−1)|{1,2,3}|−|{1,3}|φ({1, 2})
+ (−1)|{1,2,3}|−|{1,2,3}|φ({1, 2, 3}) = −1− 1 + 1 = −1.

44 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

Having derived the formula for the structure function φ, we immediately
obtain the reliability function:

h(p) = p1p2 + p1p3 − p1p2p3.

4.3 The inclusion-exclusion method
Just like for the multiplication method, the inclusion exclusion method is
based on first finding the minimal path sets and the minimal cut sets of the
system. Let these sets be denoted respectively by P1, . . . , Pp and K1, . . . , Kk.
We then introduce the events

Ej = {All of the components in Pj are functioning}, j = 1, . . . , p.

Since the system is functioning if and only if at least one of the minimal path
sets is functioning, we have:

φ = 1 if and only if
p5

j=1

Ej holds true. (4.6)

Calculating the probability of a union of events can be done by using the
well-known inclusion-exclusion formula. That is we have:

h = P (

p5

j=1

Ej) (4.7)

= P (E1) + P (E2) + · · ·+ P (Ep)

− P (E1 ∩ E2)− P (E1 ∩ E3)− · · ·− P (Ep−1 ∩ Ep)

+ P (E1 ∩ E2 ∩ E3) + · · ·+ P (Ep−2 ∩ Ep−1 ∩ Ep)

· · ·
+ (−1)p−1P (E1 ∩ · · · ∩ Ep).

The initial number of terms in (4.7) is 2p−1. However, typically many of the
terms can be merged as they correspond to the same component set. Thus,
after simplifying the expression we usually end up with much fewer terms.

Note that an event of form Ei1 ∩ · · ·∩Eir occurs if and only if all the com-
ponents in the set Pi1 ∪ · · ·∪Pir are functioning. Thus, when the component
state variables are independent, we get that:

P (Ei1 ∩ · · · ∩ Eir) =
"

i∈Pi1
∪···∪Pir

pi.

4.3. THE INCLUSION-EXCLUSION METHOD 45

Example 4.3.1 Consider a binary monotone system (C,φ) where C = {1, 2, 3, 4}
with minimal path sets P1 = {1, 2}, P2 = {1, 3}, P3 = {2, 3, 4}. We then let
Ej denote the event that all components in Pj are functioning, j = 1, 2, 3.
Assuming that the component state variables are independent, we then get
the following probabilities:

P (E1) = p1p2, P (E2) = p1p3, P (E3) = p2p3p4

P (E1 ∩ E2) = p1p2p3, P (E1 ∩ E3) = P (E2 ∩ E3) = p1p2p3p4

P (E1 ∩ E2 ∩ E3) = p1p2p3p4.

Hence, the reliability of the system is:

h(p) = p1p2 + p1p3 + p2p3p4 − p1p2p3 − 2p1p2p3p4 + p1p2p3p4

= p1p2 + p1p3 + p2p3p4 − p1p2p3 − p1p2p3p4.

We observe that the final expression for the reliability function is exactly
the same as the one we get using the multiplication methods. That is, in
both cases we end up with a formula of the form:

h(p) =
)

A⊆C

δ(A)
"

i∈A

pi,

where δ denotes the signed domination function. However, the steps we take
in order to get this expression is different.

When using the inclusion-exclusion formula we see that all terms in the
expansion correspond to sets A ⊆ C which are unions of minimal path sets.
If Pi1 , . . . , Pir is a collection of minimal path sets such that:

r5

j=1

Pij = A,

the collection is said to be a formation of the set A. The formation is odd if r
is an odd number, and even if r is an even number. We note that odd forma-
tions produce terms with a coefficient +1 in the inclusion-exclusion formula,
while even formations produce terms with a coefficient −1 in the inclusion-
exclusion formula. When we simplify the expansion, all terms corresponding
to formations of the same set are merged. From this observation it follows
that we have the following result:

46 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

Theorem 4.3.2 Let (C,φ) be a binary monotone system with minimal path
sets P1, . . . , Pp, and let δ denote the signed domination function of the system.
Then for all A ⊆ C we have:

δ(A) = The number of odd formations of A (4.8)
− The number of even formations of A.

In particular δ(A) = 0 if A is not a union of minimal path sets.

As a corollary we obtain the following result:

Corollary 4.3.3 If (C,φ) is a binary monotone system which is not coher-
ent, then δ(C) = 0.

The proof is left as an exercise.

A nice feature of the inclusion-exclusion formula is that it can be used to
produce a simple upper bound for the system reliability. Thus, if we skip all
higher order terms and only keep the probabilities of the individual events
E1, . . . , Ep, we get:

h ≤
p)

j=1

P (Ej). (4.9)

By including higher order terms, it is possible to obtain both lower bounds
and improved upper bounds as well. However, as we introduce the higher
order terms, the total number of terms in these expansions grows fast. Thus,
only the simple bound (4.9) is considered here. In order to obtain a lower
bound we instead use a dual approach. That is, we consider the minimal cut
sets of the system K1, . . . , Kk, and introduce the events:

Fj = {All the components in Kj are failed}, j = 1, . . . , k.

Since the system is failed if and only if all the components in at least one cut
set are failed, we have:

1− h = P (
k5

j=1

Fj). (4.10)

The quantity 1 − h is referred to as the unreliability of the system. By the
same argument as we used above, an upper bound on this quantity is given
by:

1− h ≤
k)

j=1

P (Fj). (4.11)

4.4. K-OUT-OF-N SYSTEMS 47

By combining (4.9) and (4.11), we see that

1−
k)

j=1

P (Fj) ≤ h ≤
p)

j=1

P (Ej). (4.12)

If the components are independent, (4.12) implies that:

1−
k)

j=1

"

i∈Kj

(1− pi) ≤ h(p) ≤
p)

j=1

"

i∈Pj

pi. (4.13)

In many real life applications the component reliabilities are close to 1. In
such cases the lower bound given in (4.13) turns out to be very good, while
the upper bound is extremely poor. In fact it may easily happen that the
upper bound becomes greater than 1. If on the other hand the component
reliabilites are close to 0, the lower bound may be less than 0, while the upper
bound turns out to be very good. In order to avoid bounds outside of the
interval [0, 1], one could replace (4.13) by:

max(1−
k)

j=1

"

i∈Kj

(1− pi), 0) ≤ h(p) ≤ min(

p)

j=1

"

i∈Pj

pi, 1). (4.14)

4.4 k-out-of-n systems

We recall that a k-out-of-n system is functioning if and only if at least k out
of the n components are functioning. Thus, if (C,φ) is a k-out-of-n system
with component state vector X = (X1, . . . , Xn), then S = X1 + · · · + Xn

is the number of functioning components, and the system is functioning if
and only if S ≥ k. From this it follows that the reliability of the system
can be easily derived form the distribution of S. In the special case where
P (Xi = 1) = p for all i ∈ C, it follows that S is a binomially distributed
variable. Thus, in this case the reliability of the system can be calculated
using the formula (2.15).

In this section we consider the problem of computing the reliability of
a k-out-of-n system in the general case where P (Xi = 1) = pi, for i ∈ C,
and where the pis may be unequal. We also let qi = 1 − pi, for i ∈ C, and

48 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

introduce the following sequence of partial sums:

Sj =

j)

i=1

Xi, j = 1, . . . , n.

Thus, in particular S1 = X1 while Sn = S. The distribution of S is found
by computing sequentially the distributions of S1, . . . , Sn. Since S1 = X1, it
follows that P (S1 = 0) = q1 and that P (S1 = 1) = p1. Thus, the distribution
of S1 is fully determined. We then assume that we have determined the
distributions of S1, . . . , Sj where j < n, and consider the distribution of
Sj+1. By conditioning on Xj+1 we get the following recursion formula for
s = 0, 1, . . . , j + 1:

P (Sj+1 = s) = P (Sj = s) · qj+1 + P (Sj = s− 1) · pj+1. (4.15)

Note that if s = 0, we have P (Sj = s − 1) = 0, while if s = j + 1, we have
P (Sj = s) = 0. Thus, in these cases (4.15) simplifies to:

P (Sj+1 = 0) = P (Sj = 0) · qj+1 (4.16)

P (Sj+1 = j + 1) = P (Sj = j) · pj+1 (4.17)

Using (4.15), (4.16) and (4.17), it is easy to see that given the distribution
of Sj we need to do 2(j + 1) multiplications and j additions in order to
compute the distribution of Sj+1. By repeating this process for j = 2, . . . , n,
we eventually arrive at the distribution of S = Sn. The total number of
multiplications needed to calculate the distribution of S is then:

2 · 2 + 2 · 3 + · · · 2 · n = (n− 1)(n+ 2),

while the number of additions needed is:

1 + 2 + · · ·+ (n− 1) =
(n− 1)n

2

Having found the distribution of S the reliability of the system is given by:

P (φ = 1) = P (S ≥ k) =
n)

s=k

P (S = s)

The number of additions need to calculate this last expression is n−k. From
this it follows that the total number of algebraic operations (multiplications

4.5. THRESHOLD SYSTEMS 49

and additions) grows approximately proportional to n2. Thus, we conclude
that the order of this algorithm is O(n2). Since n2 is a polynomial in n, this
algorithm is a polynomial time algorithm, which means that we can easily
handle very large systems of this type.

Example 4.4.1 Let (C,φ) be a 6-out-of-8 system where the components have
the following reliabilities:

p1 = 0.75, p2 = 0.80, p3 = 0.82, p4 = 0.65

p5 = 0.88, p6 = 0.91, p7 = 0.92, p8 = 0.86

We also let S = X1 + · · ·+X8. Using (4.15), (4.16) and (4.17) we get that:

P (S = 6) = 0.2797, P (S = 7) = 0.3701, P (S = 8) = 0.2026

Hence, the reliability of the system is:

h = P (φ = 1) = P (S ≥ 6) = 0.2797 + 0.3701 + 0.2026 = 0.8524

A python script which can be used to calculate the reliability of this system,
is given in Script B.1.1 in Appendix B.1.

4.5 Threshold systems
In the previous section we saw that the reliability of a k-out-of-n system can
be calculated in polynomial time using a recursive relation. From this result
one might think that it would be easy to obtain similar performance for a
larger class of systems. A natural generalisation of k-out-of-n systems is the
class of threshold systems defined as follows.

Definition 4.5.1 A threshold system is a binary monotone system (C,φ),
where the structure function has the following form:

φ(x) = I(
n)

i=1

aixi ≥ b), (4.18)

where a1, . . . , an and b are non-negative real numbers, and I(·) denotes the
indicator function, i.e., a function defined for any event A which is 1 if A
is true and zero otherwise. The parameters a1, . . . , an are referred to as the
weights of the system, while b is referred to as the threshold.

50 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

Note that if one of the weights is zero, the corresponding component is
irrelevant. Thus, in a coherent threshold system, all the weights must at
least be positive. However, if some weights are small compared to the other
weights, and to the threshold, irrelevant components may still occur.

It should also be noted that the representation (4.18) is not unique. For
any c > 0 we have:

I(
n)

i=1

aixi ≥ b) = I(
n)

i=1

c aixi ≥ c b) = I(
n)

i=1

a′ixi ≥ b′),

where a′i = c ai, i = 1, . . . , n, and b′ = c b denote the resulting alternative
weights and threshold respectively. If a1, . . . , an are rational numbers, and
c is the least common denominator, then the alternative weight will all be
integers. In fact, it can be shown that it is always possible to make small
adjustments to the weights without changing the structure. Thus, since
the set of rational numbers is dense in R, it is always possible to find a
representation of a given threshold system where all the weights are rational.
Hence, as explained above, we can also find a representation where all the
weights are integers. This also implies that the class of threshold systems
with integer weights is equal to the class of all threshold systems.

In cases where all the weights are integers with a common divisor D,
this divisor can be factored out by choosing c = D−1. It turns out that
having integer weights and at the same time making these weights as small
as possible can reduce the computational complexity significantly.

We observe that if (C,φ) is a threshold system where a1 = · · · = an = 1
and b = k, (C,φ) is a k-out-of-n system. Thus, the class of threshold systems
is a generalisation of the class of k-out-of-n systems. Despite the similarity
between threshold systems and k-out-of-n systems, it can be shown that
calculating the reliability of a threshold system in general is NP-hard. See
Winther [71]. However, by placing mild restrictions on the weights, it is
possible to calculate the reliability of the system in polynomial time.

To study this in more detail, we consider a threshold system, (C,φ), where
a1, . . . , an are positive integers. As usual, we introduce the vector X =
(X1, . . . , Xn) of stochastic state variables, and assume that P (Xi = 1) = pi,

4.5. THRESHOLD SYSTEMS 51

and that qi = 1− pi, for all i ∈ C. Moreover, we let:

S =
n)

i=1

aiXi,

and note that the system is functioning if and only if S ≥ b. Thus, the
reliability of the system can be derived from the distribution of S.

In order to determine this distribution we introduce the partial sums:

Sj =

j)

i=1

aiXi, j = 1, 2, . . . , n.

It is also convenient to introduce:

dj =

j)

i=1

ai, j = 1, 2, . . . , n.

By the assumptions it follows that S1, . . . , Sn are integer valued stochastic
variables, and that S1 = a1X1 while Sn = S. Moreover, denoting the set of
possible values for Sj by Aj, j = 1, . . . , n, it follows that:

Aj ⊆ {0, 1, . . . , dj}, j = 1, . . . , n. (4.19)

More specifically, we have:

A1 = {0, a1}, (4.20)
Aj = Aj−1 ∪ {s+ aj : s ∈ Aj−1}, j = 2, . . . , n.

Like we did for k-out-of-n systems, we can find the distribution of S by
computing sequentially the distributions of S1, . . . , Sn. Since S1 = a1X1, it
follows that P (S1 = 0) = q1 and that P (S1 = a1) = p1. Hence, it follows
that the distribution of S1 is fully determined. We then assume that we have
determined the distributions of S1, . . . , Sj where j < n, and consider the
distribution of Sj+1. By conditioning on Xj+1 we get the following recursion
formula for s ∈ Aj+1:

P (Sj+1 = s) = P (Sj = s) · qj+1 + P (Sj = s− aj+1) · pj+1. (4.21)

52 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

Note that if s < aj+1, we have P (Sj = s−aj+1) = 0, while if s > dj, we have
P (Sj = s) = 0. Thus, in these cases (4.21) simplifies to:

P (Sj+1 = s) = P (Sj = s) · qj+1, s < aj+1, (4.22)

P (Sj+1 = s) = P (Sj = s− aj+1) · pj+1, s > dj. (4.23)

Thus, in order to calculate the distribution of Sj+1, (4.21) is applied at most
max(0, dj −aj+1+1) times, (4.22) is applied at most aj+1 times, while (4.23)
is applied at most dj+1 − dj = aj+1 times. When (4.21) is applied, we need
to do two multiplications and one addition, while (4.22) and (4.23) only a
single multiplication is required. Hence, in the worst case we need to do
2 ·max(0, dj − aj+1 + 1) + 2 · aj+1 multiplications and max(0, dj − aj+1 + 1)
additions.

In the case where a1 = · · · = an = 1, we have dj = j, j = 1, . . . , n. Thus,
in this case we need to do 2 ·max(0, j−1+1)+2 ·1 = 2(j+1) multiplications
and max(0, j − 1 + 1) = j additions. Obviously, these are the same numbers
of operations as we found in Section 4.4. Unfortunately, in other cases the
number of operations may grow much faster.

Example 4.5.2 Let (C,φ) be a threshold system with weights a1, . . . , an
given by:

aj = 2j−1, j = 1, . . . , n.

We then have:

A1 = {0, 20} = {0, 1},
A2 = A1 ∪ {0 + 21, 20 + 21} = {0, 1, 2, 3}

· · ·
Aj = {0, 1, . . . , (2j − 1)}

· · ·
An = {0, 1, . . . , (2n − 1)}

Hence, |Aj| = 2j, j = 1, . . . , n, which means that the size of the Aj grows
exponentially fast. In this case any algorithm for calculating the distribution
of S = Sn must be at least of order O(2n).

4.5. THRESHOLD SYSTEMS 53

We note that the number of possible values for S is equal to the number
of binary vectors x = (x1, . . . , xn), i.e., 2n. In fact each possible value s of
S corresponds to a unique vector x(s) = (x1(s), . . . , xn(s)) where the entries
represents the digits in the binary representation of the number s. That is:

s =
n)

i=1

xi(s)2
i−1

Hence, it follows that the distribution of S can be determined by:

P (S = s) =
n"

i=1

P (Xi = xi(s)) =
n"

i=1

p
xi(s)
i q

1−xi(s)
i , s = 0, 1, . . . , 2n.

However, calculating the full distribution of S using this simple explicit for-
mula still requires the calculation of 2n such products.

It should be noted, however, that for a given threshold value b, it is possible
to compute the reliability of the system without calculating the distribution of
S. Assume e.g., that b = 2k−1 for some integer k ∈ {1, . . . , n}. In this case
all sets of the form P = {j}, where j ≥ k will be minimal path sets for the
system, while all components in the set {1, . . . , k − 1} are irrelevant. Thus,
the system is essentially a simple parallel system of the components k, . . . , n,
and the reliability of the system is given by:

P (φ = 1) =
n#

j=k

pj

By Example 4.5.2 we see that when the reliability of a threshold system
is calculated using the distribution of S, the running time of the algorithm
may in the worst cases grows exponentially in the number of components.
In the next example, however, we show that by putting a mild restriction
on the weights, it becomes possible to calculate the reliability of a threshold
system in polynomial time.

Example 4.5.3 Let (C,φ) be a threshold system with positive integer weights
a1, . . . , an, and assume that:

aj ≤ M, j = 1, . . . , n,

54 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

for some suitable fixed integer M > 0. In this case we have:

dj =

j)

i=1

ai ≤ Mj

Hence, since aj+1 is assumed to be a positive integer, we also have that:

dj − aj+1 + 1 ≤ Mj

Thus, if we use the recursive formulas to calculate the distribution of Sj+1

from the distribution of Sj, an upper bound on the number of multiplications
needed is:

2max(0, dj − aj+1 + 1) + 2aj+1 ≤ 2Mj + 2M = 2M(j + 1)

Similarly, an upper bound on the number of addition needed is:

max(0, dj − aj+1 + 1) ≤ Mj

An upper bound on the total number of multiplications needed to calculate the
distribution of S is then:

2 · 2M + 2 · 3M + · · · 2 · nM = M(n− 1)(n+ 2),

while an upper bound on the number of additions needed is:

M + 2M + · · ·+ (n− 1)M =
M(n− 1)n

2

Since M is a fixed constant, it follows that the distribution of S, and hence
also the reliability of the system for any threshold b, can be calculated in
O(n2)-time.

Example 4.5.4 Let (C,φ) be a threshold system of 8 components with the
following reliabilities:

p1 = 0.75, p2 = 0.80, p3 = 0.82, p4 = 0.65

p5 = 0.88, p6 = 0.91, p7 = 0.92, p8 = 0.86

The component weights are:

a1 = 2, a2 = 3, a3 = 5, a4 = 6

a5 = 7, a6 = 8, a7 = 8, a8 = 11

4.6. DIRECTED NETWORK SYSTEMS 55

and the threshold is b = 32.

We also let S = a1X1+ · · ·+ a8X8, and note that since a1+ · · ·+ a8 = 50,
the set of possible values for S is a subset of the set {0, 1, 2, . . . , 50}.

Using (4.21), (4.22) and (4.23) we find the distribution of S, and get the
reliability of the system:

h = P (φ = 1) = P (S ≥ b)

= P (S = 32) + P (S = 33) + · · ·+ P (S = 50) = 0.9238

A python script which can be used to calculate the reliability of this system,
is given in Script B.1.2 in Appendix B.1.

4.6 Directed network systems
For some particular kinds of systems, the multiplication method and the
inclusion-exclusion method can be significantly improved. The most impor-
tant class of such systems are Source-to-K terminal systems, or SKT-systems :

Definition 4.6.1 A Source-to-K-terminal-system (SKT-system) is a system
defined relative to a directed network where the system functions if and only if
a node S (called the source) can send information to a given set of K nodes
T1, . . . , TK (called the terminals). The components of the system are the
directed edges of the network, while the nodes are assumed to be functioning
perfectly with probability one.

Example 4.6.2 Figure 4.1 shows an example of an S4T system with com-
ponents 1, 2, . . . , 10. The node S is the source, while the nodes T1, T2, T3, T4

are the terminals.

Note that the class of SKT-systems is closed under restrictions but not
under contractions. Let e.g., (C,φ) be the system presented in Example
4.6.2. Then it can be shown that the contractions of (C,φ) with respect
to components 3, 6 and 7 are not SKT-systems. For this reason pivotal
decompositions are usually not applied for reliability calculations of such
systems. Instead, we focus on improvements of the multiplication method.
In the following theorem we recall that any structure function can be written
on the form (4.3).

56 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

1

2

3

4

5

6

7

9

8

10

S

T1

T3

T2 T4

Figure 4.1: An S4T system

Theorem 4.6.3 Let φ(X) =
/

A⊆C δ(A)
$

i∈A Xi be the structure function
of an SKT system.

(i) If A can be expressed as a union of minimal path sets, and the subgraph
spanned by A does not contain any directed cycle, we have:

δ(A) = (−1)|A|−v(A)+1

where v(A) denotes the number of nodes in the subgraph spanned by A.

(ii) In the opposite case we have:

δ(A) = 0

Theorem 4.6.3 was first proved by Satyanarayana [63] using Theorem 4.3.2.
However, a simpler proof based on the formula (4.5) is given in Huseby [32].

Prabhakar and Satyanarayana [65] also developed an efficient algorithm
for identifying all sets A ⊆ C such that δ(A) ∕= 0 directly, without using
the minimal path sets. By using this algorithm in combination with Theo-
rem 4.6.3, we get a very fast method for computing the reliability of an SKT
system.

4.6. DIRECTED NETWORK SYSTEMS 57

1

2

3

4

5 6

7
S T

Figure 4.2: An S1T system

Example 4.6.4 Consider the S1T-system shown in Figure 4.2. The com-
ponent set C = {1, . . . , 7} consists of the directed edges in the networks.
The system is functioning if the source S can send signals to the terminal
T through the network. We assume that the component state variables are
independent and that P (Xi = 1) = pi for i ∈ C.

The minimal path sets of this system are P1 = {1, 4, 6}, P2 = {1, 4, 5, 7},
P3 = {2, 3, 4, 6} and P4 = {2, 7}. We calculate the reliability of this system
by using the inclusion-exclusion formula (4.7). Since there are 4 minimal
path sets, this formula will consist of 24 − 1 = 15 terms before we simplify:

h(p) = p1p4p6 + p1p4p5p7 + p2p3p4p6 + p2p7

− p1p4p5p6p7 − p1p2p3p4p6 − p1p2p4p6p7

− p1p2p3p4p5p6p7 − p1p2p4p5p7 − p2p3p4p6p7

+ p1p2p3p4p5p6p7 + p1p2p4p5p6p7 + p1p2p3p4p6p7 + p1p2p3p4p5p6p7

− p1p2p3p4p5p6p7.

By merging similar terms we obtain:

h(p) = p1p4p6 + p1p4p5p7 + p2p3p4p6 + p2p7

− p1p4p5p6p7 − p1p2p3p4p6 − p1p2p4p6p7

− p1p2p4p5p7 − p1p2p4p5p7

+ p1p2p4p5p6p7 + p1p2p3p4p6p7.

We observe that δ(A) is either +1, −1 or zero for all A ⊆ C. In particular,
since the network contains a directed cycle {3, 4, 5}, the highest order term
will have δ(C) = 0. Moreover, we can easily verify that the formula for δ(A)

58 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

given in Theorem 4.6.3 is correct:

δ({1, 4, 6}) = (−1)3−4+1 = +1,

δ({1, 4, 5, 7}) = (−1)4−5+1 = +1,

· · · · · ·
δ({1, 4, 5, 6, 7}) = (−1)5−5+1 = −1,

δ({1, 2, 3, 4, 6}) = (−1)5−5+1 = −1,

δ({1, 2, 4, 6, 7}) = (−1)5−5+1 = −1,

· · · · · ·
δ({1, 2, 4, 5, 6, 7}) = (−1)6−5+1 = +1,

δ({1, 2, 3, 4, 6, 7}) = (−1)6−5+1 = +1.

We close this section by noting that SKT-systems are not the only types
of systems where the signed domination is either +1, −1 or zero. In fact this
class can be extended to a much larger class called oriented matroid systems.
See Huseby [35] for details. Moreover, there are also other classes of systems
with similar properties:

Example 4.6.5 Let (C,φ) be a linear consecutive 2-out-of-5 system. That
is, C = {1, . . . , 5}, and the minimal path sets are P1 = {1, 2}, P2 = {2, 3},
P3 = {3, 4}, P4 = {4, 5}. By using e.g., the inclusion-exclusion formula it is
easy to see that the reliability of this system, assuming independent component
state variables, is:

h(p) = p1p2 + p2p3 + p3p4 + p4p5

− p1p2p3 − p2p3p4 − p3p4p5 − p1p2p4p5

+ p1p2p3p4p5.

It can be shown that this system is not an SKT-system. The proof is left
as an exercise. Still, linear consecutive k-out-of-n systems share the property
with SKT-systems (and the more general class of oriented matroid systems)
that the signed domination function is either +1, −1 or zero for all subsets
of the component set. See Calkin et. al [14].

4.7 Undirected network systems
In this section, we will present an algorithm for computing the exact system
reliability called the factoring algorithm which is based on pivotal decom-

4.7. UNDIRECTED NETWORK SYSTEMS 59

position. See Theorem 3.1.1. In principle, this algorithm can be applied to
any binary monotone system where the component state variables are in-
dependent. However, since the algorithm uses pivotal decompositions, it is
typically used for classes of systems which are closed under minor operations.
An important such class is the class of undirected network systems. Such a
system can be represented by an undirected graph, where the components of
the system are the edges of the graph, and where the system is functioning if
a set of terminal nodes can communicate through the graph. In an undirected
network signals can be sent both ways along the edges. An example of such
a system is illustrated in Figure 4.4. In addition to pivotal decomposition
the method also uses the following result:

Theorem 4.7.1 Let i, j ∈ C, i ∕= j.

(i) If i and j are connected in series, then h(p) will only depend on pi and
pj through pi · pj. Hence, i and j can be replaced by a single component
with reliability pi · pj without altering the system reliability. Such a
reduction is called a series reduction.

(ii) If i and j are connected in parallel, then h(p) will only depend on pi
and pj through pi ∐ pj. Hence, i and j can be replaced by a single
component with reliability pi∐pj without altering the system reliability.
Such a reduction is called a parallel reduction.

The common term for either series or parallel reductions is s-p-reductions.
Note that since the class of undirected network systems is closed under minor
operations, it is also closed under s-p-reductions. The reason for this is that
a series reduction is graph-theoretically equivalent to a contraction, while a
parallel reduction is graph-theoretically equivalent to a restriction.

Definition 4.7.2 We say that a system is s-p-reducible if there are compo-
nents in either series or parallel in the system. If not, the system is said to
be s-p-complex. A system which can be s-p-reduced to a single component is
called an s-p-system.

The bridge structure shown in Figure 3.1 is an example of a complex
system because there are no components in series or parallel.

The system in Figure 4.3 is an example of an s-p system because compo-
nents 1 and 2 (in series) can be replaced with a component 1′ with reliability

60 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

1 2

3

4

5

Figure 4.3: A reliability block diagram of a mixed parallel and series system.

p1′ = p1 · p2. Similarly, components 3 and 4 can be replaced by a component
3′ with reliability p3′ = p3 ∐ p4. The resulting system is a series structure of
components 1′, 3′ and 5. These three components can be replaced by a single
component with reliability p1′ · p3′ · p5, which is the reliability of the whole
system.

The factoring algorithm can be described as follows:

Algorithm 4.7.3 Let (C,φ) be a binary monotone system. Assume that
at least one of its components is relevant. To compute the reliability h(p),
proceed as follows:

Step 1. Perform all possible s-p-reductions. Let the reduced system be
denoted by (Cr,φr). Then, (Cr,φr) must also have at least one relevant
component (make sure you understand why).

Step 2. Now, one of the two following cases can happen:
Case 1. (Cr,φr) contains precisely one relevant component with updated

reliability pe. Then, h(p) = pe.
Case 2. (Cr,φr) contains several relevant components. In this case,

choose a component e ∈ Cr and do a pivotal decomposition. That is, compute
h(p) by using Theorem 3.1.1:

h(pCr

) = peh(1e,p
Cr

) + (1− pe)h(0e,p
Cr

).

Then, compute h(1e,p
Cr
) and h(0e,p

Cr
) by repeated use of the algorithm.

Note that there is a choice involved in Case 2 of Algorithm 4.7.3. In
general, the efficiency of the factoring algorithm depends on the choice of

4.7. UNDIRECTED NETWORK SYSTEMS 61

pivoting component. For the bridge structure in Example 3.1.2, we actu-
ally used the factoring algorithm. There, we chose to pivot with respect to
component 3. For this particular system the choice does not matter. In gen-
eral, however, it can be shown that when the factoring algorithm is applied
to undirected network systems, one should always pivot such that both re-
sulting minors are coherent1. This was first proved by Satyanarayana and
Chang [64], and later generalised to a more abstract class by Huseby [32].

Despite being a very easy and convenient method for reliability calcula-
tions, the factoring algorithm is still of order O(2n). Hence, in that sense
it is not significantly better than e.g., the state space enumeration method.
Still, in many cases, it is very efficient, even for manual calculations.

1

2

4

3 5

7

6

S T

Figure 4.4: An undirected network system

Example 4.7.4 Consider the undirected network system (C,φ) shown in
Figure 4.4. The component set C = {1, . . . , 7} consists of the undirected
edges in the networks. The system is functioning if the terminals S and T
can communicate through the network. We assume that the component state
variables are independent and that P (Xi = 1) = pi for i ∈ C.

This system is not s-p-reducible, so we need to do a pivotal decomposition.
For this purpose we choose component 4. The resulting subsystems are shown
in Figure 4.5, where the left-hand system, denoted (C \ 4,φ+4) and with
reliability h+4, is obtained by conditioning on that component 4 is functioning,
while the right-hand system, denoted (C \ 4,φ−4) and with reliability h−4, is

1Note that the assumption that the system is an undirected network system is essential
here. While the result can be generalised to a larger class of systems, see Huseby [32],
there exists many other types of systems where this rule is not optimal.

62 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

1

2

3

7

65 1

2

3

7

5 6

S T S T

Figure 4.5: Subsystems (C \ 4,φ+4) and (C \ 4,φ−4) obtained by pivotal
decomposition with respect to component 4

1

2

3'

7

6

S T

Figure 4.6: The subsystem ((C \4)r, (φ+4)
r) obtained by a parallel reduction

of (C \ 4,φ+4) with respect to components 3 and 5

obtained by conditioning on that component 4 is failed. The system reliability
is then given by:

h = p4 · h+4 + (1− p4) · h−4.

We observe that (C \ 4,φ−4) is s-p-reducible with reliability h−4 given by:

h−4 = [(p1 · p3)∐ p2] · [(p5 · p6)∐ p7].

The subsystem (C \ 4,φ+4) is s-p-reducible as well, but the only possible s-
p-reduction is the parallel reduction of components 3 and 5. The resulting
component is denoted 3′ and has component reliability p3′ = p3 ∐ p5. The
resulting system is shown in Figure 4.6, and is denoted by ((C \ 4)r, (φ+4)

r).
In order to calculate the reliability of this system, we need to do another

pivotal decomposition. This time we choose component 3′. The resulting sub-
systems, denoted respectively ((C\4)r\3′, (φ+4)

r
+3′) and ((C\4)r\3′, (φ+4)

r
−3′)

4.8. BINARY DECISION DIAGRAMS 63

1

2 7

6

1

2 7

6

S T S T

Figure 4.7: Subsystems ((C \ 4)r \ 3′, (φ+4)
r
+3′) and ((C \ 4)r \ 3′, (φ+4)

r
−3′)

obtained from the subsystem ((C \ 4)r, (φ+4)
r) by a pivotal decomposition

with respect to component 3′

are shown in Figure 4.7. Both these subsystems are s-p-reducible, and we get
that:

h+4 = (h+4)
r = p3′ · (h+4)

r
+3′ + (1− p3′) · (h+4)

r
−3′ ,

where:

(h+4)
r
+3′ = (p1 ∐ p2) · (p6 ∐ p7)

(h+4)
r
−3′ = (p1 · p6)∐ (p2 · p7)

This completes the calculations.

Note that it is obviously possible to combine all the various expressions
in Example 4.7.4 into one unified large formula for the reliability h. How-
ever, when implementing the factoring algorithm, this is done recursively.
This implies that only the resulting numbers, not the expanded symbolic
expressions, are passed backwards through the algorithm. This is actually
an essential point as this saves both time and space.

4.8 Binary decision diagrams
Binary decision diagrams or BDDs have many different applications in com-
puter science, and dates back to the papers [45] and [1]. More efficient im-
plementations were introduced in [12], [11] and [13]. Applications of BDDs
in reliability theory were introduced in [20] and [61] and adapted to network
reliability in [9]. For a survey of these and other related methods see [62].

64 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

A binary decision diagram can be interpreted as a representation of a
binary function φ : {0, 1}n → {0, 1} in the form of a rooted directed acyclic
graph. In our context the function φ is typically the structure function of
some binary monotone system. This means that we only consider the special
case where the binary function is non-decreasing in each argument. The root
and the intermediate nodes are drawn as circular nodes, and labelled with
indices of the binary input variables. The edges represent decisions regarding
the values of the input variables, i.e., whether the value of an input variable
is fixed to be either 0 or 1. The square leaf nodes represents cases where the
associated binary function is trivial, and the labels in this case represent the
corresponding binary value, i.e., either 0 or 1.

1

2 2

3 30

0 01 1

1

0

0 0

00

1

1 1

11

Level 1

Level 2

Level 3

Level 4

Figure 4.8: An ordered binary decision diagram of a 2-out-of-3 system.

Figure 4.8 shows a binary decision diagram of a 2-out-of-3 system. There
are three binary input variables, x1, x2, x3. The binary function φ, represents
the structure function of the system, and is given by:

φ(x) = x1x2 + x1x3 + x2x3 − 2x1x2x3

To each node in the diagram we associate a binary function defined as a
function of the remaining binary variables whose values are not yet fixed. In
particular, the root node in the diagram, labelled 1, is associated with the

4.8. BINARY DECISION DIAGRAMS 65

function φ itself since at this stage none of the variables are fixed. The lower
level nodes are associated with structure functions of minors of the system
under consideration. Since each input variable has two possible values, 0 and
1, each node has exactly two children, i.e., nodes connected by edges to the
parent node, where as a convention the lefthand child represents the binary
function given that the respective input variable is fixed to be 0, while the
righthand child represents the binary function given that the respective input
variable is 1. In Figure 4.8 there are two nodes labelled 2 which are children
of the root node 1. To the leftmost node we associate the function:

φ(01,x) = 0 · x2 + 0 · x3 + x2x3 − 2 · 0 · x2x3 = x2x3,

while the rightmost node we associate the function:

φ(11,x) = 1 · x2 + 1 · x3 + x2x3 − 2 · 1 · x2x3 = x2 + x3 − x2x3

At the next level of the diagram there are two intermediate nodes and two
leaf nodes. From left to right these nodes correspond to the following binary
functions:

φ(01, 02,x) = 0 · x3 = 0,

φ(01, 12,x) = 1 · x3 = x3,

φ(11, 02,x) = 0 + x3 − 0 · x3 = x3,

φ(11, 12,x) = 1 + x3 − 1 · x3 = 1.

We observe the binary functions associated with the two leaf nodes are trivial
with values 0 and 1 respectively. The binary functions associated with the
two intermediate nodes depends on the remaining input variable 3. Thus, for
these nodes we proceed to the final level consisting of four leaf nodes. From
left to right these nodes correspond to the following binary functions:

φ(01, 12, 03) = 0,

φ(01, 12, 13) = 1,

φ(11, 02, 03) = 0,

φ(11, 02, 13) = 1

Note that since the binary functions associated with the two intermediate
nodes labelled 3 are identical, it follows that the subgraphs rooted at these

66 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

nodes are isomorphic2.

We now consider the states of the input variables as independent stochastic
variables, denoted X1, X2, X3, and let P (Xi = 1) = pi, i = 1, 2, 3. We also
let P (Xi = 0) = 1 − pi = qi, i = 1, 2, 3. Then each node in the diagram
corresponds to an event defined by these stochastic variables. Numbering
these events by the diagram level and from left to right, we denote the events
as follows:

Eij = The event corresponding to the jth node at level i.

The event corresponding to the root node, i.e., E1,1, obviously has probability
P (E1,1) = 1. At each of the lower levels, we can compute the event proba-
bilities as products of parent event probabilities and probabilities related to
the input variables. More specifically, let v be a node in the diagram, and let
E is the corresponding event. Moreover, let E ′ be the event corresponding
to the parent node of v. Assuming that E ′ is an event at level i, we have:

P (E) = P (E ′) · P (E ′ → E) (4.24)

where P (E ′ → E) = qi if v is a lefthand child of the parent node correspond-
ing to E ′, and P (E ′ → E) = pi if v is a righthand child of the parent node
corresponding to E ′.

We then apply (4.24) to compute the event probabilities. At level 2 in
the diagram there are two intermediate nodes with corresponding events E2,1

and E2,2. The probabilities of these events are:

P (E2,1) = P (E1,1) · P (E1,1 → E2,1) = q1

P (E2,2) = P (E1,1) · P (E1,1 → E2,2) = p1

At level 3 there are two leaf nodes with corresponding events E3,1 and E3,4.
The probabilities of these events are:

P (E3,1) = P (E2,1) · P (E2,1 → E3,1) = q1q2

P (E3,4) = P (E2,2) · P (E2,2 → E3,4) = p1p2

2Two directed graphs G and H with node sets V (G) and V (H) respectively are said to
be isomorphic if there exists a bijective mapping, ψ : V (G) → V (H), such that G contains
a directed edge from node u to node v if and only H contains a directed edge from node
ψ(u) to ψ(v).

4.8. BINARY DECISION DIAGRAMS 67

Furthermore, at level 3 there are also two intermediate nodes with corre-
sponding events E3,2 and E3,3. The probabilities of these events are:

P (E3,2) = P (E2,1) · P (E2,1 → E3,2) = q1p2

P (E3,3) = P (E2,2) · P (E2,2 → E3,3) = p1q2

Finally, at level 4 of the diagram there are four leaf nodes with corresponding
events E4,1, E4,2, E4,3, E4,4. The probabilities of these events are:

P (E4,1) = P (E3,2) · P (E3,2 → E4,1) = q1p2q3

P (E4,2) = P (E3,2) · P (E3,2 → E4,2) = q1p2p3

P (E4,3) = P (E3,3) · P (E3,3 → E4,3) = p1q2q3

P (E4,4) = P (E3,3) · P (E3,3 → E4,4) = p1q2p3

Given the probabilities of the leaf nodes, we find the probability distribution
of φ(X) by adding the probabilities associated with the leaf nodes labelled
0 and 1 respectively:

P (φ(X) = 0) = P (E3,1) + P (E4,1) + P (E4,3)

= q1q2 + q1p2q3 + p1q2q3

= q1q2 + q1q3 + q2q3 − 2q1q2q3

P (φ(X) = 1) = P (E3,4) + P (E4,2) + P (E4,4)

= p1p2 + q1p2p3 + p1q2p3

= p1p2 + p1p3 + p2p3 − 2p1p2p3

In the diagram shown in Figure 4.8 there is a one-to-one correspondence
between the input variables and the levels of the diagram. That is, input
variable 1 is handled at level 1, input variable 2 is handled at level 2, etc.
Such diagrams are referred to as ordered binary decision diagrams. When
the diagram has a rooted tree structure, like the one shown in Figure 4.8,
however, we do not need to handle the input variables in an ordered way.
In Figure 4.9 the input variables 2 and 3 are handled in a different order in
the lefthand and righthand parts of the diagram. Thus, we observe that the
two nodes at level 2 do not refer to the same input variable. However, the
probabilities of the events corresponding to these nodes have probabilities
determined by the distribution of X1, so we still have:

P (E2,1) = P (E1,1) · P (E1,1 → E2,1) = q1

P (E2,2) = P (E1,1) · P (E1,1 → E2,2) = p1

68 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

1

2 3

3 20

0 01 1

1

0

0 0

00

1

1 1

11

Level 1

Level 2

Level 3

Level 4

Figure 4.9: An unordered binary decision diagram of a 2-out-of-3 system.

At level 3 of the diagram the leaf nodes with corresponding events E3,1 and
E3,4 have the following probabilities:

P (E3,1) = P (E2,1)P (E2,1 → E3,1) = q1q2

P (E3,4) = P (E2,2)P (E2,2 → E3,4) = p1p3

while the intermediate nodes with corresponding events E3,2 and E3,3 have
the following probabilities:

P (E3,2) = P (E2,1) · P (E2,1 → E3,2) = q1p2

P (E3,3) = P (E2,2) · P (E2,2 → E3,3) = p1q3

Finally, at level 4 of the diagram the leaf nodes have the following probabil-
ities:

P (E4,1) = P (E3,2) · P (E3,2 → E4,1) = q1p2q3

P (E4,2) = P (E3,2) · P (E3,2 → E4,2) = q1p2p3

P (E4,3) = P (E3,3) · P (E3,3 → E4,3) = p1q3q2

P (E4,4) = P (E3,3) · P (E3,3 → E4,4) = p1q3p2

4.8. BINARY DECISION DIAGRAMS 69

Still, when we add the probabilities of the leaf nodes, we eventually arrive at
the same probability distribution of φ(X).

P (φ(X) = 0) = P (E3,1) + P (E4,1) + P (E4,3)

= q1q2 + q1p2q3 + p1q3q2

= q1q2 + q1q3 + q2q3 − 2q1q2q3

P (φ(X) = 1) = P (E3,4) + P (E4,2) + P (E4,4)

= p1p3 + q1p2p3 + p1q3p2

= p1p2 + p1p3 + p2p3 − 2p1p2p3

Note that in the above examples we have expanded the formulas for the
distribution of φ(X) into a sum of products of probabilities. This is done
in order to make it easy to verify that the resulting formulas are indeed
correct. Since the binary function under consideration here is very simple,
even the fully expanded formula is easily manageable. In more complex
cases, however, the calculations will be done based on specific numbers for
the distributions of the input variables. Then the resulting event probabilities
will be computed event by event, and level by level in the diagram. In each
calculation (4.24) is applied. Since this formula can be calculated in constant
time, this means that the computational complexity of computing all event
probabilities, and thus also the distribution of φ(X), is proportional to the
number of nodes in the diagram.

Note also that when a binary decision diagram is constructed, this diagram
represents the binary function of interest, regardless of the distributions of
the input variables. Thus, we can use the same diagram to compute the
distribution of φ(X) for any number of distributions of the input variables.
This allows us to e.g., use the diagram for various types of sensitivity analysis.

In this particular example the two diagrams shown in Figure 4.8 and
Figure 4.9 both have the same size. Thus, there is nothing to gain by using
different variable orderings. In general, however, allowing different variable
orderings in different parts of the diagram may have a significant effect on
the size of the diagram, and hence also on the computational complexity.

If we e.g., calculate system reliability by representing the structure func-
tion as a binary decision diagram with a rooted tree structure like the one
described above, the computational complexity of this method is essentially

70 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

equivalent to the computational complexity of the factoring algorithm with-
out s-p-reductions. If the system is an undirected network system, we know
that the optimal factoring strategy is to avoid incoherent minors. See Sub-
section 4.7. This strategy may sometimes require that different variable
orderings are used in different parts of the diagram.

One simple way of reducing the size of a binary decision diagrams is
merging all the leaf nodes into two nodes corresponding to the values 0 and
1 respectively. The following BDD-construction algorithm takes this into
account.

Algorithm 4.8.1 Let φ = φ(x) be a binary function, and let C = {1, . . . , n}
denote the indices of the input variables.

Step 1. At level 1 create the root node with the function φ(x), and create
two leaf nodes with functions 0 and 1 respectively.

• Select i ∈ C, and label the root node by this i.

· · ·
Step k. At level k create the lefthand and righthand children of each of
the nodes at level (k − 1) with functions obtained by fixing the value of their
respective input variables (indicated by their labels) to 0 and 1 respectively.

• Merge nodes with trivial functions with the relevant leaf nodes (if any).
• For each intermediate node select i ∈ C among the variables that have

not yet been fixed in this node’s function, and label the node by this i.

· · ·

Algorithm 4.8.1 is implemented in python in Script B.2.1 (c_bdd.py) in
Appendix B.2. Note that this is a generic implementation which can be used
on different types of systems. However, in order to apply this script to a given
system, some of the generic methods must be tailored to fit the system under
consideration. In particular, the following methods must be implemented in
a system specific way:

• A method for representing the binary functions obtained as a result of
fixing the values of the input variables (restriction and contraction)

• A method for determining if a binary function is trivial.

4.8. BINARY DECISION DIAGRAMS 71

• A method for selecting input variables for each node in the BDD

The different implementations of these methods depend strongly on the class
of systems under consideration, and on the chosen representation of the bi-
nary functions.

In [12] a reduced form of a binary decision diagram was introduced. See
also [11]. Such reduced diagrams are referred to as reduced ordered binary
decision diagrams or ROBDDs. Such a diagram is obtained from an ordered
binary decision diagram by merging nodes which correspond to equal binary
functions. In particular, such diagrams only have two leaf nodes, one labelled
0 and one labelled 1. For these reductions to work, however, only ordered
decision diagram are allowed. The reason for this is that if we use unordered
diagrams, nodes at the same level will correspond to binary functions with
different input variables. Thus, it is typically not possible to find nodes which
correspond to equal binary functions.

1

2 2

3

0 1

0

0

0

0

1

1

1

1

Level 1

Level 2

Level 3

Level 4

Figure 4.10: A reduced ordered binary decision diagram of a 2-out-of-3 sys-
tem.

Figure 4.10 shows a reduced ordered binary decision diagram for a 2-
out-of-3 system. This is obtained from the diagram shown in Figure 4.8
by merging the leaf nodes labelled 0 into one leaf node and by merging the

72 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

leaf nodes labelled 1 into one leaf node. Finally, the two intermediate nodes
labelled 3 are merged into one intermediate node, where the last merger is
justified since:

φ(01, 12, x3) = φ(11, 02, x3) = x3

In order to calculate probabilities of the events in a reduced diagram, we
need to generalize (4.24). For any event E associated with a node v in a
binary decision diagram, we denote by P(E) the set of events associated to
the parent nodes of the node v. If E ′ ∈ P(E), the event E ′ is said to be a
parent event of the event E. When considering reduced diagrams, there will
typically be events with more than one parent event. Moreover, the parent
events may be located at different levels in the diagram. If v is a node in the
diagram, and E is the corresponding event, the probability of this event is
given by:

P (E) =
)

E′∈P(E)

P (E ′) · P (E ′ → E), (4.25)

where P (E ′ → E) = qi(E′) if v is a lefthand child of the parent node corre-
sponding to E ′, P (E ′ → E) = pi(E′) if v is a righthand child of the parent
node corresponding to E ′, and i(E ′) denotes the level of the event E ′.

Using (4.25) on the diagram shown in Figure 4.10 we get the following
event probabilities:

P (E2,1) = P (E1,1) · P (E1,1 → E2,1) = q1

P (E2,2) = P (E1,1) · P (E1,1 → E2,2) = p1

P (E3,1) = P (E2,1) · P (E2,1 → E3,1) + P (E2,2) · P (E2,2 → E3,1)

= q1p2 + p1q2

P (φ(X) = 0) = P (E2,1) · P (E2,1 → E4,1) + P (E3,1) · P (E3,1 → E4,1)

= q1q2 + q1q3 + q2q3 − 2q1q2q3

P (φ(X) = 1) = P (E2,2) · P (E2,2 → E4,2) + P (E3,1) · P (E3,1 → E4,2)

= p1p2 + p1p3 + p2p3 − 2p1p2p3

Thus, we see that we get the same distribution for φ(X) as we did using the
previous diagrams.

4.8. BINARY DECISION DIAGRAMS 73

The reduction technique introduced in [12] can in many cases reduce the
computational complexity of reliability calculations. As noted by [12], how-
ever, the ordering of the input variables, or components in our context, has a
large impact on the size of the diagram. Unfortunately, finding an ordering
that minimises the size of the graph is itself known to be a co-NP-Complete
problem (see [12]). Thus, most algorithms for constructing reduced ordered
binary decision diagrams rely on some sort of heuristic method for order-
ing the input variables. Here, we will not go further into the problem of
finding efficient orderings, but instead assume that an ordering of the input
variables has been chosen. Given an ordering of the input variables, the
problem of constructing a reduced ordered binary decision diagram is still
not trivial. One possible way of doing this, is to start out by constructing an
ordered binary decision diagram, and then do the reductions by identifying
isomorphic subgraphs. This is the method suggested in [12]. There are two
main challenges with this method. Firstly, the size of the ordered binary
decision diagram may be very large, as the number of nodes typically grows
exponentially in the number of input variables. The second challenge is that
identifying isomorphic subgraphs can be computationally difficult as well.

A different approach is to do the reductions along the way as a part of
the initial construction. This can be done level by level as follows:

Algorithm 4.8.2 Let φ = φ(x) be a binary function, where x = (x1, . . . , xn)
is indexed in accordance with a given order of the input variables.

Step 1. At level 1 create the root node with the function φ(x), and create
two leaf nodes with functions 0 and 1 respectively.

• Label the root node by the index 1.

· · ·
Step k. At level k create the lefthand and righthand children of each of the
nodes at level (k− 1) with functions obtained by fixing the value of xk−1 to 0
and 1 respectively.

• Merge nodes with equal functions (if any).
• Merge nodes with trivial functions with the relevant leaf nodes (if any).
• Label all the intermediate nodes by the index k.

· · ·

For Algorithm 4.8.2 to work, we need to be able to identify identical func-
tions. This may seem like a trivial task, at least when considering simple

74 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

examples. However, in general determining whether or not two binary func-
tions are identical is an NP-complete problem. Still, in special cases when
we are able to represent the binary functions in an efficient way, it can be
a manageable task. Note that such a representation needs to work not only
for the original binary function φ(x), but also for all the minors obtained in
the construction process.

Algorithm 4.8.2 is implemented in python in Script B.2.2 (c_robdd.py) in
Appendix B.2. Just as for Script B.2.1 this is also a generic implementation
which can be used on different types of systems. However, in order to apply
this script to a given system, some of the generic methods must be tailored
to fit the system under consideration. In particular, the following methods
must be implemented in a system specific way:

• A method for representing the binary functions obtained as a result of
fixing the values of the input variables (restriction and contraction).

• A method for determining if a binary function is trivial.

• A method for determining if two binary functions are identical.

Again the actual implementation of these methods depend strongly on the
class of systems under consideration, and on the chosen representation of the
binary functions.

In the following subsections we will consider more specific classes of sys-
tems, and show how these classes can be analysed using binary decision
diagrams.

4.8.1 Threshold systems

We recall from Definition 4.5.1 in Section 4.5 that structure function of a
threshold system has the following form:

φ(x) = I(
n)

i=1

aixi ≥ b), (4.26)

where a1, . . . , an and b are non-negative real numbers. In order to analyse
such systems we need to describe how to implement the methods listed in
relation to the generic implementation. We start out by assuming that we
are given a threshold system (C,φ), where C = {1, . . . , n}, and with weights

4.8. BINARY DECISION DIAGRAMS 75

a1, . . . , an and threshold b. The structure function is uniquely defined by the
weights and threshold, and we regard these quantities as a representation the
system. That is, we say that (C,φ) is a threshold system with parameters a
and b, and refer to such a system as a TS(a, b)-system.

For threshold systems it is fairly obvious that the input variables should
be ordered with respect to their weights, so the input variable 1 is the one
with the highest weight, input variable 2 is the one with the second highest
weight etc. In cases where two or more input variables have equal weights,
we simply break ties arbitrarily.

In order to represent the binary functions obtained by fixing the value of
say, the jth input variable, we apply (4.26) and get:

φ(0j,x) = I(
)

i ∕=j

aixi ≥ b),

φ(1j,x) = I(
)

i ∕=j

aixi ≥ b− aj)

From this it follows that the restriction and the contraction of (C,φ) with re-
spect to component j are both threshold systems. Thus, the class of threshold
systems is closed under minor operations. More specifically, it follows that
the restriction of (C,φ) with respect to j is a TS(a−j, b)-system, while the
contraction of (C,φ) with respect to j is a TS(a−j, b − aj)-system, where
a−j = (a1, . . . , aj−1, aj+1, . . . , an). As more of the input variables get fixed
values, the set of weights is reduced. At the same time the threshold is either
kept unchanged in the case of restrictions and reduced by the weight of the
selected input variable in the case of contractions.

If the sum of the remaining weights are less than the threshold, we know
that the minor is trivial with structure function identical to 0. Conversely,
if the threshold value is less than or equal to zero, then the minor is trivial
with structure function identical to 1 . Thus, in order to check whether a
binary function is trivial, we only need to compute the sum of the weights
and compare it to the threshold.

Since the structure function of a threshold system is uniquely defined by
the weights and threshold, it is very easy to determine whether or not two
binary functions are identical. When constructing a ROBDD for a given
threshold system, we need to choose an ordering of the input variables. As
already mentioned the size of the diagram is minimised if the input variables
are ordered in descending order with respect to their respective weights. In

76 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

order to simplify the implementation we assume that the input variables are
indexed so that a1 ≥ a2 ≥ · · · ≥ an. Hence, at level j of the diagram all
nodes will have threshold functions with identical weights aj, aj+1, . . . , an.
Hence, in order to identify nodes with identical functions, we only need to
compare the threshold values.

A python implementation of the above methods can be found in Script
B.2.3 (c_threshold.py) in Appendix B.2.

Example 4.8.3 Let (C,φ) be a threshold system with weights a1 = 8, a2 = 7,
a3 = 6, a4 = 5, a5 = 2, a6 = 2 and threshold b = 20. A python script for
constructing a BDD and a ROBDD for this system as well as calculating
the unreliability and reliability can be found in Script B.2.4 in Appendix B.2.
Note that in order to run this script, the class files c_bdd.py, c_robdd.py
and c_threshold.py are needed as well. The script uses a common component
reliability of p = 0.5 for all components. The two lines in the script for
calculating the unreliability and reliability are:

result = sys.calculateReliability0(p)

The result of this calculation is:

P (φ(X = 0) = 0.703125

P (φ(X = 1) = 0.296875

In cases where the components have different reliabilities, one can modify
the script by instead letting p be a vector, e.g.:

p = [0.80, 0.75, 0.82, 0.69, 0.91, 0.78]

The lines in the script for calculating the unreliability and reliability should
then be replaced by:

result = sys.calculateReliability(p)

The result of this calculation is:

P (φ(X = 0) = 0.215607

P (φ(X = 1) = 0.784393

By running the script one gets a brief description of the BDD and the
ROBDD in the form of lists of the intermediate nodes in the diagrams sorted

4.8. BINARY DECISION DIAGRAMS 77

by level. For each node the corresponding event probability is given as well.
Since both diagrams use the same ordering of the input variables, the number
of intermediate nodes in the BDD is slightly higher than in the ROBDD. A
similar example can be found in Script B.2.5 in Appendix B.2.

It can be shown that if we compute the reliability of a threshold system
(C,φ) using a reduced ordered binary decision diagram, where the compo-
nents are indexed so that a1 ≥ a2 ≥ · · · ≥ an, then the computational
complexity is the same as if we use the algorithm presented in Section 4.5.
In fact, a ROBDD-based algorithm is typically faster than the algorithm pre-
sented in Section 4.5 as only the events that contributes to the reliability (or
unreliability) are included.

4.8.2 Consecutive threshold systems

The class of consecutive k-out-of-n systems have been studied very exten-
sively in the literature. Among the first papers on this subject are [19]
and [21]. More recent papers include [18], [66] and [26]. There are several
variants of such systems including linear and circular systems. Here, we focus
on the linear case only.

The concept of consecutive systems is based on the notion of a consecutive
set. Thus, if C = {1, . . . , n} is a set of components, then a consecutive set
P ⊆ C is a set of the form {j, j + 1, . . . , j + r}. Note that the notion of
a consecutive set is defined relative to the order of indices of the set C. A
consecutive set is said to be functioning if all its components are functioning.
Finally, a consecutive k-out-of-n system is a system which is functioning if
and only if it contains a functioning consecutive set of size at least k.

More formally, we define a consecutive k-out-of-n system as follows3:

Definition 4.8.4 Let (C,φ) be a binary monotone system of order n, and let
x = (x1, . . . , xn) denote the vector of component state variables. Moreover,
let s0 = 0, and let:

si = (si−1 + 1) · xi, i = 1, . . . n. (4.27)

3The formal definition may seem to be unnecessarily complicated. However, the recur-
sive relation (4.27) turns out to make it easier to compute the reliability of the system. In
particular, this relation is useful when constructing BDDs and ROBDDs.

78 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

Then (C,φ) is said to be a consecutive k-out-of-n system if φ has the following
form:

φ(x) = I(max
1≤i≤n

si ≥ k)

By (4.27) si can be interpreted as the length of the functioning consecutive
set whose last index is i. If xi = 1, then si = si−1 + 1, while if xi = 0, then
si = 0. Furthermore, the variable max1≤i≤n si is equal to the length of the
longest functioning consecutive set of the system.

As an illustration we let x = (1, 0, 1, 0, 1, 1, 1). In this case the longest
functioning consecutive set is {5, 6, 7} which is of size 3. Calculating s1, . . . , s7
we get:

s1 = (s0 + 1) · x1 = 1 · 1 = 1,

s2 = (s1 + 1) · x2 = 3 · 0 = 0,

s3 = (s2 + 1) · x3 = 1 · 1 = 1,

s4 = (s3 + 1) · x4 = 2 · 0 = 0,

s5 = (s4 + 1) · x5 = 1 · 1 = 1,

s6 = (s5 + 1) · x6 = 2 · 1 = 2,

s7 = (s6 + 1) · x7 = 3 · 1 = 3.

Hence, we indeed get that max1≤i≤7 si = s7 = 3. If e.g., k = 3, we get
φ(x) = 1.

It is easy to see that the minimal path sets of a consecutive k-out-of-
n system (C,φ) are the consecutive sets of size k. Hence, compared to an
ordinary k-out-of-n system where all subsets of C of size k are minimal paths,
a consecutive k-out-of-n system has much fewer minimal path sets. Thus, the
reliability of a consecutive k-out-of-n system is typically significantly less than
the reliability of an ordinary k-out-of-n system with the same component set.

In Section 4.5 we introduced threshold systems as a generalisation of k-
out-of-n systems. In a similar way we now introduce consecutive threshold
systems as a generalisation of consecutive k-out-of-n systems. Just as for
ordinary threshold systems the components of a consecutive threshold system
have non-negative weights. The weight of a functioning consecutive set is the
sum of the weights of the components in this set. Finally, a consecutive
threshold system is a system which is functioning if and only if it contains a

4.8. BINARY DECISION DIAGRAMS 79

functioning consecutive set with weight at least b, where b is referred to as
the threshold of the system.

More formally, we define a consecutive threshold system as follows:

Definition 4.8.5 Let (C,φ) be a binary monotone system of order n, and let
x = (x1, . . . , xn) denote the vector of component state variables. Moreover,
let a1, . . . , an and b be non-negative real numbers, let s0 = 0, and let:

si = (si−1 + ai) · xi, i = 1, . . . n. (4.28)

Then (C,φ) is said to be a consecutive threshold system if φ has the following
form:

φ(x) = I(max
1≤i≤n

si ≥ b)

By (4.28) si can be interpreted as the weight of the functioning consecutive
set whose last index is i. If xi = 1, then si = si−1 + ai, while if xi = 0, then
si = 0. Furthermore, the variable max1≤i≤n si is equal to the largest weight
of a functioning consecutive set of the system.

Note that a consecutive threshold system (C,φ) where all weights are
equal to 1 and where the threshold is equal to k, is a consecutive k-out-
of-n system. Thus, just as ordinary threshold systems are a generalisation
of k-out-of-n systems, consecutive threshold systems are a generalisation of
consecutive k-out-of-n systems.

As an illustration we let x = (1, 0, 1, 0, 1, 1, 1) and a = (5, 6, 3, 7, 2, 1, 1).
In this case the functioning consecutive set with largest weight is {1} which
has a weight of 5. Calculating s1, . . . , s7 we get:

s1 = (s0 + 5) · x1 = 5 · 1 = 5,

s2 = (s1 + 6) · x2 = 11 · 0 = 0,

s3 = (s2 + 3) · x3 = 3 · 1 = 3,

s4 = (s3 + 7) · x4 = 10 · 0 = 0,

s5 = (s4 + 2) · x5 = 2 · 1 = 2,

s6 = (s5 + 1) · x6 = 3 · 1 = 3,

s7 = (s6 + 1) · x7 = 4 · 1 = 4.

Hence, max1≤i≤7 si = s1 = 5. If e.g., b = 4, we get φ(x) = 1.

80 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

Since a consecutive threshold system is uniquely defined by the weights a
and the threshold b, we may regard these as a representation of the system.
More formally, a binary monotone system (C,φ) defined as in Definition 4.8.5
is said to be a consecutive threshold system with parameters a and b, and
we refer to such a system as a CTS(a, b)-system.

It is easy to see that both the class of consecutive threshold systems and
the smaller class of consecutive k-out-of-n systems are not closed under minor
operations. This affects the implementation of the methods for constructing
BDD and ROBDD representations of such systems. Fortunately, if we handle
input variables in the same order as the index order of component set C, it
is still possible to implement the necessary methods in an efficient way. In
order to do so it is convenient to consider a slightly more general class of
systems defined as follows:

Definition 4.8.6 Let (C,φ) be a binary monotone system of order n, and let
x = (x1, . . . , xn) denote the vector of component state variables. Moreover,
let a1, . . . , an, b and s0 be non-negative real numbers, and let:

si = (si−1 + ai) · xi, i = 1, . . . n. (4.29)

Then (C,φ) is said to be an extended consecutive threshold system if φ has
the following form:

φ(x) = I(max
1≤i≤n

si ≥ b)

The only difference between a consecutive threshold system and an extended
consecutive threshold system is that for the latter class we allow s0 to be
an arbitrary non-negative number, not just 0. The value s0 is referred to as
the initial value of the system. More formally, a binary monotone system
(C,φ) defined as in Definition 4.8.6 is said to be an extended consecutive
threshold system with parameters a, b and s0, and we refer to such a system
as an XCTS(a, b, s0)-system. Note that a CTS(a, b)-system is the same as
an XCTS(a, b, 0)-system. That is, consecutive threshold systems are special
cases of extended consecutive threshold systems.

We now let (C,φ) be an XCTS(a, b, s0)-system, and consider a binary
monotone function corresponding to an intermediate node v at level j in a
BDD or ROBDD. At this level the first j − 1 input variables are fixed. We
let x′

i denote the fixed value of xi, i = 1, . . . , j−1, and let s′i = (s′i−1+ai) ·x′
i,

i = 1, . . . , j − 1 denote the corresponding weight sums. If s′i ≥ b for some

4.8. BINARY DECISION DIAGRAMS 81

0 ≤ i ≤ j − 1, it follows that the function is trivial with value 1. However,
since the node v is assumed to be an intermediate node, not a leaf node,
this cannot be the case. Thus, it follows that s′i < b, i = 0, 1, . . . , j − 1.
We then let D = {j, . . . , n}, xD = (xj, . . . , xn), aD = (aj, . . . , an), and let
φD = φD(xD) denote the binary function corresponding to the node v. Then
it follows that:

φD(xD) = φ(x′
1, . . . , x

′
j−1,xD) = I(max

j≤i≤n
si ≥ b)

From this it is easy to see that (D,φD) is an XCTS(aD, b, s
′
j−1)-system. Thus,

we have shown that all binary functions associated with the intermediate
nodes in the diagram are extended consecutive threshold systems.

By a similar argument it is easy to show that the restriction of (D,φD)
with respect to component j is an XCTS(aD\j, b, 0)-system, while the con-
traction of (D,φD) with respect to component j is an XCTS(aD\j, b, s

′
j−1 +

aj)-system, where aD\j = (aj+1, . . . , an).
In order to explain how to check if an extended consecutive threshold

system is trivial, we note that trivial systems always occur as a result of a
restriction or a contraction. In fact a trivial system with value 0 can only
occur as a result of a restriction, while a trivial system with value 1 can only
occur as a result of a contraction. Thus, it is sufficient to describe how to
check for trivial systems for the restriction and contraction of (D,φD). The
restriction of (D,φD) with respect to component j is trivial with value 0 if
and only if aj+1 + · · ·+ an < b, while the contraction of (D,φD) with respect
to component j is trivial with value 1 if and only if s′j−1 + aj ≥ b.

Since the structure function of an extended consecutive threshold system
is uniquely defined by the weights, threshold and initial value, it is very easy
to determine whether or not two binary functions are identical. At level
j of the diagram all nodes will have identical weights aj, aj+1, . . . , an and
threshold value b. Hence, in order to identify nodes with identical functions,
we only need to compare the initial values.

A python implementation of the above methods can be found in Script
B.2.6 (c_conthreshold.py) in Appendix B.2.

Example 4.8.7 Let (C,φ) be a consecutive threshold system with weights
a1 = 8, a2 = 7, a3 = 6, a4 = 5, a5 = 3, a6 = 2 and threshold b = 10. A
python script for constructing a BDD and a ROBDD for this system as well
as calculating the unreliability and reliability can be found in Script B.2.7 in

82 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

Appendix B.2. Note that in order to run this script, the class files c_bdd.py,
c_robdd.py and c_conthreshold.py are needed as well. The script uses a
common component reliability of p = 0.5 for all components. The two lines
in the script for calculating the unreliability and reliability are:

result = sys.calculateReliability0(p)

The result of this calculation is:

P (φ(X = 0) = 0.453125

P (φ(X = 1) = 0.546875

In cases where the components have different reliabilities, one can modify
the script by instead letting p be a vector, e.g.:

p = [0.80, 0.75, 0.82, 0.69, 0.91, 0.78]

The lines in the script for calculating the unreliability and reliability should
then be replaced by:

result = sys.calculateReliability(p)

The result of this calculation is:

P (φ(X = 0) = 0.100287

P (φ(X = 1) = 0.899713

4.8.3 Undirected network systems

Although the factoring algorithm presented in Section 4.7 is usually faster,
binary decision diagrams have been used to analyse undirected network sys-
tems as well. See e.g., [9]. In Section 4.7 we noted that the class of such
systems is closed under minor operations. This makes it easy to handle re-
strictions and contractions. In fact, the minor operations have nice graphical
interpretations which makes it easy to implement these operations as part of
an algorithm. See Figure 4.7 and Figure 4.7.

When implementing network algorithms, networks can be represented very
efficiently using an object oriented framework with objects like nodes and
edges which can be connected to each other using pointers. To see how
this can be done in python we refer to the Script B.2.8 in Appendix B.2.

4.8. BINARY DECISION DIAGRAMS 83

This framework also includes implementations of minor operations as well as
standard methods for checking the state of a network.

Another convenient representation of an undirected network is the node-
edge incidence matrix or simply the incidence matrix. This is a binary
matrix with one row for each node, and one column for each edge. If
V = {v1, . . . , vm} is the set of nodes, and E = {e1, . . . , en} is the set of
edges, then the incidence matrix of the network is a matrix, M = Mm×n

defined as follows:

Mij =

!
1 if node vi and edge ej are connected
0 otherwise

(4.30)

for i = 1, . . . ,m and j = 1, . . . , n. In most cases an edge is connected to
two nodes, which implies that the column representing the edge contains two
entries which are 1, while the remaining entries are 0. However, we also allow
loops in the network, i.e., edges connected to just one node. For columns
representing loops there is only one entry which is 1. Loops obviously have
no impact on the connectivity of a network, so they could just as well be
removed from the system. Thus, initially a network will typically be loop-
free. However, loops may occur as results of contractions. Thus, even though
a network of interest is loop-free, such loops may occur in minors.

Obviously, if we are given the incidence matrix M it is easy to implement
an algorithm that constructs the corresponding network. Conversely, if we
are given a network with node set V and edge set E where the nodes and
edges are indexed in a suitable way, it is easy to derive the incidence matrix
M .

In order to fully specify a K-terminal undirected network system, we also
need to include the set, T of terminals, where T simply contains the indices
of the K nodes which are terminals. Given M and T the undirected network
system is uniquely determined, and we refer to suc a system as a N(M,T)-
system.

In the Script B.2.8 (c_graph.py) in Appendix B.2 we use both the N(M,T)-
system representation and the object orient framework. The object oriented
framework is very efficient for implementing minor operations and for com-
puting the state of the network. The N(M,T)-system representation is useful
as a generic way of specifying the system, as well as for identifying nodes in
the binary decision network with identical functions. In general, one can
permute the rows and the columns of a N(M,T)-system without changing

84 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

the system. Comparing two N(M,T)-systems where one is a permutation of
the other is not easy. Fortunately, it is possible to implement restrictions and
contractions in such a way that such issues are avoided. As a result minors
can be compared simply by comparing their respective incidence matrices
and terminal sets.

Note that the Script B.2.8 (c_graph.py) in Appendix B.2 does not include
methods for finding an optimal ordering of the input variables. Instead the
input variables are handled according to the index order of the corresponding
component set C.

Example 4.8.8 Let (C,φ) be the 2-terminal undirected network system shown
in Figure 4.12. The incidence matrix for this system is:

M =

6

7777778

1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0
0 1 1 0 1 0 0 0
0 0 0 1 0 1 1 0
0 0 0 0 1 1 0 1
0 0 0 0 0 0 1 1

9

::::::;

and the terminal list is T = {1, 6}. A python script for constructing a BDD
and a ROBDD for this system as well as calculating the unreliability and
reliability can be found in Script B.2.10 in Appendix B.2. Note that in order
to run this script, the class files c_bdd.py, c_robdd.py and c_graph.py are
needed as well. The script uses a common component reliability of p = 0.5 for
all components. The two lines in the script for calculating the unreliability
and reliability are:

result = sys.calculateReliability0(p)

The result of this calculation is:

P (φ(X = 0) = 0.671875

P (φ(X = 1) = 0.328125

In cases where the components have different reliabilities, one can modify
the script by instead letting p be a vector, e.g.:

p = [0.80, 0.75, 0.82, 0.69, 0.91, 0.78, 0.55, 0.78]

4.9. EXERCISES 85

The lines in the script for calculating the unreliability and reliability should
then be replaced by:

result = sys.calculateReliability(p)

The result of this calculation is:

P (φ(X = 0) = 0.192079

P (φ(X = 1) = 0.807921

Note that for this system the reduced ordered binary decision diagram is
significantly smaller than the binary decision diagram.

4.9 Exercises

Exercise 1. Let (C,φ) be a 7-out-of-10 system where the components have
the following reliabilities:

p1 = 0.65, p2 = 0.70, p3 = 0.69, p4 = 0.61, p5 = 0.66

p6 = 0.59, p7 = 0.72, p8 = 0.62, p9 = 0.59, p10 = 0.76

Using Script B.1.1 in Appendix B.1 as a template, write a python script for
calculating the reliability of this system. [Answer: h = 0.5382.]

Exercise 2. Let S be a stochastic variable with values in {0, 1, . . . , n}. We
then define the generating function of S as:

GS(y) = E[yS] =
n)

s=0

ysP (S = s). (4.31)

a) Explain why GS(y) is a polynomial, and give an interpretation of the
coefficients of this polynomial.
b) Let T be another non-negative integer valued stochastic variable with
values in {0, 1, . . . ,m} which is independent of S. Show that:

GS+T (y) = GS(y) ·GT (y). (4.32)

c) Let X1, . . . , Xn be independent binary variables with P (Xi = 1) = pi and
P (Xi = 0) = 1− pi = qi, i = 1, . . . , n. Show that:

86 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

GXi
(y) = qi + piy, i = 1, . . . , n. (4.33)

d) Introduce:

Sj =

j)

i=1

Xi, j = 1, 2, . . . , n,

and assume that we have computed GSj
(y). Thus, all the coefficients of

GSj
(y) are known at this stage. We then compute:

GSj+1
(y) = GSj

(y) ·GXj+1
(y).

How many algebraic operations (addition and multiplication) will be needed
to complete this task?
e) Explain how generating functions can be used in order to calculate the
reliability of a k-out-of-n system. What can you say about the order of this
algorithm?

Exercise 3. Let (C,φ) be a threshold system with structure function:

φ(X) = I(
n)

i=1

aiXi ≥ b),

where a1, . . . , an and b are non-negative real numbers. Show that the dual of
this system is a threshold system as well.

Exercise 4. Let (C,φ) be a threshold system of 8 components with the
following reliabilities:

p1 = 0.75, p2 = 0.80, p3 = 0.82, p4 = 0.65

p5 = 0.88, p6 = 0.91, p7 = 0.92, p8 = 0.86

The component weights are:

a1 = 26, a2 = 39, a3 = 65, a4 = 78

a5 = 91, a6 = 104, a7 = 104, a8 = 143

and the threshold is b = 410.
a) Using Script B.1.2 in Appendix B.1 as a template, write a python script
for calculating the reliability of this system. [Answer: h = 0.9238.]

4.9. EXERCISES 87

b) Let S =
/n

i=1 aiXi. By considering the output of the python script
used in (a) show that the set of possible values for S is a subset of the set
{0, 1, . . . , 650}.
c) From the output of the python script used in (a) we note that many
of the values in the set {0, 1, . . . , 650} has zero probability. Thus, the set of
possible values for S is only a small subset of the set {0, 1, . . . , 650}. To avoid
computing probabilities of impossible values, one should identify the largest
common factor of the weights a1, . . . , a8. We denote this common factor by
c, and introduce ãi = ai/c, i = 1, . . . , 8. We also introduce S̃ =

/n
i=1 ãiXi.

Explain why the reliability of the system is equal to P (c · S̃ ≥ b).
d) A python script where this technique is utilised, can be found in B.1.3 in
Appendix B.1. Run this script and compare the results to the output of the
python script used in (a).

Exercise 5. Consider the bridge structure from Example 3.1.2 with inde-
pendent component state variables and reliability function h(p) as given in
this example. Assume that the reliability of all five components is 0.9. What
do the bounds (4.12) reduce to in this case? Comment on the result.

Exercise 6. Draw an example of the following systems:

(i) An S3T system.

(ii) An S5T system.

Exercise 7. Consider the S1T system in Figure 4.11.
a) Find the minimal path sets of the system.
b) How many terms will there be in the inclusion-exclusion formula for the
reliability of this system before simplification?
c) How many of these terms will vanish in the final simplified expression?

Exercise 8. Show that the linear consecutive 2-out-of-5 system given in Ex-
ample 4.6.5 cannot be an SKT-system. [Hint: Let δ denote the signed dom-
ination function of the system. Compare δ({1, 2, 3, 4}) and δ({1, 2, 3, 4, 5})
and interpret the result in the light of Theorem 4.6.3.]

Exercise 9. Consider the undirected network system in Figure 4.12 which
functions if and only if the nodes S and T can communicate through the
network.

88 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

1

2

5

6

3 4
S T

Figure 4.11: An S1T system.

a) Compute the reliability function of the system using the factoring algo-
rithm.
b) Assume more specifically that p1 = · · · = p8 = 0.5. Compute the reliability
of the system.

5

1

2

3

4

6

7

8

S T

Figure 4.12: An undirected network system with components 1, 2, . . . , 8 and
terminals S and T .

Exercise 10. Compute the reliability function of the undirected network

4.9. EXERCISES 89

system in Figure 4.13 by using the factoring algorithm.

1

2

3 4

5

6

7
S T

Figure 4.13: An undirected network system with components 1, 2, . . . , 7 and
terminals S and T .

Since the system is complex, it has to be factored with respect to some com-
ponent. Which component? Compare the computational work for different
component choices.

Exercise 11. Consider the series connection of bridge structures in Fig-
ure 4.14.

1

3

2

4

5

6

7

8

9

10

11

12

 13

14

15

S T

Figure 4.14: A series system of bridge structures.

a) Compute the reliability function of the system by using the factoring
algorithm.

90 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

b) Instead, compute this by taking the product of the three reliability func-
tions of the three bridge structures. Compare the computational effort with
the one in a).
c) How many terms are there in the inclusion-exclusion formula for the reli-
ability of this system? Comment this result.

Exercise 12. Prove Corollary 4.3.3.

Exercise 13. Construct a reduced ordered binary decision diagram of a
3-out-5-system.

Exercise 14. Explain briefly why the number of nodes in a reduced ordered
binary decision diagram of a k-out-n-system grows polynomially in n.

Exercise 15. Let (C,φ) be a threshold system with weights a1 = 8, a2 = 6,
a3 = 6, a4 = 4, a5 = 4, a6 = 2 and threshold b = 15.
a) Assume that all components have reliability p = 0.5. Using the Script
B.2.4 in Appendix B.2 as a template write a python script for calculating
the reliability of the system. [Answer: P (φ = 1) = 0.5.]
b) Run the script from (a) again, but with the weights in reversed order, i.e.,
a1 = 2, a2 = 4, . . . , a6 = 6. Compare the number of intermediate nodes in
the ROBDD with the number of nodes in ROBDD from (a).
c) Assume instead that p1 = 0.82, p2 = 0.78, p3 = 0.66, p4 = 0.91, p5 = 0.73,
p6 = 0.88. Modify the script from (a) and calculate the reliability of the
system with these component reliabilities. [Answer: P (φ = 1) = 0.932025.]

Exercise 16. Let (C,φ) be a consecutive threshold system with weights
a1 = 8, a2 = 6, a3 = 6, a4 = 4, a5 = 4, a6 = 2 and threshold b = 15.
a) Assume that all components have reliability p = 0.5. Using the Script
B.2.7 in Appendix B.2 as a template write a python script for calculating
the reliability of the system. [Answer: P (φ = 1) = 0.21875.]
b) Run the script from (a) again, but with the weights in reversed order, i.e.,
a1 = 2, a2 = 4, . . . , a6 = 6. Compare the number of intermediate nodes in
the ROBDD with the number of nodes in ROBDD from (a).
c) Assume instead that p1 = 0.82, p2 = 0.78, p3 = 0.66, p4 = 0.91, p5 = 0.73,
p6 = 0.88. Modify the script from (a) and calculate the reliability of the
system with these component reliabilities. [Answer: P (φ = 1) = 0.591342.]

Exercise 17. Consider the 2-terminal undirected network system shown in
Figure 4.15.

4.9. EXERCISES 91

1

2

3

4

5

S T

Figure 4.15: A bridge system.

a) Find the node-edge incidence matrix for this network.
b) Assume that all components have reliability p = 0.5. Using the Script
B.2.10 in Appendix B.2 as a template write a python script for calculating
the reliability of the system. Note that in the python script the four nodes
of the system are indexed 0, 1, 2, 3. Thus, the set of terminals should be
T = {0, 3} [Answer: P (φ = 1) = 0.5.]
c) Assume instead that p1 = 0.82, p2 = 0.78, p3 = 0.66, p4 = 0.91, p5 = 0.73.
Modify the script from (b) and calculate the reliability of the system with
these component reliabilities. [Answer: P (φ = 1) = 0.921304.]

92 CHAPTER 4. EXACT COMPUTATION OF RELIABILITIES

Chapter 5
Structural and reliability importance
for components in binary monotone
systems

By considering the structure- or reliability function of a binary monotone
system, it is evident that not all the components are equally important for
the system to function. For instance, a component connected in series or
parallel with the rest of the system will typically be more important than
the other components in the system. In this section, we will define various
measures for importance of the components in a system. There are many
reasons for considering such measures, but among the most important ones
are the following:

1. A measure of importance can be used to identify components that
should be improved in order to increase the system reliability.

2. A measure of importance can be used to identify components that most
likely have failed, given that the system has failed.

5.1 Structural importance of a component

The measures of importance which we are about to introduce are all based
on the notion of criticality. This is defined as follows:

93

94 CHAPTER 5. STRUCTURAL AND RELIABILITY IMPORTANCE

Definition 5.1.1 Let (C,φ) be a binary monotone system, and let i ∈ C.
We say that component i is critical for the system if:

φ(1i, x) = 1 and φ(0i, x) = 0.

If this is the case, we also say that (·i, x) is a critical vector for component
i.

We observe that criticality is strongly related to the notion of relevance.
Thus, a component i in a binary monotone system (C,φ) is relevant if and
only if there exists at least one critical vector for i.

1

2

3

4

Figure 5.1:

Example 5.1.2 Consider the binary monotone system (C,φ) shown in Fig-
ure 5.1, where C = {1, 2, 3, 4}, and where the structure function is given
by:

φ(x) = x1(x2 ∐ x3 ∐ x4)

We start out by considering component 1, and we see that this component is
critical if and only if at least one of the other components are functioning.
Thus, there are seven critical vectors for component 1:

(·, 1, 0, 0), (·, 0, 1, 0), (·, 0, 0, 1)
(·, 1, 1, 0), (·, 1, 0, 1), (·, 0, 1, 1)
(·, 1, 1, 1).

We then compare this to any of the other components, e.g., component 2. For
this component to be critical component 1 must function, while both compo-
nent 3 and 4 must be failed. Hence, the only critical vector for component 2
is (1, ·, 0, 0).

5.1. STRUCTURAL IMPORTANCE OF A COMPONENT 95

By Definition 5.1.1 it follows that a component i of a binary monotone
system (C,φ) is critical if and only if:

φ(1i,x)− φ(0i,x) = 1.

Hence, the number of critical vectors for i can be calculated by summing this
expression over all possible vectors (·i,x):

)

(·i,x)

[φ(1i,x)− φ(0i,x)].

Based on this Birnbaum [8] suggested the following measure of structural
importance of a component in a binary monotone system:

Definition 5.1.3 Let (C,φ) be a binary monotone system of order n, and let
i ∈ C. The Birnbaum measure for the structural importance of component
i, denoted J

(i)
B , is defined as:

J
(i)
B :=

1

2n−1

)

(·i,x)

[φ(1i, x)− φ(0i, x)].

Note that the denominator, 2n−1 is the total number of states for the n−1
other components. Thus, J (i)

B can be interpreted as the fraction of all states
for the n− 1 other components where component i is critical. By computing
J
(i)
B for all of the components in a system, we can rank the components based

on their respective structural importance.

Example 5.1.4 Let φ be a 2-out-of-3 system. To compute the structural im-
portance of component 1, we note that the critical vectors for this component
are (·, 1, 0) and (·, 0, 1). Hence, we have:

J
(1)
B =

2

23−1
=

1

2
.

By similar arguments, we find that:

J
(2)
B = J

(3)
B =

1

2
.

So in a 2-out-of-3 system, all of the components have the same structural
importance. This is intuitively obvious since the structure function is sym-
metrical with respect to the components.

96 CHAPTER 5. STRUCTURAL AND RELIABILITY IMPORTANCE

Example 5.1.5 Consider the system φ with structure function:

φ(x) = (x1 ∐ x2)x3.

To find the structural importance of component 1, note that the only critical
vector for this component is (·, 0, 1). Hence, we have:

J
(1)
B =

1

23−1
=

1

4
.

Since components 1 and 2 play completely similar roles in the system, it
follows that we must have:

J
(2)
B =

1

4
as well. Thus, components 1 and 2 have the same structural importance.
However, this is not the case for component 3: The critical path vectors for
component 3 are (1, 0, ·), (0, 1, ·) and (1, 1, ·), so:

J
(3)
B =

3

23−1
=

3

4
.

From this, we see that:
J
(1)
B = J

(2)
B < J

(3)
B .

Hence, component 3, which is in series with the rest of the system, is more
important than components 1 and 2.

5.2 Reliability importance of a component
While structural importance only depends on the structure function of the
system, reliability importance takes into account the joint distribution of the
component state variables as well. Thus, instead of considering the fraction of
components state vectors where a given component is critical, we compute the
probability that a given component is critical. This motivates the following
definition introduced by Birnbaum [8]:

Definition 5.2.1 Let (C,φ) be a binary monotone system, and let i ∈ C.
Moreover, let X be the vector of component state variables. The Birnbaum
measure for the reliability importance of component i, denoted I

(i)
B is defined

as:

I
(i)
B := P (Component i is critical for the system)

= P (φ(1i,X)− φ(0i,X) = 1).

5.2. RELIABILITY IMPORTANCE OF A COMPONENT 97

Since the difference φ(1i,X)−φ(0i,X) is a binary variable, it follows that
we may write:

I
(i)
B = E[φ(1i,X)− φ(0i,X)] = E[φ(1i,X)]− E[φ(0i,X)]. (5.1)

In particular, if the component state variables of the system are independent,
and P (Xi = 1) = pi for i ∈ C, we get that:

I
(i)
B = h(1i,p)− h(0i,p). (5.2)

By using the last identity we can show the following result which is sometimes
taken as the definition of reliability importance in the case of independent
components:

Theorem 5.2.2 Let (C,φ) be a binary monotone system where the compo-
nent state variables are independent, and P (Xi = 1) = pi for i ∈ C. Then:

I
(i)
B =

∂h(p)
∂pi

, for all i ∈ C.

Proof: By Theorem 3.1.1 we have that:

h(p) = pih(1i,p) + (1− pi)h(0i,p)

By differentiating this identity with respect to pi we get:

∂h(p)
∂pi

= h(1i,p)− h(0i,p).

Hence, the result follows by (5.2). □

We observe that Theorem 5.2.2 shows that the reliability importance of a
component indicates how much the system reliability grows with respect to
the reliability of this component.

Now, we will prove some further properties of the Birnbaum measure.

Theorem 5.2.3 For a binary monotone system, (C,φ), we always have

0 ≤ I
(i)
B ≤ 1. (5.3)

Assume that the component state variables are independent, and P (Xj =
1) = pj, where 0 < pj < 1 for all j ∈ C. If component i is relevant, we have:

0 < I
(i)
B . (5.4)

98 CHAPTER 5. STRUCTURAL AND RELIABILITY IMPORTANCE

Furthermore, if there exists at least one other relevant component, we also
have:

I
(i)
B < 1. (5.5)

Proof: We note that (5.3) follows directly from Definition 5.2.1 since the
reliability importance is a probability.

We then assume that the component state variables are independent, and
P (Xj = 1) = pj, where 0 < pj < 1 for all j ∈ C. If component i is relevant,
we know from Theorem 3.1.3 that h is strictly increasing in pi. That is, we
must have:

∂h(p)
∂pi

> 0.

Combining this with Theorem 5.2.2, we get (5.4).
Finally, we assume that there exists at least one other relevant component,

say k ∈ C. In order to prove that this implies that I
(i)
B < 1, we assume

conversely that I(i)B = 1. We will then show that this leads to a contradiction.
From this assumption, it follows by Definition 5.2.1 that :

P (φ(1i,X)− φ(0i,X) = 1) = 1

Since 0 < pj < 1, for all j ∈ C, it follows that P ((·i,X) = (·i,x)) > 0 for all
(·i,x). Hence, we must have that:

φ(1i,x) = 1 and φ(0i,x) = 0 for all (·i,x).

At the same time, since component k is relevant, there exists a vector (·k,y)
such that:

φ(1k,y) = 1 and φ(0k,y) = 0.

If yi = 1, it follows that φ(1i, 0k,y) = 0, contradicting that φ(1i,x) = 1 for
all (·i,x). Similarly, if yi = 0, it follows that φ(0i, 1k,y) = 1, contradicting
that φ(0i,x) = 0 for all (·i,x). Hence, we conclude that for both possible
values of yi we end up with contradictions. Thus, the only possibility is that
I
(i)
B < 1. □

We recall from Section 5.1 that J
(i)
B can be interpreted as the fraction of

all states for the n − 1 other components where component i is critical. By
Definition 5.2.1 I

(i)
B is the probability that component i is critical. Thus, J (i)

B

is just a special case of I(i)B corresponding to the situation where all component
state vectors have the same probability. This occurs when P (Xi = 1) = 1

2

for all i ∈ C. Thus, we have the following result

5.2. RELIABILITY IMPORTANCE OF A COMPONENT 99

Theorem 5.2.4 Consider a binary monotone system (C,φ) where the com-
ponent state variables are independent, and where P (Xi = 1) = 1

2
for all

i ∈ C. Then we have:
I
(i)
B = J

(i)
B

We close this section by considering some examples. In all these examples
we consider binary monotone systems (C,φ) where C = {1, . . . , n}, where
the component state variables are independent, and where P (Xi = 1) = pi
for all i ∈ C. Without loss of generality we assume that the components are
ordered so that:

p1 ≤ p2 ≤ . . . ≤ pn. (5.6)

Example 5.2.5 Let (C,φ) be a series system. Then for all i ∈ C we have:

I
(i)
B =

∂
$n

j=1 pj

∂pi
=

"

j ∕=i

pj.

Hence, by the ordering (5.6), we get that:

I
(1)
B ≥ I

(2)
B ≥ · · · ≥ I

(n)
B .

Thus, in a series system the worst component, i.e., the one with the smallest
reliability, has the greatest reliability importance.

Example 5.2.6 Let (C,φ) be a parallel system. Then for all i ∈ C we have:

I
(i)
B =

∂
<n

j=1 pj

∂pi
=

"

j ∕=i

(1− pj).

Hence, from the ordering (5.6)

I
(1)
B ≤ I

(2)
B ≤ · · · ≤ I

(n)
B .

Thus, in a parallel system the best component, i.e., the one with the greatest
reliability, has the greatest reliability importance.

Example 5.2.7 Let (C,φ) be a 2-out-of-3 system. It is then easy to show
that:

h(p) = p1p2 + p1p3 + p2p3 − 2p1p2p3.

100 CHAPTER 5. STRUCTURAL AND RELIABILITY IMPORTANCE

This implies that:

I
(1)
B = p2 + p3 − 2p2p3,

I
(2)
B = p1 + p3 − 2p1p3,

I
(3)
B = p1 + p2 − 2p1p2.

We then consider the function f(p, q) = p + q − 2pq and note that I(1)B =

f(p2, p3), I
(2)
B = f(p1, p3), and I

(3)
B = f(p1, p2). Moreover, the partial deriva-

tives of f are respectively:

∂f

∂p
= 1− 2q,

∂f

∂q
= 1− 2p.

If p, q ≤ 1
2
, f is non-decreasing in p and q. Thus, if p1 ≤ p2 ≤ p3 ≤ 1

2
, we

have:
f(p1, p2) ≤ f(p1, p3) ≤ f(p2, p3).

Hence, in this case we have:

I
(3)
B ≤ I

(2)
B ≤ I

(1)
B . (5.7)

If p, q ≥ 1
2
, f is non-increasing in p and q. Thus, if 1

2
≤ p1 ≤ p2 ≤ p3, we

have:
f(p2, p3) ≤ f(p1, p3) ≤ f(p1, p2).

Hence, in this case we have:

I
(1)
B ≤ I

(2)
B ≤ I

(3)
B . (5.8)

However, other orderings are possible as well. Assume e.g., that p1 = 1
2
−z,

p2 =
1
2

and p3 =
1
2
+ z, where z ∈ (0, 1

2
). In this case we get:

I
(1)
B = (

1

2
) + (

1

2
+ z)− 2 · (1

2
)(
1

2
+ z) =

1

2
,

I
(2)
B = (

1

2
− z) + (

1

2
+ z)− 2 · (1

2
− z)(

1

2
+ z) =

1

2
+ 2z2,

I
(3)
B = (

1

2
− z) + (

1

2
)− 2 · (1

2
− z)(

1

2
) =

1

2
,

Hence in this case we have:

I
(1)
B = I

(3)
B ≤ I

(2)
B . (5.9)

Note that this result holds also if z ∈ (−1
2
, 0) in which case p1 > p2 > p3.

5.3. EXERCISES 101

Example 5.2.7 shows that the reliability ordering of the components de-
pends strongly on how reliable the components are. Thus, predicting the
final ranking can often be difficult if we rely on our intuition only. Still
some intuitive explanation can be obtained in special cases. Note e.g., that if
p1 ≤ p2 ≤ p3 ≤ 1

2
, the components fail with a high probability. In this case

the system behaves almost like a series system, which is reflected in (5.7)
where the worst component is ranked as the most important component.
Thus, in this case we have the same ordering as in Example 5.2.5. Similarly,
if 1

2
≤ p1 ≤ p2 ≤ p3, the components function with a high probability. In

this case the system behaves almost like a parallel system, which is reflected
in (5.8) where the best component is ranked on top. In this case we have the
same ordering as in Example 5.2.6.

5.3 Exercises
Exercise 1. Let (C,φ) be a k-out-of-n system. Prove that all the compo-
nents of this system have the same Birnbaum measure for structural impor-
tance.

Exercise 2. Compute J
(i)
B for the components of the bridge structure in

Example 3.1.2 and compare their structural importance.

Exercise 3. Let the ith component be in series with the rest of a monotone
structure φ, while the jth component is not. Prove that

J
(i)
B > J

(j)
B .

Exercise 4. Compute I
(i)
B for the components of the bridge structure in

Example 3.1.2 and compare their reliability importance.

Exercise 5. Let (C,φ) be a threshold system of 4 components with the
following reliabilities:

p1 = 0.75, p2 = 0.80, p3 = 0.82, p4 = 0.65

The component weights are:

a1 = 26, a2 = 39, a3 = 65, a4 = 78

and the threshold is b = 80. Using either Script B.1.2 in Appendix B.1 or
Script B.2.4 in Appendix B.2 as a template, calculate I(i)B for the components

102 CHAPTER 5. STRUCTURAL AND RELIABILITY IMPORTANCE

of the system. [Hint: In order to compute the reliability importance of com-
ponent i, calculate h(1i,p) and h(0i,p), and consider the difference between
these two values.]

Chapter 6
Conditional Monte Carlo methods

As a result of the availability of high-speed computers, the use of Monte
Carlo methods have accelerated. In many cases, however, it is necessary to
use various clever tricks in order to make the methods converge faster. In
particular this is true in situations where one needs to estimate something
that involves events with very low probabilities. One such area is system
reliability estimation. Since failure events often have very low probability,
a large number of simulations is needed in order to obtain stable results.
Sometimes, however, conditioning can be used to improve the convergence.

6.1 Monte Carlo simulation and conditioning

In the general case the principle of conditioning can be stated as follows:
Let X = (X1, . . . , Xn) be a random vector with a known distribution, and
assume that we want to calculate the expected value of φ = φ(X). We
denote this expectation by h. Assume furthermore that the distribution of φ
cannot be derived analytically in polynomial time with respect to n. Using
Monte Carlo simulations, however, we can proceed by generating a sample of
size N , of independent vectors X1, . . . ,XN , all having the same distribution
as X, and then estimate h by the simple Monte Carlo estimate:

ĥMC =
1

N

N)

r=1

φ(Xr). (6.1)

103

104 CHAPTER 6. CONDITIONAL MONTE CARLO METHODS

The variance of this estimate is given by:

Var
'
ĥMC

(
=

1

N2

N)

r=1

Var(φ) =
1

N
Var(φ) (6.2)

Now, assume that S = S(X) is some other function whose distribution
can be calculated analytically in polynomial time with respect to n. More
specifically, we assume that S is a discrete variable with values in the set
{s1, . . . , sk}. We also introduce:

θj = E[φ | S = sj], j = 1, . . . , k. (6.3)

By the formula for conditional expectation we then have:

h =
k)

j=1

E[φ | S = sj]P (S = sj) =
k)

j=1

θjP (S = sj) (6.4)

Instead of generating N samples from the distribution of X as in (6.1), we
divide the set into k groups, one for each θj, where the j-th group has size
Nj, j = 1, . . . , k, and N1 + · · · + Nk = N . The data in the j-th group are
sampled from the conditional distribution of X given that S = sj, and are
used to estimate the conditional expectation θj, j = 1, . . . , k. Denoting the
data in the j-th group by {Xr,j : r = 1, . . . , Nj}, θj is estimated by:

θ̂j =
1

Nj

Nj)

r=1

φ(Xr,j), j = 1, . . . , k. (6.5)

The variances of these estimates are:

Var(θ̂j) =
1

N2
j

Nj)

r=1

Var(φ|S = sj) =
1

Nj

Var(φ|S = sj), j = 1, . . . , k. (6.6)

By combining θ̂1, . . . , θ̂k, we get the conditional Monte Carlo estimate:

ĥCMC =
k)

j=1

θ̂jP (S = sj). (6.7)

6.1. MONTE CARLO SIMULATION AND CONDITIONING 105

Since θ̂1, . . . , θ̂k are independent, the variance of the conditional Monte Carlo
estimate is:

Var(ĥCMC) = Var[
k)

j=1

θ̂jP (S = sj)] =
k)

j=1

Var(θ̂j)[P (S = sj)]
2

=
k)

j=1

1

Nj

Var(φ|S = sj)[P (S = sj)]
2.

We observe that the variance of the conditional estimate depends on the
choices of the Nj’s. Ideally we would like Nj to be large if the product
of the conditional variance and the squared probability is large, and small
otherwise, as this would yield the most efficient partition of the total sample
with respect to minimizing the total variance. In practice, however, this is
difficult, since the conditional variance is typically not known. In order to
compare the result with the variance of the original Monte Carlo estimate,
we instead let:

Nj ≈ N · P (S = sj), j = 1, . . . , k,

so that:

k)

j=1

Nj ≈
k)

j=1

N · P (S = sj) = N ·
k)

j=1

P (S = sj) = N.

With this choice we get:

V ar(ĥCMC) ≈
k)

j=1

1

N · P (S = sj)
Var(φ|S = sj)[P (S = sj)]

2 (6.8)

=
1

N

k)

j=1

Var(φ|S = sj)P (S = sj) =
1

N
E[Var(φ|S)]

=
1

N

'
Var(φ)− Var[E(φ|S)]

(
≤ 1

N
Var(φ) = Var(ĥMC).

From the above equation we see that the conditional estimate has smaller
variance than the original Monte Carlo estimate provided that Var[E(φ | S)]
is positive. This quantity can be interpreted as a measure of how much
information S contains relative to φ. Thus, when looking for good choices

106 CHAPTER 6. CONDITIONAL MONTE CARLO METHODS

for S we should look for variables containing as much information about φ
as possible. However, there are some other important points that need to
be considered. First of all S must have a distribution that can be derived
analytically in polynomial time. Next, the number of possible values of S,
i.e., k, must be polynomially limited by n. Finally, it must be possible to
sample efficiently from the distribution of X given S.

The problem of sampling from conditional distributions has been studied
recently by several authors. Lindqvist and Taraldsen [47] proposes a general
method for sampling from conditional distributions in cases where S is a
sufficient statistic. Of special relevance to the present paper, is Broström
and Nilsson [10] who consider the problem of sampling independent Bernoulli
variables given their sum. See also Nilsson [54]. In the remaining part of this
paper we shall focus on applications in reliability theory, where X typically
is a vector of independent Bernoulli variables. In relation to this we shall
derive our own conditional sampling methods.

We now apply the above ideas in the context of system reliability. That is,
we assume that X is a vector of independent Bernoulli variables, interpreted
as the component state vector relative to a system of n components. A com-
ponent is failed if its state variable is 0, and functioning if the state variable
is 1. The function φ is also assumed to take values 0, 1, and interpreted as
the system state. If φ is 0, the system is failed, and if φ is 1, the system is
functioning. The function φ is referred to as the structure function of the
system, and is assumed to be a nondecreasing function of the component
state vector, X. In general the calculation of φ for a given component state
vector depends very much on the representation of this function. If e.g., the
system is represented as some sort of communication network its state can
usually be evaluated in O(n) time or better. If on the other hand the system
is specified in terms of a list of minimal path (or cut) sets, the evaluation can
be very slow since the number of such sets in the worst cases grows exponen-
tially with the number of components. For this study, however, we assume
that φ can be calculated in O(n) time for a given component state vector.

There are in general many different choices for the variable S which can
be used in a reliability setting. In the next sections we will consider one
possible choice. For other choices see Huseby et al. [34].

6.2. CONDITIONING ON THE SUM 107

6.2 Conditioning on the sum of the component
state variables

For the remaining part of the paper we focus on the case where S is the
sum of all the component state variables. This approach was taken in in
Naustdal [52]. In this situation the random variable S takes values in the set
{0, 1, . . . , n}. Thus, the uncertain quantities we need to estimate, are:

θs = E[φ|S = s], s = 0, 1, . . . , n. (6.9)

As in the previous section, we need to have an efficient way of sampling
from the conditional distribution of X given S = s, s = 0, 1, . . . , n. In
relation to this we need the partial sums, S1, . . . , Sn, defined as:

Sm =
n)

i=m

Xi, m = 1, . . . , n.

Using these quantities, we can develop the algorithm for sampling from the
distribution of X given S = s. The idea is simply to start out by sampling
X1 from the conditional distribution of X1 | S = s. We then continue by
sampling X2 from X2 | S = s, X1 = x1, where x1 denotes the sampled
outcome of X1, and so on. This turns out to be easy noting that:

P (Xm = xm | X1 = x1, . . . , Xm−1 = xm−1, S = s)

=
P (Xm = xm, S = s | X1 = x1, . . . , Xm−1 = xm−1)

P (S = s | X1 = x1, . . . , Xm−1 = xm−1)

=
P (Xm = xm, Sm+1 = s−

/m
j=1 xj)

P (Sm = s−
/m−1

j=1 xj)

=
pxm
m (1− pm)

1−xmP (Sm+1 = s−
/m

j=1 xj)

P (Sm = s−
/m−1

j=1 xj)
,

Assuming that the distributions of S1, . . . , Sn are all calculated before
running the simulations, we see that all the necessary conditional probabili-
ties can be calculated when needed during the simulations without imposing
additional computational complexity. Note that we only calculate those con-
ditional probabilities we really need along the way during the simulations,

108 CHAPTER 6. CONDITIONAL MONTE CARLO METHODS

not the entire set of all possible conditional probabilities corresponding to all
possible combinations of values of the Xj’s. Thus, in each simulation run we
calculate n probabilities, one for each Xj. Moreover, each probability can be
calculated using a fixed number of operations (independent of n). Hence, it
follows that sampling from the conditional distribution of X given S = s,
can be done in O(n) time.

The CMC-algorithm can now be summarized as follows: Divide the N
simulations into (n + 1) groups, one for each θs, where the s-th group has
size Ns, s = 0, 1, . . . , n. The data in the s-th group is sampled from the
conditional distribution of X given that S = s, and is used to estimate the
conditional expectation θs, s = 0, 1, . . . , n. Denoting the data in the s-th
group by {Xr, s : r = 1, . . . , Ns}, θs is estimated essentially by using (6.5),
and combined into the CMC-estimate by using (6.7).

A remaining problem is of course how to choose the sample sizes for each
of the (n+1) groups. One possibility is to proceed as we did in Section 1 and
let Ns ≈ N · P (S = s), s = 0, 1, . . . , n. In this case, however, it is possible
to improve the results slightly. As in the previous section we denote the size
of the smallest path set by d, and the size of the smallest cut set by c. By
examining the system, it is often easy to determine d and c. Given these two
numbers it is easy to see that θs = 0 for s < d, and θs = 1 for s > n − c.
Moreover, Var(φ | S = s) = 0 for s < d, or s > n − c. Hence, there is no
point in spending simulations on estimating θs for s < d, or s > n− c, so we
let Ns = 0 for s < d, or s > n− c. As a result, we have more simulations to
spend on the remaining quantities.

An extreme situation occurs when the system is a k-out-of-n-system, i.e.,
when φ(X) = I(S ≥ k). For such systems d = k, and c = (n−k+1). In this
situation all the θs’s are known. Specifically, θs = 0 for s < k and θs = 1 for
s ≥ k. Thus, the CMC-estimate is equal to the true value of the reliability,
and can be calculated without doing any simulations at all. The reason for
this is of course that in this case φ depends on X only through S.

For all other nontrivial systems, however, it is easy to see that we always
have that d ≤ n − c. In order to ensure that we get improved results, we
assume that P (d ≤ S ≤ n− c) > 0, and let:

Ns ≈ N · P (S = s)/P (d ≤ S ≤ n− c), s = d, . . . , n− c . (6.10)

Using a similar argument as we did in (6.8) we now get that:

Var(ĥCMC) ≤ P (d ≤ S ≤ n− c)Var(ĥMC) (6.11)

6.3. IDENTICAL COMPONENT RELIABILITIES 109

Hence, we see that if d and (n− c) are close, i.e., there are few unknown
θs’s, the variance is reduced considerably.

6.3 System reliability when all the component
state variables have identical reliabilities

If all the components in the system have the same reliability, i.e., p1 = · · · =
pn = p, it is possible to improve things even further. In this case we note
that S has a binomial distribution. Moreover, the conditional distribution of
X given S is given by:

P (X = x | S = s) =
p
!n

i=1 xi(1− p)n−
!n

i=1 xi

'
n
s

(
ps(1− p)n−s

=
1'
n
s

(, (6.12)

for all x such that
/n

i=1 xi = s. From this it follows that:

θs = E[φ | S = s] =
)

{x :
!n

i=1 xi=s}
φ(x)P (X = x | S = s) =

bs'
n
s

(, (6.13)

where bs = the number of path sets with s components, s = 0, . . . , n. Finally,
the system reliability, h, expressed as a function of p, is given by:

h(p) =
n)

s=0

θsP (S = s)

=
n)

s=0

bs'
n
s

(
0
n

s

1
ps(1− p)n−s =

n)

s=0

bsp
s(1− p)n−s.

Note that the unknown quantities, θ0, . . . , θn, do not depend on p. Thus,
by estimating these quantities, we get an estimate of the entire h(p)-function
for all p ∈ [0, 1]. Moreover, we see that θs can be interpreted as the fraction
of path sets of size s among all sets of size s, for s = 0, 1, . . . , n. Thus, θs can
be estimated by sampling random sets of size s and calculating the frequency
of path sets among the sampled sets. It turns out that this can be done very
efficiently as follows:

The idea is to sample sequences of sets of increasing size by sampling from
the component set, C = {1, . . . , n}, without replacements. The only set of

110 CHAPTER 6. CONDITIONAL MONTE CARLO METHODS

size 0 is of course ∅. If ∅ is a path set, we have a trivial system which is always
functioning. Obviously, θ0 = 1 in this case. Moreover, the reliability of such
a system is 1. If ∅ is not a path set, it follows that θ0 = 0. In both cases we
do not need to sample anything to determine the value of θ0. Thus, we can
focus on estimating θ1, . . . , θn by sampling sets of size s, for s = 1, . . . , n.

Algorithm 6.3.1 Let T = (T1, . . . , Tn) be a vector for storing results from
the simulations. Before we start the simulations, this vector is initialised as
(0, . . . , 0). Then for i = 1, . . . , N do:

1. Sample a component from the set C, say component i1, and define
A1 = {i1}. If A1 is a path set, T1 is incremented with 1.

2. Sample a component from the set C \A1, say component i2, and define
A2 = {i1, i2}. If A2 is a path set, T2 is incremented with 1.

· · ·

n. Sample the last remaining component, say component in, and define
An = C. If An is a path set, Tn is incremented with 1.

When all the simulations are carried out, the vector T contains the number of
observed path sets of sizes 1, . . . , n. From this we get the resulting estimates
of θ1, . . . , θn simply as:

θs = Ts/N, s = 1, . . . , n.

It is easy to see that sampling components randomly without replacements
is equivalent to sampling the components according to a random permuta-
tion, (i1, . . . , in), of the component set {1, . . . , n}. Such a permutation can
easily be generated using a well-known algorithm described in Knuth [44].
This algorithm works as follows:

Assume that we start out with a vector representing an initial arbitrary
permutation of the components, say (i1, . . . , in). One may e.g., simply use
(1, . . . , n). We then generate a random permutation vector by modifying this
initial permutation vector by running through n steps. In the k-th step we
consider the element currently being the k-th element of the vector. We then
sample a random index, j, in the interval k, . . . , n, and let the k-th and the
j-th elements switch places in the permutation vector. When all the n steps

6.3. IDENTICAL COMPONENT RELIABILITIES 111

are completed, it is easy to see that the resulting vector is indeed a random
permutation, regardless of the initial state of the vector.

By using this algorithm, we are able to generate a complete sequence of
n sets in just O(n) time. However, since all sets in a sequence are derived
from the same permutation, the θs-estimates become correlated. Still, the
effect of this is more than compensated for since each θs-estimate now can
be based on all N simulations, compared to just a subset of size Ns as was
the case in the previous section.

When running this algorithm, much of the time is spent on the steps where
the system state is evaluated. Thus, in order to minimize the running time
of the algorithm, one would like to reduce the number of such evaluations.
Since A1 ⊂ A2 ⊂ · · · ⊂ An, it follows by the monotonicity of the structure
function, φ, that if Ak is a path set, then so is Ak+1. Thus, we can stop
evaluating the state of the system as soon as we have generated a path set,
since we then know that all the remaining sets will be path sets as well. Still
it is obviously important to carry out the system state evaluations as efficient
as possible. The methodology for doing this may typically depend strongly
on the representation of the given system.

In order to show how this can be done, we consider two different classes of
systems. The first class we consider is the class of threshold systems (see Sec-
tion 4.5), i.e., binary monotone systems (C,φ) where the structure function
can be written in the following form:

φ(X) = I
* n)

i=1

aiXi ≥ b
+
, (6.14)

where a1, . . . , an and b are positive numbers. The ai’s are called the weights
associated with the components, while the number b is called the threshold
value. Notice that if a1 = · · · = an = 1 and b = k, we get a standard k-
out-of-n-system. For such systems it is very easy to carry out all the system
state evaluations. To do so we keep track of the sum of the weights associated
with the sampled components. When a new component is sampled, the sum
is updated by adding the weight associated with this component. When the
sum of weights is greater than or equal to the threshold value, we know that
we have generated a path set. Using this method, each system evaluation
is carried out in constant time. Thus, in this case the total computational
complexity of the simulation algorithm is just O(nN), where n is the number
of components in the system, and N is the number of simulations.

112 CHAPTER 6. CONDITIONAL MONTE CARLO METHODS

The second class is the class of undirected network systems (see Section
4.7). The components of such a system are the edges of an undirected net-
work. An edge is functioning if its end-nodes can “communicate” through it.
The system is functioning if a subset of the nodes (with K elements), called
the terminals, can communicate through the network.

If all the edges are functioning, we assume that the network is connected,
i.e., all nodes can communicate with each other. If only a subset of the edges
are functioning, however, the node set is partitioned into a set of equivalence
classes such that a pair of nodes can communicate if and only if they belong
to the same equivalence class. Moreover, the system is functioning if and
only if all the terminals belong to the same equivalence class.

In order to minimize the running time spent on system state evaluation, we
maintain lists of nodes belonging to each equivalence class as we sample the
edges. For each list we also keep track of the number of terminals contained
in the list. When a new edge is sampled, we investigate its end-nodes. If
they belong to the same equivalence class, the system state is not changed.
On the other hand, if the end-nodes belong to different equivalence classes,
we merge the two classes and calculate the number of terminals included
in the merged class. When we arrive at an equivalence class containing K
terminals, (i.e., all the terminals), we know that we have generated a path
set.

The most time-consuming part of this algorithm is the merging of equiva-
lence classes. Assuming that the classes are stored as linked lists, the actual
merging of the lists can be done in constant time. However, in order to
minimize the time spent on checking whether or not two nodes belong to
the same class, the nodes should be marked with a reference to its class list.
When two classes, say A and B, are merged, all the nodes in the smallest
class, say B must be marked with a reference to the class list of A instead.
Updating such references can be done in O(v) time, where v is the number
of nodes in the network. It should be noted, however, that this is a very
pessimistic estimate, as in most cases the number of updating operations is
much smaller. Anyway, the total computational complexity of the simulation
algorithm is O(nvN) in this case.

We close this section by illustrating the effect of the improved method on
a specific example. The system we consider is the 2-terminal undirected net-
work system illustrated in Figure 6.1. We assume that all the 7 components
have the same reliability p, and estimate the system reliability h(p) for all
p ∈ [0, 1]. Moreover, we let N = 100. With so few iterations it is easier to see

6.3. IDENTICAL COMPONENT RELIABILITIES 113

how much better the conditional Monte Carlo method is compared to crude
Monte Carlo method.

1

2

3

4

5 6

7
S T

Figure 6.1: A 2-terminal undirected network system

For the conditional Monte Carlo method we know that we get an estimate
of the entire h(p)-function by estimating the fractions θ1, . . . , θn. For the
crude Monte Carlo estimate one possible approach is to proceed by obtaining
estimates of h(p) for each individual value of p. This would imply that we
would need N = 100 iterations for each chosen value of p. Thus, with a
suitable resolution of p-values, say p ∈ {0.01, 0.02, . . . , 1.00} we need 100N =
10000 samples. Fortunately, it is possible to avoid this issue. In order to do
so, the following sampling method can be used. In the jth iteration we
generate uniformly distributed random variables U1j, . . . , U7j. For a given
value of p ∈ [0, 1] we then define:

Xij(p) = I(Uij ≤ p), i = 1, . . . , 7, j = 1, . . . N,

where I(Uij ≤ p) = 1 if Uij ≤ p and zero otherwise. This implies that:

P (Xij(p) = 1) = P (Uij ≤ p) = p, i = 1, . . . , 7, j = 1, . . . N.

We denote the structure function of the system by φ. Moreover, we denote the
jth sampled component state vector, expressed as a function of the common
component reliability p, by Xj(p) = (X1,j(p), . . . , X7,j(p)), j = 1, . . . , N . We
can then estimate h(p) as follows:

ĥ(p) =
1

N

N)

j=1

φ(Xj(p)).

114 CHAPTER 6. CONDITIONAL MONTE CARLO METHODS

By varying p in the interval [1, 0], we obtain an estimate of h(p) for all p.
Hence, we can use the same sample of uniformly distributed variables to
obtain an estimate of the system reliability for each value of p. Thus, we
only need N = 100 samples for this method as well, which saves us a lot of
time. Moreover, it is easy to see that Xj(p) is a non-decreasing function of
p for all j. Hence, since φ is a non-decreasing function of Xj, the estimated
curve, ĥ(p), is non-decreasing as well, a property which the true function
h(p) also has.

Using a program called CMCsim1 we can run the conditional Monte Carlo
simulations. This program has an intuitive graphical user interface, and can
be used to estimate reliability and component importance of any undirected
network system.

In Figure 6.2 we have plotted the two estimates for h(p) along with the
true reliability function. The red curve is the crude Monte Carlo estimate,
the green curve is the conditional Monte Carlo curve, while the blue curve
represents the true reliability function. As we can see, the green and the blue
curves are almost identical. Thus, even with as few as N = 100 iterations,
we get a very precise estimate of the entire h(p)-function. The crude Monte
Carlo estimate is far more irregular and deviates considerably from the true
curve.

1CMCsim is a java program developed at the Department of Mathematics, University
of Oslo. The program is freely available at http://www.riscue.org/cmcsim/.

6.3. IDENTICAL COMPONENT RELIABILITIES 115

0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

0

Figure 6.2: System reliability as a function of the common component relia-
bility p. Crude Monte Carlo estimate (red curve), conditional Monte Carlo
estimate (green curve) and true reliability (blue curve).

116 CHAPTER 6. CONDITIONAL MONTE CARLO METHODS

Chapter 7
Dynamic System Analysis

So far, we have only considered binary monotone systems at a specific point
of time. In this chapter we will show how to analyse systems where the
states of the components, and hence also the state of the system, evolve over
time. Throughout this chapter we consider systems where we assume that
the component state processes are independent of each other.

In Section 7.1 we start out by considering systems with components that
cannot be repaired. In Section 7.3 and 7.4 we introduce two new measures
of reliability importance, and discuss how these measures are related to the
Birnbaum measure introduced in Chapter 5.

In Section 7.5 we discuss the concept of pure jump processes. Such pro-
cesses serve as a framework for analysing systems with repairable compo-
nents which will be handled in Section 7.6. The stationary properties of such
systems can typically be analysed by using the stationary properties of the
component processes. Thus, the reliability calculation methods are more or
less identical to the methods we have covered in the previous chapters. In
order to study the probabilistic properties more in detail, however, it is often
necessary to use Monte Carlo simulation. Such simulations need to handle
that a collection of stochastic processes, one for each component, operating
in parallel. This can be done using what is called discrete event simulations.
This technique, as well as some advanced estimation methods are described
in Section 7.7 and 7.8.

117

118 CHAPTER 7. DYNAMIC SYSTEM ANALYSIS

7.1 Non-repairable binary monotone systems
As before we consider a binary monotone system (C,φ), where C = {1, . . . , n}.
In order to model systems with components that evolve over time we intro-
duce:

Xi(t) = The state of component i at time t, t ≥ 0, i ∈ C (7.1)

For any given t ≥ 0, Xi(t) is a random variable. The development of the
state of component i over time, {Xi(t)} = {Xi(t) : t ≥ 0}, is a stochastic
process. As mentioned in the introduction to this chapter, we assume that
the stochastic processes {X1(t)}, . . . , {Xn(t)} are independent of each other.
We also let:

φ(X(t)) = The state of the system at time t, t ≥ 0. (7.2)

As for the components, φ(X(t)) is a random variable, and the development
of the state of the system over time, {φ(X(t))} = {φ(X(t)) : t ≥ 0} is a
stochastic process.

Time-dependent versions of component and system reliabilities are defined
as follows for t ≥ 0 and i ∈ C:

pi(t) = P (Xi(t) = 1) = The reliability of component i at time t, (7.3)
h(p(t)) = P (φ(X(t)) = 1) = The reliability of the system at time t.

Since at this stage we do not consider the possibility of repairing compo-
nents, these quantities are closely related to the lifetimes of the system and
the components. To show this we let:

Ti = The lifetime of component i, for i ∈ C, (7.4)
S = The lifetime of the system.

Now, let Ti have cumulative distribution function Fi, i = 1, . . . , n and S
cumulative distribution function G. We then have the following relations:

pi(t) = P (Xi(t) = 1) = P (Ti > t) = 1− Fi(t) = F̄i(t), (7.5)
h(t) = P (φ(X(t)) = 1) = P (S > t) = 1−G(t) = Ḡ(t). (7.6)

and
Ḡ(t) = h(p(t)) = h(F̄1(t), . . . , F̄n(t)). (7.7)

7.1. NON-REPAIRABLE BINARY MONOTONE SYSTEMS 119

The function F̄i(t) is referred to as the survival function of the component
lifetime Ti, i = 1, . . . , n, while Ḡ is referred to as the survival function of the
system lifetime S.

Let F̄ be the survival function of the lifetime T of some component, and
assume that F̄ (t) > 0 for all t ≥ 0. Then the survival function can be written
in the following form:

F̄ (t) = e−R(t), t ≥ 0, (7.8)

where R(t) = − ln(F̄ (t)). The function R is referred to as the cumulative
failure rate function of T . Moreover, the derivative of R(t), denoted r(t), is
called the failure rate function of T . The failure rate can be expressed in
terms of the density and survival function as follows:

r(t) =
∂

∂t
(− ln(F̄ (t))) =

f(t)

F̄ (t)
, t ≥ 0.

Thus, r(t)dt can be interpreted as the conditional probability that the com-
ponent fails in the interval (t, t+ dt], given that the component survived the
interval [0, t]. Note that the survival function can be expressed in terms of
the failure rate function as follows:

F̄ (t) = e−
" t
0 r(u)du, t ≥ 0, (7.9)

Thus, the lifetime distribution is uniquely determined by its failure rate func-
tion. By studying the failure rate of a lifetime distribution, many important
features can be derived. In particular, if r is increasing, we say that the life-
time has an increasing failure rate. Similarly, if r is decreasing, we say that
the lifetime has a decreasing failure rate. A lifetime model with increasing
failure rate is typically used to describe aging. As the component gets older,
it becomes more prone to failures. A decreasing failure rate can be used to
describe a period of infant mortality. As the component gets older, early
failures are eliminated or corrected.

7.1.1 The Weibull distribution

A commonly used lifetime distribution in reliability is the Weibull distribu-
tion1. This distribution will be used in many of the examples in this section,

1The Weibull distribution is named after the Swedish mathematician Waloddi Weibull,
who introduced the distribution in 1951

120 CHAPTER 7. DYNAMIC SYSTEM ANALYSIS

so we include a brief introduction to this distribution here. If T is Weibull
distributed with parameters α > 0 and β > 0, the probability density of T
is given by

f(t) =
α

β

0
t

β

1α−1

e−(t/β)α , t ≥ 0. (7.10)

The parameter α is called the shape parameter, while the β is called the scale
parameter.

From the density it is easy to show that the cumulative distribution func-
tion of a Weibull distribution is given by:

F (t) = P (T ≤ t) =

= t

0

f(u)du = 1− e−(t/β)α , t ≥ 0, (7.11)

while the survival function is:

F̄ (t) = P (T > t) = 1− F (t) = e−(t/β)α , t ≥ 0. (7.12)

The cumulative failure rate of a Weibull distribution is given by:

R(t) = − ln(F̄ (t)) =

0
t

β

1α

, t ≥ 0, (7.13)

while the failure rate is given by:

r(t) =
f(t)

F̄ (t)
=

α

β

0
t

β

1α−1

(7.14)

By (7.14) it follows that the failure rate is decreasing when 0 < α < 1,
and increasing when α > 1. If α = 1, the density simplifies to:

f(t) =
1

β
e−t/β, t ≥ 0.

which is the density of an exponential distribution. When α = 1, the cumu-
lative failure rate is a linear function:

R(t) = − ln(F̄ (t)) =
t

β
, t ≥ 0,

7.1. NON-REPAIRABLE BINARY MONOTONE SYSTEMS 121

Figure 7.1: Weibull densities for different shape parameters.

Figure 7.2: Weibull survival probabilities for different shape parameters.

while the failure rate is constant:

r(t) =
f(t)

F̄ (t)
=

1

β

122 CHAPTER 7. DYNAMIC SYSTEM ANALYSIS

Figure 7.3: Weibull cumulative failure rates for different shape parameters.

Figure 7.4: Weibull failure rates for different shape parameters.

Thus, the class of Weibull distributions includes both lifetimes with decreas-
ing failure rates, increasing failure rate and constant failure rates. This makes
this distribution class very flexible.

7.1. NON-REPAIRABLE BINARY MONOTONE SYSTEMS 123

In Figure 7.1 we have plotted densities of Weibull distributions with α-
values 0.8, 1.0, 1.5 and 2.0 respectively, and β = 50. The corresponding
survival functions are plotted in Figure 7.2, while the cumulative failure
rates and failure rates are plotted in Figure 7.3 and Figure 7.4.

By (7.12) and (7.13) it follows that:

F̄ (β) = e−(β/β)α = e−1,

R(β) = 1

Hence, since all the four chosen Weibull distributions have the same scale
parameter, it follows that all the survival functions go through the point
(β, e−1), while all the cumulative failure rate functions go through the point
(β, 1).

If T is Weibull distributed with parameters α > 0 and β > 0, then we
have:

E[T] = β · Γ(1
α
+ 1), (7.15)

Med[T] = β · [ln(2)]1/α (7.16)

The proof is left as an exercise.
We close this section by presenting some important properties of Weibull

distributions. For the first property, we assume that T is Weibull distributed
with parameters α and β, and that K > 0 is a constant. Then the survival
function of U = KT is given by:

P (U > u) = P (KT > u) = P (T > u/K) = e−[(u/K)/β]α = e−[u/(Kβ)]α

We recognize this as the survival function of a Weibull distributed variable
with parameters α and Kβ.

For the second property we assume that T1, . . . , Tn are independent ran-
dom variables, and that Ti is Weibull distributed with parameters α and βi,
i = 1, . . . , n. We then let:

T = min(T1, . . . , Tn)

124 CHAPTER 7. DYNAMIC SYSTEM ANALYSIS

The survival function of T is then given by:

P (T > t) = P (T1 > t ∩ · · · ∩ Tn > t) =
n"

i=1

P (Ti > t)

=
n"

i=1

e−(t/βi)
α

= exp(−
n)

i=1

(t/βi)
α)

= exp(−tα
n)

i=1

β−α
i) = e−(t/γ)α

where γ−α =
/n

i=1 β
−α
i , or equivalently γ = (

/n
i=1 β

−α
i)−1/α. This implies

that T is Weibull distributed as well with parameters α and γ.
In the special case where β1 = · · · = βn = β, we get that γ = (nβ−α)−1/α =

n−1/αβ. Thus, by combining the two above properties we get that n1/αT is
Weibull distributed with parameters α and β. Note that this property holds
for any n, and thus, also when n → ∞. This is linked to the fact that the
Weibull distribution is a so-called extreme value distribution.

The following theorem summarizes the above results:

Theorem 7.1.1 a) If T is a Weibull distributed random variable with pa-
rameters α and β, and K > 0 is a constant, then KT is Weibull distributed
with parameters α and Kβ.

b) If T1, . . . , Tn are independent random variables, and Ti is Weilbull dis-
tributed with parameters α and βi, i = 1, . . . , n, then min(T1, . . . , Tn) is Weil-
bull distributed with parameters α and γ = (

/n
i=1 β

−α
i)−1/α.

c) If T1, . . . , Tn are independent and identically Weibull distributed random
variables with parameters α and β, then n1/α min(T1, . . . , Tn) is Weilbull dis-
tributed with parameters α and β.

7.1.2 Plotting system reliability as a function of time

We now return to the calculation of the system reliability as a function of
the time. In order to plot h(p(t)) as a function of the time t ≥ 0, we
choose a sufficiently dense set of t-values, say 0 = t0 < t1 < · · · < tK , and
calculate h(p(tj)), for these t-values. The reliability curve for t ∈ [0, tK] is
then obtained by drawing a curve through the points:

(t0, h(p(t0))), (t1, h(p(t1))), . . . , (tK , h(p(tK))).

7.1. NON-REPAIRABLE BINARY MONOTONE SYSTEMS 125

If K is sufficiently large, a nice smooth curve is obtained.

Example 7.1.2 Let (C,φ) be a 2-out-of-3 system with C = {1, 2, 3} and
structure function φ is given by:

φ(X1, X2, X3) = X1X2 +X1X3 +X2X3 − 2X1X2X3

From this it follows that the reliability of the system at time t ≥ 0 is:

h(p(t)) = p1(t)p2(t) + p1(t)p3(t) + p2(t)p3(t)− 2p1(t)p2(t)p3(t)

We then assume that the lifetime of component i, Ti is Weibull-distributed
with parameters αi and βi, for all i ∈ C. By inserting pi(t) = F̄i(t), i = 1, 2, 3

Figure 7.5: The reliability of a 2-out-of-3 system as a function of the time
t ≥ 0.

into the expression for h(p(t)), we can calculate the system reliability for any
t ≥ 0. Assume more specifically that:

α1 = 2.0, α2 = 2.5, α3 = 3.0,

β1 = 50.0, β2 = 60.0, β3 = 70.0.

The resulting reliability curve is plotted in Figure 7.5. A python script which
can be used to produce this plot, is given in Script B.3.1 in Appendix B.3.

126 CHAPTER 7. DYNAMIC SYSTEM ANALYSIS

Given the minimal path sets P1, . . . , Pp and the minimal cut sets K1, . . . , Kk

of the system, we can also express the relation between the component life-
times, T1, . . . , Tn and the system lifetime, S, as follows:

S = min
1≤j≤k

max
i∈Kj

Ti = max
1≤j≤p

min
i∈Pj

Ti. (7.17)

The proof of this relation is left as an exercise. Note, however, the similarity
between (7.17) and the relation (3.11) between the state of the system, φ,
and the component state variables X1, . . . , Xn.

The formula (7.17) is useful when the system reliability is estimated us-
ing Monte Carlo simulation. In order to explain how this can be done, we
consider a binary monotone system (C,φ), where C = {1, . . . , n}, and where
Pi, . . . , Pp are the minimal path sets of the system. We then generate N sam-
ples of component lifetimes {T1k, . . . , Tnk}, k = 1, . . . , N , where Tik denotes
the lifetime of the ith component in the kth simulation. In each simulation
we calculate the resulting system lifetime using (7.17). That is, we calculate
system lifetimes S1, . . . , SN given by:

Sk = max
1≤j≤p

min
i∈Pj

Tik, k = 1, . . . , N.

Based on these lifetimes we then estimate the reliability of the system as a
function of the time t ≥ 0 using the following formula:

ĥ(t) =
1

N

N)

k=1

I(Sk > t)

where I(·) denotes the indicator function. It follows that:

E[ĥ(t)] =
1

N

N)

k=1

P (Sk > t) = Ḡ(t) = h(p(t))

Thus, ĥ(t) is an unbiased estimator for the reliability of the system at time
t ≥ 0.

In order to calculate ĥ(t) more efficiently for all t ≥ 0, we sort the system
lifetimes in ascending order:

S(1) < · · · < S(N),

7.1. NON-REPAIRABLE BINARY MONOTONE SYSTEMS 127

assuming for simplicity that all the lifetimes are distinct. We also define
S(0) = 0, and note that:

ĥ(S(m)) =
1

N

N)

k=1

I(Sk > S(m)) =
N −m

N
, m = 0, 1, . . . , N.

Hence, the function ĥ(t) passes through the following N + 1 points:

(S(0),
N − 0

N
), (S(1),

N − 1

N
), . . . , (S(N),

N −N

N
).

For sufficiently large values of N a nice smooth estimate of the function
h(p(t)) can then be obtained by drawing a curve through these points.

Example 7.1.3 Let (C,φ) be a binary monotone system with component
set C = {1, 2, 3, 4, 5} and minimal path sets P1 = {1, 4}, P2 = {1, 3, 5},
P3 = {2, 3, 4}, P4 = {2, 5}. The lifetime of component i, Ti is Weibull-
distributed with parameters αi and βi, for all i ∈ C where:

α1 = 2.0, α2 = 2.5, α3 = 3.0, α4 = 1.0, α5 = 1.5,

β1 = 50.0, β2 = 60.0, β3 = 70.0, β4 = 40.0, β5 = 50.0.

In order to estimate the reliability h(p(t)) for t ≥ 0, we run a Monte Carlo
simulation with N = 100000 simulations. The resulting reliability curve is
plotted in Figure 7.6. A python script which can be used to produce this plot,
is given in Script B.3.2 in Appendix B.3.

In cases where the minimal path or cut sets have not been identified, it
may still be possible to estimate the reliability function provided that we
can calculate the structure function efficiently. The trick here is to take
advantage of the fact that the lifetime of the system always coincides with
the lifetime of one of the components.

To explain this in detail we consider a binary monotone system (C,φ),
where C = {1, . . . , n}. As above, the lifetime of the ith component is Ti, for
all i ∈ C. By sorting the lifetimes we can identify the order at which the
components fail. For simplicity we assume that all the component lifetimes
are distinct. If the lifetimes are absolutely continuously distributed, this
will happen with probability one anyway. If Ti1 < · · · < Tin are the sorted
lifetimes, this means that the components fail in the order i1, . . . , in. For

128 CHAPTER 7. DYNAMIC SYSTEM ANALYSIS

Figure 7.6: The reliability of a bridge system as a function of the time t ≥ 0.

convenience we also define Ti0 = 0. We then let Xj denote the component
state vector after the jth failure, j = 1, . . . , n, and also let X0 = 1. Finally,
we let:

j∗ = min{j : φ(Xj) = 0}
Then it follows that the lifetime of the system, S, is given by:

S = Tij∗ (7.18)

Note that in the trivial case where φ(X0) = φ(1) = 0, we get that j∗ = 0.
Thus, S = Ti0 = 0 in such cases, which indeed is the correct result. In the
other trivial case where φ(Xn) = φ(0) = 1, j∗ becomes undefined. To avoid
this issue we simply define S to be ∞ in such cases, which is the correct
result.

Having found a method for calculating the system lifetime without the use
of minimal path or cut sets, we can proceed as before and obtain an estimate
of the system reliability as a function of time.

Example 7.1.4 Let (C,φ) be a threshold system with component set C =
{1, 2, 3, 4, 5}, and where the structure function is given by:

φ(X) = I(
5)

i=1

ωiXi ≥ 5.0)

7.1. NON-REPAIRABLE BINARY MONOTONE SYSTEMS 129

Figure 7.7: The reliability of a threshold system as a function of the time
t ≥ 0.

where the component weights ω1, . . . ,ω5 are:

ω1 = 2.0, ω2 = 4.0, ω3 = 2.3, ω4 = 3.5, ω5 = 1.9

The lifetime of component i, Ti is Weibull-distributed with parameters αi and
βi, for all i ∈ C where:

α1 = 2.0, α2 = 2.5, α3 = 3.0, α4 = 1.0, α5 = 1.5,

β1 = 50.0, β2 = 60.0, β3 = 70.0, β4 = 40.0, β5 = 50.0.

In order to estimate the reliability h(p(t)) for t ≥ 0, we run a Monte Carlo
simulation with N = 100000 simulations. The resulting reliability curve is
plotted in Figure 7.7. A python script which can be used to produce this plot,
is given in Script B.3.3 in Appendix B.3.

Example 7.1.5 Let (C,φ) be an undirected network system with component
set C = {1, . . . , 7}, and where the network is illustrated in Figure 4.4. The
structure function of this system is given by:

φ(X) = X4 · φ(14,X) + (1−X4) · φ(04,X),

130 CHAPTER 7. DYNAMIC SYSTEM ANALYSIS

Figure 7.8: The reliability of an undirected network system as a function of
the time t ≥ 0.

where:

φ(14,X) = (X3 ∐X5) · (X1 ∐X2) · (X6 ∐X7)

+ (1−X3 ∐X5) · ((X1X6)∐ (X2X7))

φ(04,X) = ((X1X3)∐X2) · ((X5X6)∐X7)

The lifetime of component i, Ti is Weibull-distributed with parameters αi

and βi, for all i ∈ C where:

α1 = 2.0, α2 = 2.5, α3 = 3.0, α4 = 1.0,

α5 = 1.5, α6 = 2.0, α7 = 2.5,

β1 = 50.0, β2 = 60.0, β3 = 70.0, β4 = 40.0,

β5 = 50.0, β6 = 55.0, β7 = 65.0.

The reliability h(p(t)) for t ≥ 0 is estimated by running a Monte Carlo
simulation with N = 100000 simulations. The resulting reliability curve is
plotted in Figure 7.8. A python script which can be used to produce this plot,
is given in Script B.3.5 in Appendix B.3.

7.2. THE TIME-DEPENDENT BIRNBAUM MEASURE 131

7.2 The time-dependent Birnbaum measure of
reliability importance

In this section we introduce the time-dependent version of the Birnbaum
importance measure. Using the same notation as in the previous section this
measure is defined as follows:

I
(i)
B (t) = h(1i, p(t))− h(0i, p(t)), t ≥ 0, i ∈ C. (7.19)

To obtain a plot of I(i)B (t) we use exactly the same procedure as for the
reliability function. That is, we choose a sufficiently dense set of t-values,
say 0 = t0 < t1 < · · · < tK , and calculate I

(i)
B (t), for these t-values. The

importance curve for t ∈ [0, tK] is then obtained by drawing a curve through
the points:

(t0, I
(i)
B (t0)), (t1, I

(i)
B (t1)), . . . , (tK , I

(i)
B (tK)).

If K is sufficiently large, a nice smooth curve is obtained.

Figure 7.9: The Birnbaum importance of the components of a 2-out-of-3
system as a function of the time t ≥ 0.

132 CHAPTER 7. DYNAMIC SYSTEM ANALYSIS

Example 7.2.1 We consider the 2-out-of-3 system introduced in Example
7.1.2. By inserting pi(t) = F̄i(t), i = 1, 2, 3 into the expression for I

(i)
B (t),

we can calculate the importance of the three components for any t ≥ 0. The
resulting importance curves are plotted in Figure 7.9. A python script which
can be used to produce this plot, is given in Script B.3.6 in Appendix B.3.

The time-dependent Birnbaum measure can also be estimated using Monte
Carlo simulation. However, this is a bit more challenging than estimating
the system reliability as a function of time. As above our goal is to estimate
the importance curves for t ∈ [0, tK]. Thus, we choose a sufficiently dense
set of t-values, say 0 = t0 < t1 < · · · < tK , and estimate I

(i)
B (t), for these t-

values. The estimated importance values for the ith component are denoted
Î
(i)
B (t0), Î

(i)
B (t1), . . . , Î

(i)
B (tK), i ∈ C. The resulting estimated importance curve

for t ∈ [0, tK] for the ith component is then obtained by drawing a curve
through the points:

(t0, Î
(i)
B (t0)), (t1, Î

(i)
B (t1)), . . . , (tK , Î

(i)
B (tK)).

As we did for the reliability estimation, we start out by generating N sam-
ples of component lifetimes {T1k, . . . , Tnk}, k = 1, . . . , N , where Tik denotes
the lifetime of the ith component in the kth simulation. Furthermore, we
assume that we are able to calculate the system lifetime as a function of the
component lifetimes, either based on the minimal path or cut sets by using
(7.17), or by using the formula (7.18).

We now consider the component lifetimes generated in the kth simulation,
i.e., {T1k, . . . , Tnk}, and focus on component i. For component i we calculate
two system lifetimes, Lik and Uik, where Lik is obtained by replacing Tik by
0, while Uik is obtained by replacing Tik by ∞. Thus, Lik is the lifetime
of the system given that component i is failed all the time, while Uik is the
lifetime of the system given that component i is functioning all the time.

We then consider a point of time t ∈ [0, tK]. If t < Lik, we know that
the system is functioning regardless of the state of component i. Similarly, if
t ≥ Uik, we know that the system is failed regardless of the state of component
i. However, if Lik ≤ t < Uik, the system is functioning if component i
is functioning, and failed if component i is failed. Thus, we conclude that
in the kth simulation component i is critical for the system if and only if
Lik ≤ t < Uik.

In each of the simulations we keep track of the points of time when com-
ponent i is critical, and introduce the following statistics for i ∈ C and

7.2. THE TIME-DEPENDENT BIRNBAUM MEASURE 133

j = 0, 1, . . . , K:

Dij = The number of times component i is critical at time tj.

Based on these statistics we obtain the following unbiased estimates for the
importance of component i at the points of time t0, t1, . . . , tK :

Î
(i)
B (tj) =

Dij

N
, j = 0, 1, . . . , K, i ∈ C. (7.20)

Figure 7.10: The Birnbaum importance of the components of a bridge system
as a function of the time t ≥ 0. See Example 7.1.3.

Example 7.2.2 We consider the bridge system introduced in Example 7.1.3.
By inserting pi(t) = F̄i(t), i = 1, . . . , 5 into the expression for I

(i)
B (t), we can

calculate the importance of the five components for any t ≥ 0. The resulting
importance curves are plotted in Figure 7.10. A python script which can be
used to produce this plot, is given in Script B.3.7 in Appendix B.3.

Example 7.2.3 We consider the threshold system introduced in Example
7.1.4. By inserting pi(t) = F̄i(t), i = 1, . . . , 5 into the expression for I

(i)
B (t),

we can calculate the importance of the five components for any t ≥ 0. The
resulting importance curves are plotted in Figure 7.11. A python script which
can be used to produce this plot, is given in Script B.3.8 in Appendix B.3.

134 CHAPTER 7. DYNAMIC SYSTEM ANALYSIS

Figure 7.11: The Birnbaum importance of the components of a threshold
system as a function of the time t ≥ 0. See Example 7.1.4.

Figure 7.12: The Birnbaum importance of the components of an undirected
network system as a function of the time t ≥ 0. See Example 7.1.5.

7.3. THE BARLOW-PROSCHAN MEASURE 135

Example 7.2.4 We consider the undirected network system introduced in
Example 7.1.5. By inserting pi(t) = F̄i(t), i = 1, . . . , 7 into the expression
for I

(i)
B (t), we can calculate the importance of the seven components for any

t ≥ 0. The resulting importance curves are plotted in Figure 7.12. A python
script which can be used to produce this plot, is given in Script B.3.10 in
Appendix B.3.

7.3 The Barlow-Proschan measure of reliability
importance

One disadvantage with the time dependent Birnbaum measure for the re-
liability importance is that the ranking of the reliability importance of the
components may change over time. This implies that in order to compare the
components with respect to importance, one must decide which point of time
that should be used for the comparison. Motivated by this issue Barlow and
Proschan [5] introduced the following time-independent importance measure:

Definition 7.3.1 Consider a non-repairable binary monotone system (C,φ).
Moreover, let Ti denote the lifetime of component i, i ∈ C, and let S denote
the lifetime of the system. Then for all i ∈ C the Barlow-Proschan measure
of the reliability importance of component i is defined as:

I
(i)
B−P = P (Component i fails at the same time as the system) (7.21)

= P (Ti = S)

Note that if component i fails at the same time as the system, this may
be interpreted as i is the component eventually causing the system to fail.

Before we proceed we need to discuss the concept of absolute continuity.
We say that a real-valued stochastic variable, T has an absolutely continuous
distribution if P (T ∈ A) = 0 for all measurable sets A ⊆ R such that
m1(A) = 0, where m1 denotes the Lebesgue measure2 in R. It can be shown

2The Lebesgue measure in R, denoted m1, is a function defined on the family of all
measurable subsets A of R. If A = [a, b], then m1(A) = b−a. Thus, the Lebesgue measure
m1 generalizes the length of intervals to arbitrary measurable subsets of R. Similarly, the
Lebesgue measure in Rn, denoted mn, is a function defined on the family of all measurable
subsets A of Rn. If A = [a1, b1]× · · ·× [an, bn], then mn(A) =

!n
i=1(bn − an). Thus, the

Lebesgue measure mn generalizes the volume of n-dimensional rectangular sets to arbitrary
measurable subsets of Rn.

136 CHAPTER 7. DYNAMIC SYSTEM ANALYSIS

that if T1, . . . , Tn are independent and absolutely continuously distributed,
then the vector T = (T1, . . . , Tn) is absolutely continuously distributed in
Rn. That is, P (T ∈ A) = 0 for all (measurable) sets A ⊆ Rn such that
mn(A) = 0, where mn denotes the Lebesgue measure in Rn. In particular,
if A = {t : ti = tj}, where i ∕= j, then mn(A) = 0. Hence, P (Ti = Tj) = 0
when i ∕= j.

The following theorem uses the concept of absolute continuity in order to
obtain some fundamental properties of the Barlow-Proschan measure.

Theorem 7.3.2 Let (C,φ) be a non-trivial binary monotone system where
the components are never repaired where C = {1, . . . , n}, and let Ti denote
the lifetime of component i, i = 1, . . . , n, while S denotes the lifetime of
the system. Moreover, assume that T1, . . . , Tn are independent, absolutely
continuously distributed. Then S is absolutely continuously distributed as
well, and we have:

n)

i=1

I
(i)
B−P = 1.

Proof: Since we have assumed that the system is non-trivial, we know by
(7.17) that the lifetime of the system, S can be expressed as:

S = max
1≤j≤p

min
i∈Pj

Ti, (7.22)

where P1, . . . , Pp are the minimal path sets of the system. This implies that:

P (
n5

i=1

{Ti = S}) = 1. (7.23)

Let A ⊆ R be an arbitrary measurable set such that m1(A) = 0. Since we
have assumed that T1, . . . , Tn are absolutely continuously distributed, we get
that:

0 ≤ P (S ∈ A) ≤ P (
n5

i=1

{Ti ∈ A}) ≤
n)

i=1

P (Ti ∈ A) = 0,

which implies that S is absolutely continuously distributed as well.
Since T1, . . . , Tn are absolutely continuously distributed, it follows that

the probability of having two or more components failing at the same time
is zero. This implies e.g., that P ({Ti = S} ∩ {Tj = S}) = 0 for i ∕= j.
Thus, when calculating the probability of the union of the events {Ti = S},

7.3. THE BARLOW-PROSCHAN MEASURE 137

i = 1, . . . , n, all intersections can be ignored as they have zero probability of
occurring. Hence, by (7.23) we get:

1 = P (
n5

i=1

{Ti = S}) =
n)

i=1

P (Ti = S) =
n)

i=1

I
(i)
B−P ,

where the second equality follows by ignoring all intersections of the events
{Ti = S}, i = 1, . . . , n. The last equality follows by the definition of I(i)B−P .
Hence, the proof is complete. □

The next result shows how the Barlow-Proschan measure is related to the
Birnbaum measure.

Theorem 7.3.3 Let (C,φ) be a non-trivial binary monotone system where
the components are never repaired where C = {1, . . . , n}. Moreover, assume
that the lifetimes of the components, T1, . . . , Tn, are independent and abso-
lutely continuously distributed with densities f1, . . . , fn respectively. Then,
we have:

I
(i)
B−P =

= ∞

0

I
(i)
B (t) · fi(t)dt, i ∈ C. (7.24)

where I
(i)
B (t) denotes the Birnbaum measure of the reliability importance of

component i at time t, i.e., the probability that component i is critical at time
t.

Proof: From the definitions of the Barlow-Proschan measure and the Birn-
baum measure, it follows that:

I
(i)
B−P = P (Component i fails at the same time as the system)

=

= ∞

0

P (Component i is critical at time t) · fi(t)dt

=

= ∞

0

I
(i)
B (t) · fi(t)dt.

□

We observe that according to Theorem 7.3.3 the Barlow-Proschan mea-
sure, I(i)B−P , can be expressed as a weighted average of the Birnbaum measure

138 CHAPTER 7. DYNAMIC SYSTEM ANALYSIS

I
(i)
B (t) with respect to the component lifetime densities, fi(t). Hence, accord-

ing to the Barlow-Proschan measure, the points of times where fi(t) is large
are viewed as important.

In order to compute the Barlow-Proschan measure the formula (7.24) is
not always easy to use. For this purpose it is actually better to use the
original definition with the formula (7.21). Using Monte Carlo simulation it
is easy to estimate the probability that a given component fails at the same
time as the system. By running N simulations we simply count the number
of times this happens for each of the components. If Wi is the number of
times component i fails at the same time as the system, i ∈ C, then the
Barlow-Proschan measure of importance can be estimated by the following
unbiased estimator:

Î
(i)
B−P =

Wi

N
, i ∈ C. (7.25)

Figure 7.13: The Barlow-Proschan importance measure for the components
in a bridge system.

Example 7.3.4 We consider the bridge system introduced in Example 7.1.3.
To estimate I

(i)
B−P for i ∈ C, we run a Monte Carlo simulation with N =

7.3. THE BARLOW-PROSCHAN MEASURE 139

100000 simulations and use (7.25). The resulting estimated importance mea-
sures are plotted in Figure 7.13. A python script which can be used to produce
this plot, is given in Script B.3.11 in Appendix B.3.

From Figure 7.13 we see that the bridge component, i.e., component 3,
clearly is the least important component in the system. The probability that
this component fails at the same time as the rest of the system is just about
5%.

In a bridge system all the other components have the same structural im-
portance. However, as can be seen in Figure 7.13, component 5 is the compo-
nent that has the highest probability of failing at the same time as the system,
i.e., approximately 35%.

To understand why this may be reasonable, we calculate the expected life-
times for the different components using (7.15):

E[T1] = 44.31, E[T2] = 55.09, E[T3] = 62.51,

E[T4] = 40.00, E[T5] = 45.14

The minimal cut sets of the system are K1 = {1, 2}, K2 = {1, 3, 5}, K3 =
{2, 3, 4} and K4 = {4, 5}. The minimal cut set which is most likely to cause
system failure is K4, since it contains only two components, and since these
components have relatively short expected lifetimes compared to the compo-
nents in K1. Comparing the expected lifetimes of components 4 and 5, we
see that component 5 has the longest expected lifetime of the two. Hence,
component 5 is more likely to be the last one in K4 to fail and thus, cause
system failure.

Example 7.3.5 We consider the threshold system introduced in Example
7.1.4. To estimate I

(i)
B−P for i ∈ C, we run a Monte Carlo simulation with

N = 100000 simulations. The resulting estimated importance measures are
plotted in Figure 7.14. A python script which can be used to produce this
plot, is given in Script B.3.12 in Appendix B.3.

Example 7.3.6 We consider the undirected network system introduced in
Example 7.1.5. To estimate I(i)B−P for i ∈ C, we run a Monte Carlo simulation
with N = 100000 simulations. The resulting estimated importance measures
are plotted in Figure 7.15. A python script which can be used to produce this
plot, is given in Script B.3.13 in Appendix B.3.

140 CHAPTER 7. DYNAMIC SYSTEM ANALYSIS

Figure 7.14: The Barlow-Proschan importance measure for the components
in a threshold system.

Figure 7.15: The Barlow-Proschan importance measure for the components
in an undirected network system.

7.4. THE NATVIG MEASURE 141

7.4 The Natvig measure of reliability impor-
tance

The Barlow-Proschan measure of reliability importance focusses on the com-
ponent which has the highest probability to cause system failure. However,
sometimes a component may contribute significantly to the reliability of the
system even though it is not the last component to fail. Motivated by this,
Natvig [49] introduced an alternative importance measure. This measure is
based on the concept of a minimal repair.

To explain this concept we let T denote the lifetime of some component.
The survival distribution function of T is denoted F̄ (t) = P (T > t). Now,
we assume that we have observed that T = τ . That is, at time τ ≥ 0, the
component failed. We then let t ≥ τ . If the component had not failed at
time τ , the conditional probability that it would have survived time t as well
would have been:

P (T > t|T > τ) =
F̄ (t)

F̄ (τ)
, t ≥ τ

A minimal repair of the component at time τ , means that the component is
given an additional lifetime U such that the total lifetime of the component,
i.e., τ + U , has the same distribution as the conditional distribution of T
given that the component did not fail at time τ . That is, we have:

P (τ + U > t) = P (U > t− τ) =
F̄ (t)

F̄ (τ)
, t ≥ τ. (7.26)

By substituting u = t−τ and t = u+τ , it follows that (7.26) can be expressed
as:

P (U > u) =
F̄ (u+ τ)

F̄ (τ)
, u ≥ 0. (7.27)

Intuitively, we may think of a minimal repair as having an extra component
as a hot stand-by. A stand-by component is a component identical to the
original component that can replace the original as soon as this fails. A
cold stand-by component does not age while in stand-by mode, and can be
considered as good as new when it replaces the original. A hot stand-by
component, on the other hand, cannot fail when it is in stand-by mode,

142 CHAPTER 7. DYNAMIC SYSTEM ANALYSIS

but it ages at the same speed as the original component. Thus, when it
replaces the original component, it has a survival function which is equal
to the conditional survival function of the original component immediately
before its failure. This is precisely the relation given in (7.27).

The total lifetime of the component including the lifetime of the hot stand-
by component, is T + U . The resulting survival function of the component
then becomes P (T + U > t). In order to calculate this probability, we split
the event {T + U > t} into two disjoint parts:

A = {T + U > t} ∩ {T > t} and B = {T + U > t} ∩ {T ≤ t}

Since the event {T > t} implies the event {T + U > t}, it follows that:

P (A) = F̄ (t)

To compute P (B) we condition on the point τ when the original component
fails. Given this point of time, it follows that U must be greater than t − τ
for B to hold. Thus, by (7.26) we get:

P (B) =

= t

0

P (U > t− τ) f(τ)dτ = F̄ (t)

= t

0

f(τ)

F̄ (τ)
dτ

By substituting w = F̄ (τ) and dw = −f(τ), the integral becomes:

P (B) = −F̄ (t)

= F̄ (t)

1

dw

w
= −F̄ (t) ln(F̄ (t))

Thus, the survival function of component which is given a minimal repair, is
given by:

P (T + U > t) = P (A) + P (B) = F̄ (t)[1− ln(F̄ (t))] (7.28)

The idea behind the Natvig measure of reliability importance is that the
component that by failing on average has the largest negative impact on the
system lifetime, should be considered most important. This idea can also be
interpreted in terms of minimal repairs: The component that by being given
a minimal repair on average has the largest positive impact on the system
lifetime, should be considered most important. More specifically, the Natvig
measure of reliability importance is defined as follows:

7.4. THE NATVIG MEASURE 143

Definition 7.4.1 Consider a non-repairable binary monotone structure (C,φ),
where C = {1, . . . , n}, and let:

Si = The system lifetime if component i is given a minimal repair.
Zi = Si − S

Assuming that E[Zi] < ∞ for all i ∈ C, the Natvig measure of the reliability
importance of component i, denoted I

(i)
N , is given by:

I
(i)
N =

E[Zi]/n
j=1 E[Zj]

(7.29)

We note that by this definition it immediately follows that 0 ≤ I
(i)
N ≤ 1

and that
/n

i=1 I
(i)
N = 1. Thus, the result given in Theorem 7.3.2 is valid for

the Natvig measure as well.
To study the properties of this measure in more detail, we need the fol-

lowing well-known lemma:

Lemma 7.4.2 Let X be a non-negative absolutely continuously distributed
random variable with density f(x). Then the expected value of X is given by:

E[X] =

= ∞

0

P (X > y) dy. (7.30)

Proof: We start out by noting that:

E[X] =

= ∞

0

xf(x)dx =

= ∞

0

[

= x

0

dy] f(x) dx

We then interchange the integrals and get:

E[X] =

= ∞

0

[

= ∞

y

f(x)dx] dy =

= ∞

0

P (X > y) dy

□

We then consider the system lifetimes S and Si introduced above. By
Lemma 7.4.2 and pivotal decomposition with respect to component i we get

144 CHAPTER 7. DYNAMIC SYSTEM ANALYSIS

that:

E[S] =

= ∞

0

h(p(t))dt (7.31)

=

= ∞

0

{F̄i(t)h(1i,p(t))

+ (1− F̄i(t))h(0i,p(t))}dt

and using (7.28):

E[Si] =

= ∞

0

h(p(t))dt (7.32)

=

= ∞

0

{F̄i(t)[1− ln(F̄i(t))]h(1i,p(t))

+ (1− F̄i(t)[1− ln(F̄i(t))])h(0i,p(t))}dt

We recall that by Theorem 7.3.3 the Barlow-Proschan measure could be ex-
pressed as a weighted average of the Birnbaum measure. Natvig [50] showed
that there is a similar connection between the Natvig measure and the Birn-
baum measure:

Theorem 7.4.3 Consider a binary monotone structure (C,φ), where C =
{1, . . . , n}. Moreover, assume that the lifetimes of the components, T1, . . . , Tn,
are independent and absolutely continuously distributed. Then we have:

E[Zi] =

= ∞

0

I
(i)
B (t) · F̄i(t)(− ln(F̄i(t)))dt, i ∈ C. (7.33)

Proof: The result follows directly by combining (7.31) and (7.32) and noting
that by (7.19):

I
(i)
B (t) = h(1i,p(t))− h(0i,p(t)), i ∈ C.

□

From this theorem it follows that E[Zi] is a weighted average of the Birn-
baum measure, I

(i)
B (t) with F̄i(t)(− ln(F̄i(t))) as weight for all i ∈ C. By

7.4. THE NATVIG MEASURE 145

(7.29) it follows that I
(i)
N is proportional to E[Zi] for all i ∈ C. Thus, the

ranking of the components with respect to the Natvig importance measure
is the same as the ranking of the expected values of Z1, . . . , Zn.

Just as for the Barlow-Proschan measure, the formula (7.33) is not always
easy to use. In order to estimate the Natvig measure we instead go back to the
original definition with the formula (7.29). Using Monte Carlo simulation it
is easy to estimate E[Zi] for all i ∈ C. This is done by running N simulations
of the system. More specifically, we generate N sets of component lifetimes,
{T1k, . . . , Tnk}, where Tik is sampled from the lifetime distribution of the ith
component, i = 1, . . . , n and k = 1, . . . , N . We also generate N sets of
additional component lifetimes, {U1k, . . . , Unk}, such that:

P (Uik > u) =
F̄i(u+ τik)

F̄i(τik)
, u ≥ 0, i = 1, . . . , n, k = 1, . . . , N,

where τik denotes the observed value of Tik, i = 1, . . . , n and k = 1, . . . , N .
In order to generate Uik, it is typically easier to generate τik + Uik, sampled
such that:

P (τik + Uik > t) =
F̄i(t)

F̄i(τik)
, u ≥ 0, i = 1, . . . , n, k = 1, . . . , N.

This means that τik +Uik is sampled from the conditional distribution of Tik

given that Tik > τik. This can be done by using a so-called rejection method
where we sample repeatedly from the unconditional distribution of Tik until
we get a value T ′

ik such that T ′
ik > τik. The resulting value of Uik is then

given by T ′
ik − τik , i = 1, . . . , n and k = 1, . . . , N .

We now consider the kth simulation with the generated values {T1k, . . . , Tnk}
and {U1k, . . . , Unk}. Using one of the methods described in Section 7.1.2 we
calculate the system lifetime Sk as well as system lifetimes {S1k, . . . , Snk},
where Sik denotes the system lifetime given that the ith component is given
a minimal repair, meaning that Tik is replaced by Tik + Uik, i = 1, . . . , n,
k = 1, . . . , N . Finally, we calculate {Z1k, . . . , Znk}, where Zik = Sik − Sk,
i = 1, . . . , n, k = 1, . . . , N .

The Natvig importance measure can now be estimated by:

Î
(i)
N =

1
N

/N
k=1 Zik/n

j=1
1
N

/N
k=1 Zjk

=

/N
k=1 Zik/n

j=1

/N
k=1 Zjk

(7.34)

146 CHAPTER 7. DYNAMIC SYSTEM ANALYSIS

Figure 7.16: The Natvig importance measure for the components in a bridge
system.

Example 7.4.4 We consider the bridge system introduced in Example 7.1.3.
To estimate I

(i)
N for i ∈ C, we run a Monte Carlo simulation with N =

100000 simulations. The resulting estimated importance measures are plotted
in Figure 7.16. A python script which can be used to produce this plot, is given
in Script B.3.14 in Appendix B.3.

Example 7.4.5 We consider the threshold system introduced in Example
7.1.4. To estimate I

(i)
N for i ∈ C, we run a Monte Carlo simulation with

N = 100000 simulations. The resulting estimated importance measures are
plotted in Figure 7.17. A python script which can be used to produce this
plot, is given in Script B.3.15 in Appendix B.3.

Example 7.4.6 We consider the undirected network system introduced in
Example 7.1.5. To estimate I

(i)
N for i ∈ C, we run a Monte Carlo simulation

with N = 100000 simulations. The resulting estimated importance measures
are plotted in Figure 7.18. A python script which can be used to produce this
plot, is given in Script B.3.16 in Appendix B.3.

7.4. THE NATVIG MEASURE 147

Figure 7.17: The Natvig importance measure for the components in a thresh-
old system.

Figure 7.18: The Natvig importance measure for the components in an undi-
rected network system.

148 CHAPTER 7. DYNAMIC SYSTEM ANALYSIS

7.5 Pure jump processes
In this section we formalise the concept of a pure jump process. Thus, let
{S(t)} be a stochastic process where S(t) denotes the state of the process at
time t ≥ 0. Moreover, we let T1 < T2 < · · · denote the points of time of the
events affecting the process, and let T0 = 0. Following Klebaner [43] a pure
jump process is a process where S(t), can be written as:

S(t) = S(0) +
∞)

j=1

I(Tj ≤ t)Jj, t ≥ 0, (7.35)

where I(·) denotes the indicator function, and Jj denotes the change in the
state (positive or negative) of the process at time Tj. The representation
(7.35) implies that the state function S(t) is piecewise constant and right-
continuous in t, with jumps at T1 < T2 < · · · . In particular, for k = 0, 1, . . .,
we have:

S(t) = S(0) +
k)

j=1

Jj = S(Tk), for all t ∈ [Tk, Tk+1). (7.36)

Thus, in order to keep track of how the process evolves and update the value
of the state function, only the points of time where the events happen need
to be considered. This property is convenient during simulations.

The infinite sum in (7.35) indicates that the number of events occurring in
the interval [0, t] is unbounded. The possibility of having an infinite number
of events in [0, t], however, may cause various technical difficulties. In par-
ticular, this may cause simulations to break down since an infinite number of
events need to be generated and handled. See Glasserman [29] for a further
discussion of this issue. To avoid these difficulties, we always assume that
the number of events occurring in any finite interval is finite with probability
one. A pure jump process satisfying this assumption is said to be regular.
Note, however, that the regularity assumption does not imply the existence
of a fixed number N < ∞ such that the number of events in the interval
[0, t] is bounded by N with probability one. The number of events in [0, t]
will typically be a random variable with a distribution that ranges over all
non-negative integers. When the simulation procedure is chosen, this must
be taken into account.

We now present a few basic results on regularity of pure jump processes
which we need later. We consider a pure jump process {S(t)} with jumps at

7.5. PURE JUMP PROCESSES 149

T1 < T2 < · · · . We also introduce the times between the events defined as:

∆j = Tj − Tj−1, j = 1, 2, (7.37)

Using these quantities the event times can be expressed as:

Tk =
k)

j=1

∆j, k = 1, 2, (7.38)

Obviously, the process {S(t)} is regular if and only if T∞ = ∞ almost
surely. Thus, it follows that a necessary and sufficient criterion for regularity
is that the series

/∞
j=1 ∆j is divergent with probability one. This condition

can often be verified using the following simple result:

Proposition 7.5.1 Let {S(t)} be a pure jump process with jumps at T1 <
T2 < · · · . Moreover, we let T0 = 0 and introduce the non-negative random
variables ∆j = Tj −Tj−1, j = 1, 2, Assume then that the sequence {∆j}
contains an infinite subsequence {∆kj} of independent, identically distributed
random variables such that E[∆kj] = d > 0. Then S is regular.

Proof: By the strong law of large numbers it follows that:

P (lim
n→∞

n−1

n)

j=1

∆kj = d) = 1.

This implies that the series
/∞

j=1 ∆kj is divergent with probability one.
Hence, since obviously

/∞
j=1 ∆kj ≤

/∞
j=1 ∆j, the result follows. □

The regularity property implies that the set of points where the process
jumps almost surely does not have any accumulation points. The following
result utilizes this to show the existence of left limits of the state function of
a regular pure jump process.

Proposition 7.5.2 Let {S(t)} be a regular pure jump process with jumps at
T1 < T2 < · · · . Then limt→s− S(t) exists for every s > 0 with probability one.

Proof: Let 0 ≤ t < s < ∞. We then consider the set T = {Tj : t ≤ Tj <
s} ∪ {t}. Since S is assumed to be regular, the number of elements in T is
finite with probability one. Moreover, T is non-empty since t ∈ T . Thus,

150 CHAPTER 7. DYNAMIC SYSTEM ANALYSIS

this set contains a maximal element, which we denote by t′. Moreover, since
every element in T is less than s, then so is t′. From this it follows that
the interval (t′, s) is nonempty. At the same time (t′, s) does not contain
any jumps, so S(t) is constant throughout this interval. Hence, limt→s− S(t)
exists. Since s was arbitrary chosen, this holds for any s > 0. □

Regularity is also of importance when considering the integral of a pure
jump process:

Proposition 7.5.3 Let {S(t)} be a regular pure jump process with jumps at
T1 < T2 < · · · , and let 0 ≤ u < v < ∞. Assume that {Tj : u < Tj < v} =
{T (1), . . . , T (k)}, where T (1) < · · · < T (k). Moreover, we let T (0) = u and
T (k+1) = v. Then we have:

= v

u

S(t)dt =
k)

j=0

S(T (j))(T (j+1) − T (j)).

Proof: We first note that since S is assumed to be regular, the number of
elements in the set {Tj : u < Tj < v} is finite with probability one. Thus,
this set can almost surely be written in the form {T (1), . . . , T (k)}, for some
suitable k < ∞. Since S is right-continuous and piecewise constant, it follows
that S(t) = S(T (j)) for all t ∈ [T (j), T (j+1)), j = 0, 1, . . . , k. Thus, we have:

= T (j+1)

T (j)

S(t)dt = S(T (j))(T (j+1) − T (j)), j = 0, 1, . . . , k.

The result then follows by adding up the contributions to the integral from
each of the k + 1 intervals [T (0), T (1)), . . . , [T (k), T (k+1)) □

We then consider a system consisting of a collection of n regular pure jump
processes, S1, . . . , Sn. The state of the system is then typically expressed as
a function of the states of the elementary processes. It is easy to see that the
system state also evolves as a regular pure jump process. That is, we have:

Proposition 7.5.4 Let {S1(t)}, . . . , {Sn(t)} be n regular pure jump processes,
and let H(t) = H(S(t)), where S(t) = (S1(t) . . . , Sn(t)), t ≥ 0. Then {H(t)}
is a regular pure jump process as well. That is, H(t) = H(S(t)) is piecewise
constant and right-continuous in t, and the number of jumps in any finite
interval is finite with probability one.

7.6. REPAIRABLE BINARY MONOTONE SYSTEMS 151

Proof: Let Ti be the set of time points corresponding to the jumps of the
process Si, i = 1, . . . , n, and let T be the set of time points corresponding to
the jumps of the process {H(t)}. Since the state value of H cannot change
unless there is a change in the state value of at least one of the elementary
processes, it follows that T ⊆ (T1∪· · ·∪Tn). Thus, H(t) is piecewise constant
and right-continuous in t. Moreover, for any finite interval [t, s] we also have:

T ∩ [t, s] ⊆ [(T1 ∩ [t, s]) ∪ · · · ∪ (Tn ∩ [t, s])].

Since by regularity (Ti∩ [t, s]) is finite for i = 1, . . . , n, it follows that T ∩ [t, s]
is finite as well. Hence, we conclude that {H(t)} is regular. □

7.6 Repairable binary monotone systems
As we shall see, stationary statistical properties of a pure jump process,
can often be calculated by working directly on the stationary probability
distributions of the elementary processes. Sometimes, however, one needs to
estimate how the expected value of the process evolves over time. In such
cases it is often necessary to use some sort of Monte Carlo simulation method.

In order to illustrate how this can be done we consider a binary monotone
system (C,φ) of n repairable components. The elementary processes are
the component state processes, denoted {X1(t)}, . . . , {Xn(t)}, where Xi(t)
represents the state of component i at time t ≥ 0, i = 1, . . . , n. That
is, Xi(t) = 1 if component i is functioning at time t, and zero otherwise,
i = 1, . . . , n. We also introduce the component state vector at time t ≥
0, X(t) = (X1(t), . . . , Xn(t)). Thus, φ = φ(X(t)) = 1 if the system is
functioning at time t and zero otherwise.

We now introduce the lifetimes and repair times for the components. That
is, for i = 1, . . . , n and j = 1, 2, . . . we let:

Uij = The jth lifetime of the ith component. (7.39)
Dij = The jth repair time of the ith component. (7.40)

We assume that Uij has an absolutely continuous distribution Fi with a posi-
tive mean value µi < ∞, while Dij has an absolutely continuous distribution
Gi with a positive mean value νi < ∞, i = 1, . . . , n, j = 1, 2, All life-
times and repair times are assumed to be independent. Thus, in particular
the component states X1(t), . . . , Xn(t) are independent for each t ≥ 0.

152 CHAPTER 7. DYNAMIC SYSTEM ANALYSIS

We then introduce the availability of the ith component at time t, denoted
Ai(t), as the probability that the component is functioning at time t. That
is, for i = 1, . . . , n we have:

Ai(t) = Pr(Xi(t) = 1) = E[Xi(t)].

It can then be shown (see Barlow and Proschan [6]) that the corresponding
stationary availabilities can be expressed as:

Ai = lim
t→∞

Ai(t) =
µi

µi + νi
, i = 1, . . . , n. (7.41)

Introduce A(t) = (A1(t), . . . , An(t)) and A = (A1, . . . , An). The system
availability at time t is given by:

Aφ(t) = Pr(φ(X(t)) = 1) = E[φ(X(t))] = h(A(t)),

where h is the system’s reliability function. The corresponding stationary
availability is given by:

Aφ = lim
t→∞

Aφ(t) = h(A). (7.42)

We now extend Definition 5.1.1 to repairable components in the obvious way
by stating that component i is critical at time t if:

ψi(X(t)) = φ(1i,X(t))− φ(0i,X(t)) = 1. (7.43)

We will refer to ψi(X(t)) as the criticality state of component i at time t.
Moreover, we extend Definition 5.2.1 to this context by defining the Birn-
baum measure of importance of a repairable component i at time t, as the
probability that component i is critical at time t. This is denoted I

(i)
B (t) and

given by:

I
(i)
B (t) = Pr(ψi(X(t)) = 1) = E[ψi(X(t))] (7.44)

= h(1i,A(t))− h(0i,A(t)).

The corresponding stationary measure is given by:

I
(i)
B = lim

t→∞
I
(i)
B (t) = h(1i,A)− h(0i,A). (7.45)

7.7. SIMULATING REPAIRABLE SYSTEMS 153

7.7 Simulating repairable systems

Discrete event models are typically used in simulation studies to model and
analyze pure jump processes. For an extensive introduction to discrete event
models we refer to Glasserman [28]. See also Klebaner [43]. A discrete event
model can be viewed as a system consisting of a collection of stochastic
processes, where the states of the individual processes change as results of
various kinds of events occurring at random points of time. Between these
events the states of the processes are assumed to be constant. We refer to
the processes included in the collection, as the elementary processes of the
system. In our context we always assume that each event only affects one of
the elementary processes.

Asymptotic system availability and component criticality, can easily be
estimated by running a single discrete event simulation on the system over a
sufficiently long time horizon, or by working directly on the stationary com-
ponent availabilities. Sometimes, however, one needs to estimate how these
properties evolve over time. In such cases it is necessary to run many sim-
ulations to obtain stable availability and criticality estimates. One possible
approach to this problem is to sample the system state at fixed points of
time, and then use the mean values of the states at these points as curve
estimates. With this approach all information about the process between
the sampling points is thrown away. In the present paper we propose an
alternative sampling procedure where we utilize process data between the
sampling points as well. This simulation method is particularly useful when
estimating various kinds of component importance measures for repairable
systems.

Discrete event simulation is a very well established technique for analyzing
systems of pure jump processes with applications in many different areas such
as queueing and inventory systems and reliability. For an introduction to this
field see Banks et al. [4].

As in the previous section we consider a binary monotone system (C,φ)
with component state processes, denoted {X1(t)}, . . . , {Xn(t)}. The events
affecting the ith component are denoted by Ei1, Ei2, . . ., listed in chronolog-
ical order, i = 1, . . . , n. Since we assumed that all lifetimes and repair times
have absolutely continuous distributions, all these events happen at distinct
points of time almost surely. We let Ti1 < Ti2, . . . be the corresponding points
of time for these events. We also let Ti0 = 0, i = 1, . . . , n. As in (7.35) the

154 CHAPTER 7. DYNAMIC SYSTEM ANALYSIS

component state processes can then be expressed as:

Xi(t) = Xi(0) +
∞)

j=1

I(Tij ≤ t)Jij, t ≥ 0,i = 1, . . . , n, (7.46)

where the jumps Jij are either −1 if Eij is a failure event, or +1 if Eij is a
repair event. We assume that all components start out by being functioning.
Thus, we have Xi(0) = 1, and Jij = (−1)j, for i = 1, . . . , n and j = 1, 2,
Finally, for i = 1, . . . , n we introduce the times between the events defined
as:

∆ij = Tij − Tij−1, i = 1, . . . , n,j = 1, 2, (7.47)

Then for i = 1, . . . , n we have:

∆i1 = Ui1, ∆i2 = Di1, ∆i3 = Ui2, . . . (7.48)

Since Ui1, Ui2, . . . are independent and identically distributed with positive
mean value µi, it follows by Proposition 7.5.1 that Xi is a regular pure jump
process, i = 1, . . . , n. Hence, by Proposition 7.5.4 the system state φ = φ(X)
as well as the criticality states ψ1(X), . . . ,ψn(X) are regular pure jump
processes.

At the system level the event set is the union of all the component event
sets. Let E(1), E(2), . . . denote these events sorted with respect to their re-
spective points of time, and let T (1) < T (2) < · · · be the corresponding points
of time. Note that since we assumed that all lifetimes and repair times have
absolutely continuous distributions, each system event corresponds almost
surely to a unique component event.

In order to simulate such a system, we use an object oriented approach
where the components as well as the system are represented as objects. The
component objects are equipped with methods for generating failure and
repair events according to their respective life- and repair time distributions.
The system object determines the state of the system as a function of the
component states. To keep track of the events and process them in the
correct order, they are organized in a dynamic queue sorted with respect
to the points of time of the events. The component processes place their
upcoming events into the queue where they stay until they are processed.

More specifically, at time zero each component starts out by being func-
tioning, and places its first failure event into the queue. As soon as all these
failure events have been placed into the queue, the first event in the queue

7.7. SIMULATING REPAIRABLE SYSTEMS 155

is processed. That is, the system time is set to the time of the first event,
and the event is taken out of the queue and passed on to the component
responsible for handling this event. The component then updates its state,
generates a new event, in this case a repair event, which is placed into queue,
and notifies the system about its new state so that the system state can be
updated as well. Then the next event in the queue is processed in the same
fashion, and so forth until the system time reaches a certain predefined point
of time. Note that since the component events are generated as part of the
event processing, the number of events in the queue stays constant.

Although the system state and component states stay constant between
events, it may still be of interest to log the state values at predefined points
of time. In order to facilitate this, we introduce yet another type of event,
called a sampling event. Such sampling events will typically be spread out
evenly on the timeline. Thus, if e1, e2, . . . denote the sampling events, and
t1 < t2 < · · · are the corresponding points of time, we would typically have
tj = j ·∆ for some suitable number ∆ > 0.

The sampling events will be placed into the queue in the same way as for
the ordinary events. As a sampling event is processed, the next sampling
event will be placed into the queue. Thus, at any time only one sampling
event needs to be in the queue.

In principle one must update the system state every time there is a change
in the component states. For large complex systems, these updates may slow
down the simulations considerably. Thus, whenever possible one should avoid
computing the system state. Fortunately, since the structure function of a
binary monotone system is non-decreasing in each argument, it is possible to
reduce the updating to a minimum. To explain this in detail, we consider the
event Eij affecting component i. Let Tij be the corresponding point of time,
and let X(T−

ij) denote the value of the component state vector immediately
before Eij occurs, i.e., X(T−

ij) = limt→T−
ij
X(t). Note that by Proposition

7.5.2 these limits exist since the component state processes are regular.
If Eij is a failure event of component i, i.e., Xi(T

−
ij) = 1 and Xi(Tij) = 0,

then the event cannot change the system state if the system is already failed,
i.e., φ(X(T−

ij)) = 0. Similarly, if Eij is a repair event of component i, i.e.,
Xi(T

−
ij) = 0 and Xi(Tij) = 1, this event cannot change the system state if

the system is already functioning, i.e., φ(X(T−
ij)) = 1. Thus, we see that we

only need to recalculate the system state whenever:

φ(X(T−
ij)) ∕= Xi(Tij). (7.49)

156 CHAPTER 7. DYNAMIC SYSTEM ANALYSIS

Hence, the number of times we need to recalculate the system state is dras-
tically reduced.

In cases where we keep track of the criticality state of each of the com-
ponents, we can simplify the calculations even further by noting that the
system state is changed as a result of the event Eij if and only if component
i is critical at the time of the event. Moreover, if i is critical, and Eij is a
failure event, it follows that the system fails as a result of this event, i.e.,
φ(X(Tij)) = 0. If on the other hand i is critical, and Eij is a repair event,
it follows that the system becomes functioning as a result of this event, i.e.,
φ(X(Tij)) = 1. Thus, we see that in this setup all the calculations we need
to carry out, are related to the updating of the criticality states.

A similar technique can be used when updating the criticality states of the
components. Thus, we consider the event Eij affecting the state of component
i. We first note that the criticality state function of component i, ψi(X(t)) =
φ(1i,X(t))−φ(0i,X(t)) does not depend on the state of component i. Thus,
the event Eij does not have any impact on the criticality state of i. However,
Eij may still change the criticality state of other components in the system
even when the system state remains unchanged. Thus, let k ∕= i be another
component, and consider its criticality state function ψk(X(Tij)).

If Xk(Tij) = 1 and φ(X(Tij)) = 0, it follows that:

φ(1k,X(Tij)) = φ(0k,X(Tij)) = 0. (7.50)

Thus, in this case we must have ψk(X(Tij)) = 0. On the other hand, if
Xk(Tij) = 0 and φ(X(Tij)) = 1, it follows that:

φ(1k,X(Tij)) = φ(0k,X(Tij)) = 1. (7.51)

Thus, we must have ψk(X(Tij)) = 0 in this case as well. Hence, we see that
a necessary condition for component k to be critical at time Tij is that:

φ(X(Tij)) = Xk(Tij). (7.52)

Utilizing these observations reduces the need to recalculate the criticality
states.

7.8 Estimating availability and importance
Stationary availability and importance measures are typically easy to derive.
If the system under consideration is not too complex, these quantities can

7.8. ESTIMATING AVAILABILITY AND IMPORTANCE 157

be calculated analytically using (7.41), (7.42) and (7.45). For larger com-
plex systems one may estimate the availability and importance using Monte
Carlo simulations. A fast simulation algorithm for this is provided in [?].
Alternatively, estimates can be obtained by running a single discrete event
simulation on the system over a sufficiently long time horizon.

Here, however, we focus on the problem of estimating the system avail-
ability Aφ(t) and the component importance measures I

(1)
B (t), . . . , I

(n)
B (t) as

functions of t. Ideally we would like to estimate these quantities for any t ≥ 0.
For practical purposes, however, we have to limit the estimation to a finite
set of points. More specifically, we will estimate Aφ(t) for t ∈ {t1, . . . , tN},
i.e., the set of the N first sampling points. For the points of time between the
sampling points, we just use linear interpolation to obtain the curve estimate.

A simple approach to this problem is to run M simulations on the system,
where each simulation covers the time interval [0, tN]. In each simulation we
sample the values of φ and ψ1, . . . ,ψn at each sampling point t1, . . . , tN . We
denote the sth simulated value of the component state vector process at
time t ≥ 0 by Xs(t), s = 1, . . . ,M , and obtain the following estimates for
j = 1, . . . , N :

Âφ(tj) =
1

M

M)

s=1

φ(Xs(tj)), (7.53)

Î
(i)
B (tj) =

1

M

M)

s=1

ψi(Xs(tj)). (7.54)

We will refer to these estimates as pointwise estimates. It is easy to see that
for j = 1, . . . , N , Âφ(tj) and Î

(i)
B (tj) are unbiased and strongly consistent

estimates of Aφ(tj) and I
(i)
B (tj) respectively. In order to estimate Aφ(t) and

I
(i)
B (t) between the sampling points, one may use interpolation. Using a

sufficiently high sampling rate, i.e., a small value of ∆, a satisfactory estimate
of the full curve can be obtained. Still, all information about the process
between the sampling points is thrown away.

We now present an alternative approach where we utilize process data
between the sampling points as well. As above we assume that the system
is simulated M times over the interval [0, tN], and let Xs(t) denote the
sth simulated value of the component state vector process at time t ≥ 0,
s = 1, . . . ,M . Then let E(1)

s , E
(2)
s , . . . denote the events in the interval [0, tN]

in the sth simulation, including sampling events at times t1, . . . , tN , and let

158 CHAPTER 7. DYNAMIC SYSTEM ANALYSIS

T
(1)
s < T

(2)
s < · · · be the corresponding points of time, s = 1, . . . ,M . In

this case we also include an extra sampling event in each simulation at time
t0 = 0, denoted E

(0)
s , and let T

(0)
s = 0, s = 1, . . . ,M .

The idea now is to use average simulated availability and criticalities from
each interval [tj−1, tj), j = 1, . . . , N as respective estimates for the availability
and criticalities at the midpoints of these intervals. By using Proposition
7.5.3, we obtain the following estimates for j = 1, . . . , N :

Ãφ(t̄j) =
1

M

M)

s=1

1

∆

)

k∈Esj

φ(Xs(T
(k)
s))(T (k+1)

s − T (k)
s), (7.55)

Ĩ
(i)
B (t̄j) =

1

M

M)

s=1

1

∆

)

k∈Esj

ψi(Xs(T
(k)
s))(T (k+1)

s − T (k)
s), (7.56)

where Esj denotes the index set of the events in [tj−1, tj) in the sth simulation,
and where we have introduced the interval midpoints t̄j = (tj−1 + tj)/2,
j = 1, . . . , N . We will refer to these estimates as interval estimates.

By Proposition 7.5.3, it follows that for j = 1, . . . , N , Ãφ(t̄j) and Ĩ
(i)
B (t̄j)

are unbiased and strongly consistent estimates of the corresponding average
availability and criticality in the intervals [tj−1, tj) respectively. By choos-
ing ∆ so that the availabilities and criticalities are relatively stable within
each interval, the interval estimates are approximately unbiased estimates
for Aφ(t̄j) and I

(i)
B (t̄j) as well. In fact the resulting interval estimates tend to

stabilize much faster than the pointwise estimates. In order to estimate Aφ(t)

and I
(i)
B (t) between the interval midpoints, one may again use interpolation.

Note that since all process information is used in the estimates, satisfactory
curve estimates can be obtained for a much higher value of ∆ than the one
needed for the pointwise estimates.

In order to illustrate this we consider a simple bridge system shown in
Figure 7.19. The components of this system are the five edges in the graph,
labeled 1, . . . , 5. The system is functioning if the source node s can commu-
nicate with the terminal node t through the graph. All the components in
the system have exponential lifetime and repair time distributions with mean
values 1 time unit. The objective of the simulation is to estimate Aφ(t) and
I
(1)
B (t), . . . , I

(5)
B (t) for t ∈ [0, tN], where tN = 1000.

All the simulations were carried out using a program called Eventcue3.
3Eventcue is a java program developed at the Department of Mathematics, University

7.8. ESTIMATING AVAILABILITY AND IMPORTANCE 159

Figure 7.19: A bridge system.

This program has an intuitive graphical user interface, and can be used to
estimate availability and criticality of any undirected network system.

Since all the lifetimes and repair times are exponentially distributed with
the same mean, it is easy to derive explicit analytical expressions for the
component availabilities. To see this, we consider the ith component at
a given point of time t and introduce Ni(t) as the number of failure and
repair events affecting component i in [0, t]. With times between events
being independent and exponentially distributed with mean 1 it follows that
Ni(t) has a Poisson distribution with mean t. Moreover, component i is
functioning at time t if and only if Ni(t) is even. Thus, the ith component
availability at time t is given by:

Ai(t) =
∞)

k=0

Pr(Ni(t) = 2k) =
∞)

k=0

t2k

(2k)!
e−t. (7.57)

Using (7.57) one can verify numerically that all the component availabilities
converge very fast towards their common stationary value, 0.5. As a result of
this the system availability, Aφ(t), converges very fast towards its stationary
value, 0.5, as well. In fact, for t > 20, numerical calculations show that
|Aφ(t) − 0.5| < 10−15. Similarly, the Birnbaum measures of importance
converges so that for t > 20, |I(i)B (t) − 0.375| < 10−15, i = 1, 2, 4, 5, while
|I(3)B (t) − 0.125| < 10−15. Thus, for t > 20 the true values of all the curves
are approximately constant. This makes it easy to evaluate and compare the
quality of the different Monte Carlo estimates in this particular case.

of Oslo. The program is freely available at http://www.riscue.org/eventcue/.

160 CHAPTER 7. DYNAMIC SYSTEM ANALYSIS

Figure 7.20: Interval estimate (black curve) and pointwise estimate (gray
curve) of the availability curve.

Figure 7.21: Interval estimate (black curve) and pointwise estimate (gray
curve) of the importance curve.

Figure 7.20 and Figure 7.21 show respectively the availability curve and
the criticality curve of component 1. The black curves are obtained using the
interval estimates, while the gray curves show the corresponding pointwise
estimate curves. In all cases we have used M = 1000 simulations and N =

7.8. ESTIMATING AVAILABILITY AND IMPORTANCE 161

100 sample points.
The plots clearly show the difference between the two methods. The black

interval estimate curves are much more stable, and thus much closer to the
true curve values, compared to the gray pointwise estimates.

One may think that increasing the number of sampling points would make
the pointwise curve estimate better as more information is sampled. However,
it turns out that the main effect of this is that the curve jumps more and
more up and down. In fact with shorter intervals between sampling points
the interval estimate becomes more unstable as well, and in the limit where
the interval lengths go to zero, the two methods become equivalent. The
only effective way of stabilizing the results for the pointwise curve estimate
is to increase the number of simulations, i.e., M .

Table 7.1: Standard deviations for the pointwise curve estimates
M 2000 4000 6000 8000
St.dev. 0.0121 0.0076 0.0062 0.0054

In Table 7.1 we have listed estimated standard deviations for pointwise
curve estimates for different values of M . We see that the standard deviation
shows a steady decline as M increases. The corresponding numbers for M =
1000 are 0.0055 for the interval curve estimate and 0.0148 for the pointwise
estimate. Thus, in this particular case we see that to obtain a pointwise
curve estimate with a comparable stability to the interval curve estimate,
one needs about eight times as many simulations.

For the interval curve estimate it is possible to obtain an even smoother
curve simply by increasing ∆. Still, in general ∆ should not be made too
large, as this could produce a curve where important effects are obscured.
Thus, in order to obtain optimal results, one should try out different val-
ues for ∆, and balance smoothness against the need of capturing significant
oscillation properties of the curve.

Now, if smoothness is important, it is of course possible to apply some
standard smoothing technique, such as moving averages or exponential smooth-
ing, to the pointwise curve estimate. While such post-smoothing would
clearly make the curve smoother, this technique does not add any new in-
formation to the estimate. The main advantage with the interval curve es-
timates is that such estimates actually use information about all events.
Especially in cases where events occur at a very high rate, this turns out to
be a great advantage.

162 CHAPTER 7. DYNAMIC SYSTEM ANALYSIS

7.9 Exercises
Exercise 1. Assume that T is Weibull distributed with parameters α > 0
and β > 0.
a) Show that:

E[T] = β · Γ(1
α
+ 1),

where:

Γ(a) =

= ∞

0

xa−1e−xdx, a > 0.

Hint: Use Lemma 7.4.2 and that a · Γ(a) = Γ(a+ 1), for all a > 0.

b) Show that:

Med[T] = β · [ln(2)]1/α

Exercise 2. Let (C,φ) be the binary monotone system shown in Figure
7.22. The lifetime of component i, Ti is Weibull-distributed with parameters
ai and bi, for all i ∈ C where:

a1 = 2.0, a2 = 2.5, a3 = 3.0, a4 = 1.0,

b1 = 50.0, b2 = 60.0, b3 = 70.0, b4 = 40.0.

a) Find the structure function of the system.
b) Consider the python script B.3.1. Modify this script so that you can use it
to calculate h(p(t)) for the system shown in Figure 7.22. Save the resulting
plot to a file.
c) Find the minimal path and cut sets of the system.
d) Consider the python script B.3.2. Modify this script so that you can use
it to estimate h(p(t)) for the system shown in Figure 7.22. Save the resulting
plot to a file. Compare the resulting plot to the one you found in (b).

Exercise 3. Consider a binary monotone system (C,φ) with minimal path
sets P1, . . . , Pp and minimal cut sets K1, . . . , Kk. We assume that the compo-
nents cannot be repaired, and let Ti denote the lifetime of component i ∈ C.
Moreover, we let S denote the lifetime of the system. Prove that:

S = min
1≤j≤k

max
i∈Kj

Ti = max
1≤j≤p

min
i∈Pj

Ti.

7.9. EXERCISES 163

1 2 3

1 2 4

2 3 4

Figure 7.22: A binary monotone system (C,φ).

Exercise 4. Assume that the component lifetimes have so-called propor-
tional hazards, that is:

F̄i(t) = exp(−λiR(t)), λi > 0, t ≥ 0, i = 1, . . . , n,

where R is a strictly increasing, differentiable function such that R(0) = 0,
and limt→∞ R(t) = ∞. Prove that for a series structure, we have:

I
(i)
B−P = I

(i)
N =

λi/n
j=1 λj

.

Exercise 5. Assume that the i’th component is irrelevant for the system φ.
Then, what is I

(i)
B−P and I

(i)
N ?

164 CHAPTER 7. DYNAMIC SYSTEM ANALYSIS

Chapter 8
Association and bounds for the system
reliability

In this chapter, we begin by introducing a natural kind of positive dependency
between random variables (for instance component states in a system). This
positive dependency is called association. We show that associated random
variables have some nice properties, which can be used in order to derive up-
per and lower bounds of the reliability of a system. As previously mentioned,
it is not always possible to derive the exact reliability of a system due to e.g.
computational time or complexity of the system in question. Nevertheless,
we would like to find out something about how reliable a system is. This is
the purpose of reliability bounds. In Section 8.2, we will derive several dif-
ferent such bounds, where some assume independence of components, while
others just assume that the component states are associated.

8.1 Associated random variables

So far, we have usually assumed that the components in a system are indepen-
dent, and hence that the corresponding random variables are independent.
However, in many real-life situations, this is not the case. Some examples of
such dependencies are components which are exposed to a common source of
outer stress (for instance parts of a windmill) and structures where several
components share a common load, so if one component fails, the load on the
other components increases (for instance parts of a bridge or a house). In

165

166 CHAPTER 8. ASSOCIATION AND RELIABILITY BOUNDS

this section, we define a concept of non-negative dependence between random
variables called association.

A fairly natural definition of non-negative association is that two random
variables S and T are associated if and only if Cov(S, T) ≥ 0. Though
this definition is intuitive, the actual definition of association is stricter and
applicable to any number of random variables.

Definition 8.1.1 Let T1, . . . , Tn be random variables, and let T = (T1, . . . , Tn).
We say that T1, . . . , Tn are associated if

Cov(Γ(T),∆(T)) ≥ 0,

for all binary non-decreasing functions Γ and ∆.

Note that according to this definition we only require Cov(Γ(T),∆(T)) ≥
0 for all binary non-decreasing functions. This property may seem some-
what strange. It turns out, however, that association implies the following
apparently stronger result:

Theorem 8.1.2 Let T1, . . . , Tn be associated random variables, and f and g
functions which are non-decreasing in each argument such that Cov(f(T), g(T))
exists, i.e.,

E[|f(T)|] < ∞, E[|g(T)|] < ∞, E[|f(T)g(T)|] < ∞.

Then we have:
Cov(f(T), g(T)) ≥ 0.

We skip the proof here and refer to Barlow and Proschan [6] for details.

Associated random variables have some very useful properties. In order
to establish these properties we need the following lemma:

Lemma 8.1.3 Let X, Y and Z be random variables, and assume that Cov(X, Y) <
∞. Then we have:

Cov(X, Y) = E[Cov(X, Y |Z)] + Cov[E(X|Z), E(Y |Z)].

8.1. ASSOCIATED RANDOM VARIABLES 167

Proof: By the definition of covariance we know that:

Cov(X, Y) = E(XY)− E(X)E(Y).

We then apply the law of total expectation and condition with respect to the
variable Z. This yields:

Cov[X, Y] = E[E(XY |Z)]− E[E(X|Z)]E[E(Y |Z)]

Now we rewrite the first term using the definition of covariance once again:

E[E(XY |Z)] = E[E(XY |Z)− E(X|Z)E(Y |Z)] + E[E(X|Z)E(Y |Z)]
= E[Cov(X, Y |Z)] + E[E(X|Z)E(Y |Z)]

Inserting this in the expression for Cov(X, Y) we get:

Cov[X, Y] = E[Cov(X, Y |Z)] + E[E(X|Z)E(Y |Z)]− E[E(X|Z)]E[E(Y |Z)]
= E[Cov(X, Y |Z)] + Cov[E(X|Z), E(Y |Z)],

which concludes the proof of the lemma. □

Theorem 8.1.4 Associated random variables have the following properties:
(i) Any subset of a set of associated random variables also consists of asso-
ciated random variables.
(ii) A single random variable is always associated.
(iii) Non-decreasing functions of associated random variables are associated.
(iv) If two sets of associated random variables are independent, then their
union is a set of associated random variables.

Proof: We note that (i) follows from (iii). However, we can also prove
this property directly. Thus, let T1, . . . , Tn be a set of associated random
variables, and let A ⊂ {1, . . . , n}. We would like to prove that {Ti}i∈A is a
set of associated random variables. To do so, let ΓA, ∆A be arbitrary, binary
functions which are non-decreasing in all of their arguments Ti, i ∈ A. We
then define:

Γ(T) = ΓA(T
A), ∆(T) = ∆A(T

A).

From this it follows that:

Cov(ΓA(T
A),∆A(T

A)) = Cov(Γ(T),∆(T)) ≥ 0,

168 CHAPTER 8. ASSOCIATION AND RELIABILITY BOUNDS

where the inequality follows from Definition 8.1.1 because we have assumed
that T1, . . . , Tn is a set of associated random variables. Hence, (i) is proved.

To prove (ii) we let T be a random variable, and let Γ,∆ be arbitrary,
binary functions which are non-decreasing in T . Then, since Γ,∆ are binary
and non-decreasing in T , there are two possible cases:

Case 1. Γ(T) ≤ ∆(T) for all T ,

Case 2. Γ(T) ≥ ∆(T) for all T .

We consider Case 1 only, as Case 2 can be handled similarly. Then, we have:

Cov(Γ(T),∆(T)) = E[Γ(T)∆(T)]− E[Γ(T)]E[∆(T)]

= E[Γ(T)]− E[Γ(T)]E[∆(T)]

= E[Γ(T)](1− E[∆(T)]) ≥ 0,

where the second equality follows from the fact that we are in case 1. This
means that either Γ(T) = ∆(T), in which case (since Γ,∆ are binary)
E[Γ(T)∆(T)] = E[Γ(T)]. Or, alternatively, Γ(T) = 0, ∆(T) = 1, in which
case E[Γ(T)∆(T)] = 0 = E[Γ(T)]. The inequality holds because Γ(T),∆(T) ∈
{0, 1} for all T . Hence, (ii) is proved as well.

We now turn to the proof of (iii) and let T1, . . . , Tn be associated, and
let T = (T1, . . . , Tn). Moreover, we let Si = fi(T), i = 1, . . . ,m, where
f1, . . . , fm are non-decreasing functions, and let S = (S1, . . . , Sm). Finally,
let Γ = Γ(S) and ∆ = ∆(S) be binary non-decreasing functions. Then
Γ(S) = Γ(f1(T), . . . , fm(T)) and ∆(S) = ∆(f1(T), . . . , fm(T)) are non-
decreasing functions of T as well. Hence, by Definition 8.1.1 it follows that:

Cov(Γ(S),∆(S)) = Cov(Γ(f1(T), . . . , fm(T)),∆(f1(T), . . . , fm(T))) ≥ 0.

Hence, we conclude that S1, . . . , Sm are associated as well.

Finally, we prove (iv). Thus, we let X and Y be two vectors of associated
random variables, and assume that X and Y are independent of each other.
Moreover, we assume that Γ = Γ(X,Y) and ∆ = ∆(X,Y) are binary and
non-decreasing functions in both X and Y . Then by Lemma 8.1.3 we have:

Cov(Γ,∆) = E[Cov(Γ,∆|X)] + Cov[E(Γ|X), E(∆|X)]. (8.1)

We then note that for any x, Γ(x,Y) and ∆(x,Y) are binary non-decreasing
functions of Y . Hence, we must have:

Cov(Γ(X,Y),∆(X,Y)|X = x) = Cov(Γ(x,Y),∆(x,Y)) ≥ 0, for all x,

8.1. ASSOCIATED RANDOM VARIABLES 169

where the equality follows since Y is independent of X, while the inequality
follows since Y is associated. This implies that:

E[Cov(Γ,∆|X)] ≥ 0. (8.2)

Moreover, E[Γ(x,Y)] and E[∆(x,Y)] are non-decreasing (but not nec-
essarily binary) functions of x. Hence, since X is associated, it follows by
Theorem 8.1.2 that:

Cov[E(Γ|X), E(∆|X)] ≥ 0. (8.3)

Note that since Γ and ∆ are binary, we must have that E(Γ|X) ∈ [0, 1] and
E(∆|X) ∈ [0, 1] with probability one. Thus, obviously Cov[E(Γ|X), E(∆|X)]
exists.

Combining (8.1), (8.2) and (8.3) implies that:

Cov(Γ,∆) ≥ 0.

Thus, we conclude that (X,Y) is associated. □

Theorem 8.1.5 Let T1, . . . , Tn be independent random variables. Then, they
are also associated.

Proof: The proof is by induction on n. The result obviously holds for n = 1
by Theorem 8.1.4 (ii). Assume that the theorem holds for n = m− 1. That
is, {T1, . . . , Tm−1} is a set of associated random variables. Moreover, by
Theorem 8.1.4 (ii), {Tm} is associated as well. By the assumption, these two
sets are independent. Hence, it follows from Theorem 8.1.4 (iv) that their
union {T1, . . . , Tm−1, Tm} is a set of associated random variables. Thus, the
result is proved by induction. □

At the completely opposite end of the scale, we have the following result:

Theorem 8.1.6 Let T1, . . . , Tn be completely positively dependent random
variables, i.e.,

P (T1 = T2 = . . . = Tn) = 1.

Then they are associated.

170 CHAPTER 8. ASSOCIATION AND RELIABILITY BOUNDS

Proof: Let Γ,∆ be binary functions which are non-decreasing in each argu-
ment and let T = (T1, . . . , Tn) and T 1 = (T1, . . . , T1). By the assumption it
follows that T and T 1 must have the same distribution. Hence, we get that:

Cov(Γ(T),∆(T)) = Cov(Γ(T 1),∆(T 1)) ≥ 0

where the final inequality follows by Theorem 8.1.4 (ii) and Definition 8.1.1.
□

In the next section, we will establish upper and lower bounds for the
system reliability. In order to do this, the following theorem is useful:

Theorem 8.1.7 Let X1, . . . , Xn be the associated or independent component
state variables of a monotone system (C,φ). Moreover, let the minimal path
series structures of the system be (P1, ρ1), . . . , (Pp, ρp), where:

ρj(X
Pj) =

"

i∈Pj

Xi, j = 1, . . . , p. (8.4)

Then, ρ1, . . . , ρp are associated. Similarly, let the minimal cut parallel struc-
tures of the system be (K1,κ1), . . . , (Kk,κk), where:

κj(X
Kj) =

#

i∈Kj

Xi, j = 1, . . . , k. (8.5)

Then, κ1, . . . ,κk are associated.

Proof: The result follows since ρ1, . . . , ρp in (8.4) and κ1, . . . ,κk in (8.5) are
non-decreasing functions of associated random variables, and hence associ-
ated by Theorem 8.1.4, (iii). □

The following result extends Theorem 8.1.4, (iii) to non-increasing func-
tions as well.

Theorem 8.1.8 Let T = (T1, . . . , Tn) be associated, and let:

Ui = gi(T), i = 1, . . . ,m,

where gi, i = 1, . . . ,m are non-increasing functions. Then, U = (U1, . . . , Um)
is associated.

8.1. ASSOCIATED RANDOM VARIABLES 171

Proof: Let Γ,∆ be binary non-decreasing functions, and introduce g(T) =
(g1(T), . . . , gm(T)). Thus, U = g(T). We then introduce

Γ̄(T) = 1− Γ(g(T)) = 1− Γ(U)

∆̄(T) = 1−∆(g(T)) = 1−∆(U)

It follows directly that Γ̄ and ∆̄ are binary and non-decreasing in Ti, i =
1, . . . , n. Hence, by the assumption that T is associated, it follows that:

Cov(Γ(U),∆(U))) = Cov(1− Γ̄(T), 1− ∆̄(T))

= Cov(1, 1) + Cov(1,−∆̄(T)) + Cov(−Γ̄(T), 1)

+ Cov(−Γ̄(T),−∆̄(T))

= Cov(Γ̄(T), ∆̄(T)) ≥ 0.

Hence, we conclude that U is associated. □

In order to check whether two random variables are associated, the fol-
lowing result can sometimes be used. It states that for two binary random
variables, association and non-negative covariance are equivalent.

Theorem 8.1.9 Let X and Y be two binary random variables. Then, X
and Y are associated if and only if

Cov(X, Y) ≥ 0.

Proof: Assume first that X and Y are associated. We may then choose
Γ(X, Y) = X and ∆(X, Y) = Y . Since obviously Γ and ∆ are binary and
non-decreasing functions, it follows from Definition 8.1.1 that Cov(X, Y) =
Cov(Γ,∆) ≥ 0.

We then assume conversely that Cov(X, Y) ≥ 0. If can prove that this
implies that Cov(Γ,∆) ≥ 0 for all binary non-decreasing functions, the result
is proved. Since there are only two variables in this case, X and Y , there are
only a very limited number of choices for Γ and ∆. In fact, the only choices
are:

Γ1 ≡ 0, Γ2 = X · Y, Γ3 = X, Γ4 = Y, Γ5 = X ∐ Y, Γ6 ≡ 1.

172 CHAPTER 8. ASSOCIATION AND RELIABILITY BOUNDS

Moreover, we have the following partial ordering:

Γ1 ≤ Γ2 ≤
>

Γ3

Γ4

?
≤ Γ5 ≤ Γ6.

Assume first that Γ and ∆ from the set {Γ1, . . . ,Γ6} such that Γ(X, Y) ≤
∆(X, Y). We then have:

Cov(Γ,∆) = E(Γ ·∆)− E(Γ) · E(∆)

= E(Γ)− E(Γ) · E(∆) = E(Γ)[1− E(∆)] ≥ 0.

The only possibility left is Γ = Γ3 = X and ∆ = Γ4 = Y . However, in this
case we get that:

Cov(Γ,∆) = Cov(X, Y) ≥ 0,

where the last inequality follows by the assumption. Hence, we conclude that
Cov(Γ,∆) ≥ 0 for all binary non-decreasing functions, and thus the result is
proved. □

8.2 Upper and lower bounds for the reliability
of monotone systems

As mentioned, it is often the case that we are unable to compute the exact
reliability of a system. This may be the case for large, complex systems where
the computations simply take too much time, but also for systems where the
components are not independent (recall that we assumed independence of
the components throughout Section 4). In this section, we derive several
different upper and lower bounds for the system reliability. These bounds
can be useful whenever computing the exact reliability is impossible or too
computationally costly.

Note that in this section, we will not always assume that the component
state variables are independent. However, to get useful bounds, we still need
to assume something about the dependencies between the components. In
most of the results of this section, this assumption will be that the component
state variables are associated (see Section 8.1).

The following theorem is a key result for deriving reliability bounds.

8.2. BOUNDS FOR THE SYSTEM RELIABILITY 173

Theorem 8.2.1 Let T1, . . . , Tn be associated random variables such that 0 ≤
Ti ≤ 1, i = 1, . . . , n. Then,

E[
n"

i=1

Ti] ≥
n"

i=1

E[Ti] (8.6)

E[
n#

i=1

Ti] ≤
n#

i=1

E[Ti] (8.7)

Proof: We note that since 0 ≤ Ti ≤ 1, both Ti and Si = 1−Ti are non-negative
random variables, i = 1, . . . , n. Hence, the product functions

$n
i=1 Ti and$n

i=1 Si are both non-decreasing in each argument.
By using Theorem 8.1.2, we find:

E[
n"

i=1

Ti]− E[T1]E[
n"

i=2

Ti] = Cov(T1,
n"

i=2

Ti) ≥ 0,

since the product function is non-decreasing in each argument because Ti ≥ 0,
i = 2, . . . , n. This implies that:

E[
n"

i=1

Ti] ≥ E[T1]E[
n"

i=2

Ti].

By repeated use of this inequality, we get (8.6).
From Theorem 8.1.8, S1, . . . , Sn are associated random variables. More-

over, 0 ≤ Si ≤ 1, i = 1, . . . , n, so we can apply (8.6) to these variables. From
this it follows that:

E[
n#

i=1

Ti] = 1− E[
n"

i=1

(1− Ti)] = 1− E[
n"

i=1

Si]

≤ 1−
n"

i=1

E(Si) = 1−
n"

i=1

(1− E[Ti])

=
n#

i=1

E[Ti],

so (8.7) is proved as well.
□

174 CHAPTER 8. ASSOCIATION AND RELIABILITY BOUNDS

Theorem 8.2.1 has an important interpretation: If we apply the theorem to
the binary component state variables X1, . . . , Xn, (8.6) says that for a series
structure of associated components, an incorrect assumption of independence
will lead to an underestimation of the system reliability. Correspondingly,
(8.7) says that for a parallel structure, an incorrect assumption of indepen-
dence between the components will lead to an overestimation of the system
reliability. Clearly, overestimating the system reliability can have serious con-
sequences in applications, and should be avoided. Since most systems are not
purely series or purely parallel, we conclude that for an arbitrary structure,
we cannot say for certain what the consequences of an incorrect assumption
of independence will be. This means that in any application where we do
not know for sure that the components are independent, simply assuming
independence in order to use one of the methods in Section 4 to compute the
exact system reliability can be dangerous. Fortunately, it is still possible to
obtain bounds on the system reliability.

In the next results we interpret Ti, i = 1, . . . , n as the lifetimes of compo-
nents in a binary monotone system.

Theorem 8.2.2 Let T1, . . . , Tn be non-negative associated random variables.
Then, for all ti, i = 1, . . . , n:

P [∩n
i=1(Ti > ti)] ≥

n"

i=1

P [Ti > ti], (8.8)

P [∩n
i=1(Ti ≤ ti)] ≥

n"

i=1

P [Ti ≤ ti]. (8.9)

Proof: Interpreting Ti as the lifetime of the ith component in a binary mono-
tone system, we may introduce the corresponding binary component state
process {Xi(t)}, i = 1, . . . , n, where:

Xi(t) =

,
-

.
1, t < Ti

0, t ≥ Ti.

In Figure 8.1 we have plotted Xi(t) as a function of t ≥ 0 for a given value
of Ti. The plot shows that Xi(t) is a non-increasing function of t. For a
fixed point of time t we may alternatively view Xi(t) as a function of the
lifetime Ti. The resulting plot is shown in Figure 8.2. From this plot we

8.2. BOUNDS FOR THE SYSTEM RELIABILITY 175

Ti

1

t

X (t)i

Figure 8.1: The binary component state process Xi(t) plotted as a function
of the time t ≥ 0.

Ti

1

t

X (t)i

Figure 8.2: The binary component state process Xi(t) plotted as a function
of the lifetime Ti for a given t ≥ 0.

see that Xi(t) is a non-decreasing function of Ti. Hence, by Theorem 8.1.4,
X1(t), . . . , Xn(t) are associated for all t ≥ 0.

176 CHAPTER 8. ASSOCIATION AND RELIABILITY BOUNDS

Hence, by applying (8.6):

P [∩n
i=1(Ti > ti)] = P [∩n

i=1(Xi(ti) = 1)]

= P [
n"

i=1

Xi(ti) = 1] = E[
n"

i=1

Xi(ti)]

≥
n"

i=1

E[Xi(ti)] =
n"

i=1

P [Xi(ti) = 1]

=
n"

i=1

P [Ti > ti],

so (8.8) is proved. The proof of (8.9) is similar by using (8.7) instead of (8.6)
and left as an exercise to the reader.

□

Note that the left hand side of (8.9) is the joint cumulative distribution
of T1, . . . , Tn, while the right hand side is the corresponding cumulative dis-
tribution in the case where T1, . . . , Tn are independent. As a corollary to
Theorem 8.2.2, we have:

Corollary 8.2.3 Let T1, . . . , Tn be non-negative associated random variables.
Then:

P (min
1≤i≤n

Ti > t) ≥
n"

i=1

P (Ti > t), (8.10)

P (max
1≤i≤n

Ti > t) ≤
n#

i=1

P (Ti > t). (8.11)

Proof: This follows from Theorem 8.2.2 by letting ti = t for i = 1, . . . , n.
Alternatively, this can also be proved by applying Theorem 8.2.1 to the
binary component states at time t, since min1≤i≤n Ti is the lifetime of a series
system and max1≤i≤n Ti is the lifetime of a parallel system. □

Now, we are ready to derive our first (crude) bounds of the reliability
of a monotone system. In words, these bounds say that for any monotone
system, the reliability is lower bounded by the reliability of a series system
and upper bounded by the reliability of a parallel system. This corresponds

8.2. BOUNDS FOR THE SYSTEM RELIABILITY 177

to our previous observation (see the comments after Theorem 2.2.4) that the
series system is the worst non-trivial monotone system, while the parallel
system is the best.

Theorem 8.2.4 Let X1, . . . , Xn be the component state variables of a non-
trivial binary monotone structure (C,φ) with component reliabilities p1, . . . , pn,
and assume that X1, . . . , Xn are associated. Then we have:

n"

i=1

pi ≤ h ≤
n#

i=1

pi.

Proof: We get:

n"

i=1

pi =
n"

i=1

E[Xi]

≤ E[
n"

i=1

Xi] ≤ E[φ(X)]

≤ E[
n#

i=1

Xi] ≤
n#

i=1

E[Xi]

=
n#

i=1

pi.

Here, the first inequality follows from (8.6), the second and third inequalities
from Theorem 2.2.4 and the fourth inequality follows from (8.7). □

As mentioned, these bounds are very crude, and usually not of much
practical use. Luckily, we are always able to establish better bounds than
those of Theorem 8.2.4 by including information about the minimal path
and cut sets of the system. These improved bounds are a corollary to the
following result:

Theorem 8.2.5 Consider a monotone structure (C,φ) with minimal path
sets P1, . . . , Pp, and minimal cut sets K1, . . . , Kk. Then we have:

max
1≤j≤p

P [min
i∈Pj

Xi = 1] ≤ h ≤ min
1≤j≤k

P [max
i∈Kj

Xi = 1].

178 CHAPTER 8. ASSOCIATION AND RELIABILITY BOUNDS

Proof: From (3.8) and (3.10), we get

min
i∈Pr

Xi ≤ max
1≤r≤p

min
i∈Pr

Xi = φ(X) = min
1≤s≤k

max
i∈Ks

Xi ≤ max
i∈Ks

Xi,

for all r = 1, . . . , p and all s = 1, . . . , k. This implies that:

P (min
i∈Pr

Xi = 1) ≤ h ≤ P (max
i∈Ks

Xi = 1)

for all r = 1, . . . , p and all s = 1, . . . , k. This proves the theorem. □

In Theorem 8.2.5, we made no assumptions about the dependence between
the components. In order to obtain an explicit expression for the lower
bound, we need to compute P (mini∈Pr Xi = 1), j = 1, . . . , p. Similarly,
to obtain an explicit expression for the upper bound, we need to compute
P (maxi∈Kr Xi = 1), j = 1, . . . , k. This is difficult without making further
assumptions about the joint distribution of the component state variables.
In the following corollary we make the assumption that the component state
variables are associated. This enables us to obtain explicit bounds.

Corollary 8.2.6 Consider the same monotone system (C,φ) as in Theo-
rem 8.2.5. Moreover, assume that the component state variables are associ-
ated with component reliabilities p1, . . . , pn. Then we have:

max
1≤j≤p

"

i∈Pj

pi ≤ h ≤ min
1≤j≤k

#

i∈Kj

pi.

Proof: The result follows immediately from Theorem 8.2.5 by using (8.6) and
(8.7) because: "

i∈Pj

pi ≤ E[
"

i∈Pj

Xi] = P [min
i∈Pj

Xi = 1]

and #

i∈Kj

pi ≥ E[
#

i∈Kj

Xi] = P [max
i∈Kj

Xi = 1].

□

The assumptions in Theorem 8.2.4 and Corollary 8.2.6 are the same. How-
ever, the bounds in Corollary 8.2.6 are obviously better than those in Theo-
rem 8.2.4 because:

n"

i=1

pi =
"

i∈Pj

pi
"

i/∈Pj

pi ≤
"

i∈Pj

pi ≤ max
1≤j≤p

"

i∈Pj

pi

8.2. BOUNDS FOR THE SYSTEM RELIABILITY 179

since pi ∈ [0, 1] for i = 1, . . . , n. A similar argument proves that the upper
bound in Corollary 8.2.3 is better than the one in Theorem 8.2.4.

If we in addition to the assumptions in Corollary 8.2.6 assume that the
components are independent, we get bounds which are sometimes better than
those in Corollary 8.2.6 and sometimes worse. These bounds are a corollary
to the following theorem:

Theorem 8.2.7 Let X1, . . . , Xn be the associated component states of a bi-
nary monotone system (C,φ) with minimal path series structures (P1, ρ1), . . . , (Pp, ρp))
and minimal cut parallel structures (K1,κ1), . . . , (Kk,κk)). Then,

k"

j=1

P (κj(X
Kj) = 1) ≤ h ≤

p#

j=1

P (ρj(X
Pj) = 1). (8.12)

Proof: From the comments after Theorem 8.1.4, it follows from Theorem 8.1.4
(iii) that the minimal path series structures, and the minimal cut parallel
structures, are associated. Hence, we get that:

k"

j=1

P (κj(X
Kj) = 1) ≤ E[

k"

j=1

κj(X
Kj]

= h

= E[

p#

j=1

ρj(X
Pj)]

≤
p#

j=1

P (ρj(X
Pj) = 1),

where the first inequality follows from (8.6), the first and second equalities
follow from (3.10) and (3.8) respectively and the final inequality follows from
(8.7). □

The problem with Theorem 8.2.7 is the same as the problem with The-
orem 8.2.5. Without having explicit expressions for the reliabilities of the
path series structures and cut parallel structures the bounds are difficult to
use. However, by assuming independent component state variables, we can
derive the following corollary.

180 CHAPTER 8. ASSOCIATION AND RELIABILITY BOUNDS

Corollary 8.2.8 Let (C,φ) be a binary monotone system of independent
component states and where the component reliabilities are p1, . . . , pn. Let
P1, . . . , Pn and K1, . . . , Kn be respectively the minimal path and cut sets of
the system. Then we have:

k"

j=1

#

i∈Kj

pi ≤ h(p) ≤
p#

j=1

"

i∈Pj

pi. (8.13)

Proof: For independent components, the lower bound in (8.13) is equal to
the one in (8.12) because

P (κj(X
Kj) = 1) = E[

#

i∈Kj

Xi] =
#

i∈Kj

pi.

The upper bound in (8.13) is proved in the same way. □

We conclude this section with an example.

Example 8.2.9 Consider a 3-out-of-4 system with pi = p, i = 1, 2, 3, 4.
We assume that all the component state variables are independent. We shall
compare the bounds from Corollary 8.2.6 to those from Corollary 8.2.8.

The minimal path sets for a 3-out-of-4 system are:

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4},

and the minimal cut sets are:

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}.

In the calculations below we will repeatedly use the formula for the reliability
of a parallel system of two components with independent component state
variables. Denoting the reliability of this system by h2, and assuming that
the components have reliability q, we have:

h2(q) = q ∐ q = 1− (1− q)(1− q) = 2q − q2.

We denote the lower and upper bounds in Corollary 8.2.6 by l1(p) and u1(p)
respectively. Since all the components have the same reliability, these bounds

8.2. BOUNDS FOR THE SYSTEM RELIABILITY 181

are given by:

l1(p) = max
1≤j≤4

"

i∈Pj

p = max
1≤j≤4

p3 = p3,

u1(p) = min
1≤j≤6

#

i∈Kj

p = min
1≤j≤6

h2(p) = 2p− p2.

Similarly, we denote the bounds in Corollary 8.2.8 by l2(p) and u2(p) respec-
tively. Again since all the components have the same reliability, and since
we have assumed that the component state variables are independent, these
bounds are given by:

l2(p) =
6"

j=1

#

i∈Kj

p =
6"

j=1

h2(p) = (2p− p2)6,

u2(p) =
4#

j=1

"

i∈Pj

p = h2(p
3)∐ h2(p

3) = 2(2p3 − p6)− (2p3 − p6)2.

From Section 2.5 we know that the reliability of the 3-out-of-4 system is given
by:

h(p) =
4)

i=3

0
4

i

1
pi(1− p)n−i = 4p3(1− p) + p4.

The bounds l1(p), u1(p), l2(p), u2(p), as well as the reliability function h(p),
are plotted in Figure 8.3.

From Figure 8.3, we see that in this case, the bounds from Corollary 8.2.8
are better than those from Corollary 8.2.6. However, note that the lower
bound from Corollary 8.2.6 is actually best for small values of p, while the
opposite is true for larger p-values. Correspondingly, the upper bound from
Corollary 8.2.6 is best for large p-values, while the upper bound from Corol-
lary 8.2.8 is best for smaller values of p.

By defining a new lower bound as the largest of the two lower bounds from
Corollary 8.2.6 and Corollary 8.2.8, and a new upper bound as the smallest of
the two upper bounds from the same corollaries, we get a new set of bounds
which is better than the previous ones. It is also possible to improve these
bounds further by using a modular decomposition of the system at hand.
We will not go into details on this, but refer to Natvig [50] for more on this
topic.

182 CHAPTER 8. ASSOCIATION AND RELIABILITY BOUNDS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
l1
u1
l2
u2
h

Figure 8.3: Illustration of the bounds in Example 8.2.9.

8.3 Exercises
Exercise 1. Prove (8.9) of Theorem 8.2.2 by using equation (8.7).

Exercise 2. Prove that the upper bound in Corollary 8.2.6 is better than
the one in Theorem 8.2.4.

Exercise 3. Prove the upper bound of Corollary 8.2.8.

Exercise 4. Prove the upper bound in Corollary 8.2.6 by applying the lower
bound on the dual structure function φD.

Exercise 5. Prove the upper bound in Corollary 8.2.8 by applying the lower
bound on the dual structure function φD.

Exercise 6. Consider the network in Figure 8.4 consisting of independent
components with component reliabilities p.
a) What is the reliability h(p) for this system?
b) For p ∈ [0, 1], write a program to compute the reliability h(p). Plot h(p).
c) In the same plot, illustrate the bounds from Corollary 8.2.6 and 8.2.8.
Comment on the result.

8.3. EXERCISES 183

1 2

3 4 5 6

7

S T

Figure 8.4: Illustration of the network for Exercise 8.2.6.

d) Is it possible to improve these bounds further?

184 CHAPTER 8. ASSOCIATION AND RELIABILITY BOUNDS

Chapter 9
Applications

In this chapter, we study two different applications of the theory presented
in the previous chapters. In Section 9.1, we show how to perform a reliability
analysis of two different kinds of fishing boat engines, while in Section 9.2,
we compute the reliability of a network for transmission of electronic pulses.

9.1 Case study: Reliability analysis and com-
parison of two fishing boat engines

This section is based on a real-life example provided by a Norwegian ship
certification agency.

We will perform a reliability analysis and comparison of two different
engines for fishing boats. In the following, we say that the boat engine is
functioning if and only if the propeller and the power supply are functioning.

In 1977 the certification agency only approved one of the two engines
we will study. The critical parts of this engine are a propulsion engine, an
auxiliary engine and a hydraulic operated clutch. In Natvig [50], you can
find a detailed illustration of the engine. We omit the details, and instead
focus on the parts which are essential to our reliability analysis.

We define the following fault-events which may happen in this engine:

F1 : The propulsion engine fails (9.1)
K1 : The hydraulic clutch fails
H1 : The auxiliary engine fails

185

186 CHAPTER 9. APPLICATIONS

Corresponding to the engine, we can make a fault tree to illustrate what
may cause engine failure. This fault tree is shown in Figure 9.1.

System error

OR

No propeller No power supply

OR AND

F1 K1 F1 H1

Figure 9.1: Fault tree for the first boat engine.

The "OR" part of the fault tree means that at least one of the faults
under the "OR" must occur for for the above fault to occur. For instance, in
order for there to be a system failure, either the propeller is not functioning
or there is no power supply. Correspondingly, the "AND" means that both
of the faults under the "AND" must occur for the fault to occur. That is, in
order for there to be no power supply, both F1 and H1 must happen. A more
detailed description of fault trees can be found in Barlow and Proschan [6].

The auxiliary engine is only used when the boat is at harbour, while the
propulsion engine and the clutch are used while the boat is running at sea.
The time at sea per year is 3000 hours, while the harbour time is 2000 hours.
Hence, the run time for the propulsion engine and the clutch is 3000 hours,
while the run time for the auxiliary engine is 2000 hours (per year). We

9.1. CASE STUDY: FISHING BOAT ENGINES 187

assume that the lifetime distributions of the components are exponential.
Due to the memoryless property of the exponential distribution and the fact
that we are considering mechanical components, this may be unrealistic. The
Weibull distribution (which takes aging of components into account) would
be preferable. However, to simplify, we assume exponential lifetimes.

Det Norske Veritas supplied point estimates for the failure rates, measured
in failures per hour run. For a diesel engine (such as the propulsion engine
and the auxiliary engine), this failure rate is estimated to be 2.96 · 10−4. For
a magnetic clutch, the estimate is 3.88 · 10−5, while for a mechanic clutch it
is 6.0 · 10−6 (we will use this later in the section). Due to lack of data for
hydraulic clutches, the error estimate for the magnetic clutch was used as an
approximation.

Based on this, we can compute the following estimates for the probability
of the basic fault events in (9.1) happening in one year:

P (F1) = 1− exp(−2.96 · 10−4 · 3000) = 0.58852, (9.2)
P (K1) = 1− exp(−3.88 · 10−5 · 3000) = 0.10988,

P (H1) = 1− exp(−2.96 · 10−4 · 2000) = 0.44678.

This gives the following estimates:

P (propeller failure in a year) = 1− (1− P (F1)) · (1− P (K1)) = 0.63373,

P (no power supply in a year) = P (H1) · P (F1) = 0.26294.

From this, the certification agency concluded that:

P (system failure in a year) = 1−(1−0.63373)(1−0.26294) = 0.73004. (9.3)

However, this method is incorrect because it does not take into account the
dependence which the basic fault F1 creates in the fault tree because it
occurs twice. In order to derive the correct reliability (or equivalently, the
probability of system failure within a year), we introduce the following binary

188 CHAPTER 9. APPLICATIONS

variables:

X1 =

!
1 if F1 does not occur within a year
0 otherwise

(9.4)

X2 =

!
1 if K1 does not occur within a year
0 otherwise

X3 =

!
1 if H1 does not occur within a year
0 otherwise

The fault tree 9.1 is equivalent to reliability block diagram shown in Fig-
ure 9.2. In the reliability block diagram component 1 with state variable X1

corresponds to the propulsion engine, component 2 with state variable X2

corresponds to the clutch, while component 3 with state variable X3 corre-
sponds to the auxiliary engine.

1 2

1

3

Figure 9.2: System equivalent to the fault tree.

From Figure 9.2, we see that component 3, i.e., the auxiliary engine, is
an irrelevant component. It does not matter whether the auxiliary engine is
working for the system to be working. This can also be seen by deriving the

9.1. CASE STUDY: FISHING BOAT ENGINES 189

structure function of the system in Figure 9.2:

φ1(X) = X1X2(1− (1−X1)(1−X3))

= X1X2 +X1X2X3 −X1X2X3

= X1X2.

Hence, we get the following correct estimate of the probability of system
error within a year.

P (System failure within a year) (9.5)
= P (φ1(X) = 0) = 1− P (φ1(X) = 1)

= 1− (1− P (F1))(1− P (K1)) = 0.63373

By comparing this to the estimate in equation (9.3), we see that the
certification agency ended up with a failure probability which is larger than
the actual one.

As mentioned in the beginning of the section, we would like to perform a
reliability analysis for two different engines, and compare them. Let us now
turn to the second engine, which is a two-engine system consisting of right
and left propulsion engines, right and left hydraulic clutches and a mechanical
clutch. Again, we will omit a detailed illustration of the system (this can be
found in Natvig [50], Figure 5.1.4). Instead, we focus on the corresponding
fault tree shown in Figure 9.3 consisting of the following basic fault-events:

F2 : Error in the left propulsion engine (9.6)
K2 : Error on left hydraulic clutch
F3 : Error in the right propulsion engine
K3 : Error on right hydraulic clutch
K4 : Error on mechanical clutch

For this system, both left and right engines are used at sea. At the harbour,
only the right engine is used (this runs the generator which produces power
when docking). Hence, the run time per year for the right engine is 5000
hours, and for the mechanical clutch it is 2000 hours (this is only used when
docking). For the left propulsion engine and the two hydraulic clutches, the
run time per year is 3000 hours, as they are only used at sea.

190 CHAPTER 9. APPLICATIONS

System error

OR

No propeller No power supply

AND AND

OR OR OR F2

No power supply

F2 K2 F3 K3 F3 K4

Figure 9.3: Fault tree for the second boat engine.

Based on the point estimates from Det Norske Veritas (see the comments
before equation (9.2)), we compute the following estimates for the probabil-
ities of the basic fault-events:

P (F2) = P (F1) = 0.58852, (9.7)
P (K2) = P (K3) = P (K1) = 0.10988,

P (F3) = 1− exp(−2.96 · 10−4 · 5000) = 0.77236,

P (K4) = 1− exp(−6 · 10−6 · 2000) = 0.01192.

9.1. CASE STUDY: FISHING BOAT ENGINES 191

This leads to the following estimates:

P (propeller failure in a year)
= [1− (1− P (F2))(1− P (K2))][1− (1− P (F3))(1− P (K3))]

= 0.63372 · 0.79737
= 0.50532,

P (no power supply in a year)
= [1− (1− P (F3))(1− P (K4))]P (F2)

= 0.77508 · 0.58852
= 0.45615.

If we make the same kind of error as was done for the one-engine system in
equation (9.3), we find that:

P (system error in a year) (9.8)
= 1− (1− 0.50532)(1− 0.45615) = 0.73097.

In order to correct this mistake, we introduce some binary random vari-
ables:

X1 =

!
1 if F2 does not occur within a year
0 if F2 occurs within a year

(9.9)

X2 =

!
1 if K2 does not occur within a year
0 if K2 occurs within a year

X3 =

!
1 if F3 does not occur within a year
0 if F3 occurs within a year.

X4 =

!
1 if K3 does not occur within a year
0 if K3 occurs within a year.

X5 =

!
1 if K4 does not occur within a year
0 if K4 occurs within a year.

192 CHAPTER 9. APPLICATIONS

Again, by letting component 1 with state variable X1, correspond to the
left propulsion engine, component 2 with state variable X2 correspond to the
left hydraulic clutch and so on, we see that the fault tree for the two-engine
system is equivalent to the reliability block diagram shown in Figure 9.4.

21

3 4

1

3 5

Figure 9.4: System equivalent to the fault tree for the two-engine system.

From this, we get that the structure function for the two-engine system
is:

φ2(X) = [1− (1−X1X2)(1−X3X4)][1− (1−X1)(1−X3X5)]

= (X1X2 +X3X4 −X1X2X3X4)(X1 +X3X5 −X1X3X5)

= X1X2 +X1X3X4 −X1X2X3X4 +X1X2X3X5 +X3X4X5

−X1X2X3X4X5 −X1X2X3X5 −X1X3X4X5 +X1X2X3X4X5

= X1X2 +X1X3X4 −X1X2X3X4 +X3X4X5 −X1X3X4X5

= X1X2 +X3X4[X1(1−X2) +X5(1−X1)].

Hence, all of the components are relevant since they are all part of the struc-
ture function. From this, we derive the correct estimate for the probability
of the two-engine system failing:

P (System error within a year) (9.10)
= 1− P (φ2(X) = 1)

= 1− E[φ2(X)]

= 1−
'
(1− P (F2)) · (1− P (K2)) + (1− P (F3)) · (1− P (K3))

· [(1− P (F2))P (K2) + (1− P (K4))P (F2)]
(

= 0.50666.

9.2. CASE STUDY: TRANSMISSION OF ELECTRONIC PULSES 193

To conclude, we see from equations (9.3) and (9.8) that when we are not
careful with taking the system structure into account in the correct way, the
two systems are (almost) equally reliable. However, if we do the reliability
analysis in the correct way, considering the actual structure of the system,
we find from equations (9.5) and (9.10) that the two-engine system is actu-
ally more reliable than the one-engine system (which was the system that
was approved by the certification agency). Intuitively, this is actually quite
obvious, since in the two-engine system, both engines can be used for both
running the propeller and supplying power. In the one-engine system, the
auxiliary engine is just an irrelevant component.

9.2 Case study: Reliability analysis of a net-
work for transmission of electronic pulses

In this case study, we will perform a reliability analysis of a system for trans-
mission of electronic pulses. This system consists of several identical parts.
As we shall see, this property can be utilized in order to simplify the calcu-
lations.

In this case study twe consider a multistate system. This means that
the system is not just functioning or failed. Instead the set of possible sys-
tem states is a set of non-negative integers. This approach provides a more
detailed description of the system. As before, we let:

Xi(t) = The state of component i at time t,

and assume that the stochastic processes {Xi(t), t ≥ 0}ni=1 are independent.
The structure function is given by:

φ(t) = φ(X(t)) = The state of the system at time t.

We assume that φ(t) ∈ {φ1, . . . ,φk}. In principle, one can find the distribu-
tion of the state of a multistate system by using the approach introduced in
Section 4.1, i.e., by enumerating all possible component states:

P (φ(t) = φj) =
)

x
I(φ(x) = φj) · P (X(t) = x), j = 1, . . . , k. (9.11)

where the indicator function I(φ(x) = φj) is 1 if φ(x) = φj and 0 otherwise.
However, as in Section 4.1, we typically need to reduce the number of terms

194 CHAPTER 9. APPLICATIONS

in this sum because the calculations quickly become too time-consuming. We
now assume that there exists variables Y1 = Y1(X), . . . , Ym = Ym(X) such
that φ(t) can be written:

φ(t) = φ(X(t)) = φ(Y (X(t))),

where Y (X(t)) = (Y1(X(t)), . . . , Ym(X(t))). In this case, the probability
distribution of φ can be found from the formula:

P (φ(t) = φj) =
)

y
I(φ(y) = φj)P (Y (X(t)) = y), j = 1, . . . , k. (9.12)

In order to use (9.12) to compute the system reliability, we have to compute
P (Y (X(t)) = y) for all y. Hence, if the number of possible values of Y
is large, little is gained by using (9.12) instead of (9.11). In some cases,
however, we can achieve a large reduction in the computational load by a
clever choice of Y1, . . . , Ym. In particular, this turns out to be the case for
the network in Figure 9.5.

The purpose of the system shown in Figure 9.5 is to ensure communication
between a control room and 5 production units. In Figure 9.5 the compo-
nents in the system are represented by blue circles. In addition to these
components, the system consists of a control room, 5 production units and
two connection units called A and B. To simplify the example somewhat, we
will not consider potential errors in the control room, the production units
and the connection units. Hence, the system consists of n = 52 components.

Each of the connection units, A and B, receive signals from the control
room via 6 input wires. The number of production units which can be con-
trolled by a connection unit is bounded by the number of functioning input
wires to the respective connection unit. That is, if only 3 of the input wires to
connection unit A are functioning, A can control at most 3 production units.
If all 6 of the input wires to A are functioning, then all of the 5 production
units can be controlled via connection unit A.

We assume that all of the components are stochastically independent, and
we also assume that all of the 12 input wires to the connection units A and
B have the same lifetime distributions. In particular, we assume that for any
wire between the control room and a connection unit we have:

P (The wire is functioning at time t) = w(t).

We observe that the part of the system which ensures communication between
the connection units A and B and the production units consists of 5 identical

9.2. CASE STUDY: TRANSMISSION OF ELECTRONIC PULSES 195

A

Control room

B

Prod. unit 2

Prod. unit 1

Prod. unit 3

Prod. unit 4

Prod. unit 5

Figure 9.5: A network for transmission of electronic pulses.

subsystems. Each of these subsystems consists of 8 components. We assume
that all of these subsystems have the same stochastic properties, in the sense
that the corresponding components in the different subsystems have the same
lifetime distributions.

196 CHAPTER 9. APPLICATIONS

Now, we define the state of the system, represented by the function φ, as:

φ(t) = The number of production units which can be controlled from
the control room at time t.

Thus, the set of possible values for φ is {0, 1, . . . , 5}. The components are
assumed to be either functioning or failed, so the component states are binary.
Hence, the system in Figure 9.5 is a multistate system of binary components.
The number of terms in the sum (9.11) for computing the distribution of φ is
252 = 4.504 ·1015, so finding this by enumerating all of the states is very time-
consuming. However, by introducing appropriate variables, we can obtain a
significant reduction of terms in (9.12) compared to (9.11). More specifically,
we introduce the following variables:

Y1(t) = The number of intact input wires to connection unit A at time t

Y2(t) = The number of intact input wires to connection unit B at time t

Y3(t) = The number of production units connected to A and B at time t

Y4(t) = The number of production units only connected to A at time t

Y5(t) = The number of production units only connected to B at time t.

The state of the system can now be expressed as:

φ(t) = W1(t) +W2(t) +W3(t), (9.13)

where:

W1(t) = min{Y1(t), Y4(t)}, W2(t) = min{Y2(t), Y5(t)}, (9.14)

W3(t) = min{(Y1(t)−W1(t)) + (Y2(t)−W2(t)), Y3(t)}.

In order to derive equation (9.13), we distribute the Y1(t) functioning
input wires to A and the Y2(t) functioning input wires to B between the 5
production units in such a way that as many production units as possible are
running. To do this, we first distribute input wires to the production units
which are only connected to one connection unit, i.e., the Y4(t) production
units only connected to A and the Y5(t) production units only connected to B.
In this way, we establish connection with W1(t) production units via A and
W2(t) connection units via B. When this is done, there are Y1(t)−W1(t) input
wires available via connection unit A, and Y2(t)−W2(t) input wires available

9.2. CASE STUDY: TRANSMISSION OF ELECTRONIC PULSES 197

via B. These are then used to establish connection to as many as possible of
the Y3(t) remaining production units. The number of production units which
can be reached in this way is then W3(t). Note that both Y1(t) −W1(t) an
Y2(t) − W2(t) may be 0. We conclude that W1(t) + W2(t) + W3(t) is the
number of production units which can be controlled from the control room.
Thus, equation (9.13) is indeed correct.

Next, we need to find the probability distributions of Y1(t), . . . , Y5(t). Note
that Y1(t) is a function of the state variables of the wires into connection unit
A, Y2(t) is a function of the state variables of the wires into connection unit
B, while the vector (Y3(t), Y4(t), Y5(t)) is a function of state variables of
the other 40 components. Since we have assumed that the components are
independent, this implies that Y1, Y2 and the vector (Y3(t), Y4(t), Y5(t)) are
independent. Note, however that Y3(t), Y4(t) and Y5(t) are dependent. In
fact we have 0 ≤ Y3(t) + Y4(t) + Y5(t) ≤ 5 for all t ≥ 0.

Both Y1(t) and Y2(t) are sums of 6 independent, identically distributed
binary random variables. Hence, from standard probability theory, Y1(t) and
Y2(t) are binomially distributed:

P (Yi(t) = y) =

0
6

y

1
[w(t)]y[1− w(t)]6−y, y = 0, 1, . . . , 6, i = 1, 2, (9.15)

We then consider the probability distribution of (Y3(t), Y4(t), Y5(t)). This
depends on the 5 subsystems which ensure communication between the con-
nection units and the production units. Each of these subsystems can be in
one out of four possible states, denoted SAB, SA, SB and S∅, where we define:

SAB = The prod. unit can communicate with both connection units
(9.16)

SA = The prod. unit can only communicate with connection unit A

SB = The prod. unit can only communicate with connection unit B

S∅ = The prod. unit cannot communicate with any connection unit.

Furthermore, we have assumed that the subsystems are independent and that
each of the subsystems have the same stochastic properties. This implies that
the probability of being in either of the four states SAB, SA, SB or S∅ at a
given time t is the same for all the subsystems.

We observe that at time t the variables Y3(t), Y4(t) and Y5(t) are the
number of production units in states SAB, SA and SB respectively. It follows

198 CHAPTER 9. APPLICATIONS

from standard probability theory that for t ≥ 0 the vector (Y3(t), Y4(t), Y5(t))
is multinomially distributed,. That is, we have:

P (Y3(t) = y3 ∩ Y4(t) = y4 ∩ Y5(t) = y5) =
5!

y3!y4!y5!(5− y3 − y4 − y5)!
(9.17)

· [p3(t)]y3 [p4(t)]y4 [p5(t)]y5 [1− p3(t)− p4(t)− p5(t)]
5−y3−y4−y5

where y3 = 0, 1, . . . , 5, y4 = 0, 1, . . . , 5 − y3, y5 = 0, 1, . . . , 5 − y3 − y4 and
p3(t), p4(t), p5(t) are the probabilities of a subsystem being in states SAB, SA

and SB respectively.
In order to compute the distribution of φ, all that remains is to find

p3(t), p4(t) and p5(t). To do so, we study the structure of the subsystems, as
shown in Figure 9.6, more closely.

A

B

1

2

3

4

5

6

7

8

Prod.

unit

Figure 9.6: Subsystem of a network for transmission of electronic pulses.

In Figure 9.6, we have numbered the components of the subsystem under
consideration from 1 through 8. We denote the corresponding component
state variables by X1, . . . , X8, and their respective reliabilities by q1, . . . , q8,
where we have simplified the notation by omitting the time t. Moreover, we

9.2. CASE STUDY: TRANSMISSION OF ELECTRONIC PULSES 199

introduce the events:

EA = {The production unit communicates with connection unit A}
EB = {The production unit communicates with connection unit B},

and observe that

p3(t) = P (EA ∩ EB), (9.18)
p4(t) = P (EA)− P (EA ∩ EB),

p5(t) = P (EB)− P (EA ∩ EB).

Computing P (EA ∩ EB)

To find this probability, we condition with respect to the two bridges in the
structure, i.e., components 3 and 6, and get:

P (EA ∩ EB) = P (EA ∩ EB|X3 = 1, X6 = 1)q3q6 (9.19)
+ P (EA ∩ EB|X3 = 1, X6 = 0)q3(1− q6)

+ P (EA ∩ EB|X3 = 0, X6 = 1)(1− q3)q6

+ P (EA ∩ EB|X3 = 0, X6 = 0)(1− q3)(1− q6).

The four conditional probabilities in (9.19) can be computed by series- and
parallel reductions (this is left as an exercise). They are given by:

P (EA ∩ EB|X3 = 1, X6 = 1) = q1q2[q4 + q5 − q4q5][q7 + q8 − q7q8], (9.20)
P (EA ∩ EB|X3 = 1, X6 = 0) = q1q2[q4q7 + q5q8 − q4q5q7q8],

P (EA ∩ EB|X3 = 0, X6 = 1) = q1q2q4q5[q7 + q8 − q7q8],

P (EA ∩ EB|X3 = 0, X6 = 0) = q1q2q4q5q7q8.

Computing P (EA) and P (EB)

Note that in order to compute P (EA), component 2 is irrelevant (see Fig-
ure 9.6). If we remove this component, we see that components 3 and 5 are
in series. By series redulction, we end up with a bridge structure (see Exam-
ple 3.1.2) connected in series with component 1. Hence, P (EA) is given by
the following (again, see Example 3.1.2):

P (EA) = q1q6[q4 + q3q5 − q3q4q5][q7 + q8 − q7q8] (9.21)
+ q1(1− q6)[q4q7 + q3q5q8 − q3q4q5q7q8].

200 CHAPTER 9. APPLICATIONS

Similarly, P (EB) is given by:

P (EB) = q2q6[q5 + q3q4 − q3q4q5][q7 + q8 − q7q8] (9.22)
+ q2(1− q6)[q5q8 + q3q4q7 − q3q4q5q7q8].

By inserting the expressions (9.19), (9.21) and (9.22) into (9.18), we have all
the probabilities we need in order to calculate the distribution of the system
state φ using equation (9.12).

What have we gained by this approach? Instead of enumerating all pos-
sible states of the 52 binary state variables of the components in Figure 9.5,
we now have to enumerate the possible states of just the five multinary
variables Y1, . . . Y5. We observe that Y1 and Y2 each attain 7 values in
the set {0, 1, . . . 6}. The vector (Y3, Y4, Y5) can attain any value in the set
{(Y3, Y4, Y5) : 0 ≤ Y3 + Y4 + Y5 ≤ 5, 0 ≤ Y3, Y4, Y5}. In order to count the
number of values in this set, we consider 6 different cases corresponding to
the possible values of Y3, and count the number of possible values for each
case, noting that if Y3 = y, then Y4 + Y5 ≤ 5− y, y = 0, 1, . . . , 5. Hence, we
get:

Case 0. Y3 = 0, Y4 + Y5 ≤ 5− 0 = 5 : 21 possible values, (9.23)
Case 1. Y3 = 1, Y4 + Y5 ≤ 5− 1 = 4 : 15 possible values,
Case 2. Y3 = 2, Y4 + Y5 ≤ 5− 2 = 3 : 10 possible values,
Case 3. Y3 = 3, Y4 + Y5 ≤ 5− 3 = 2 : 6 possible values,
Case 4. Y3 = 4, Y4 + Y5 ≤ 5− 4 = 1 : 3 possible values,
Case 5. Y3 = 5, Y4 + Y5 ≤ 5− 5 = 0 : 1 possible value.

Adding these counts up, we see that there are 56 values in total. Hence, the
sum in (9.12) for computing P (φ(t) = φj) contains 7 · 7 · 56 = 2744 terms
(since there are 7 possible values for Y1 and Y2, as well as 56 possible values
for (Y3, Y4, Y5)). This is very easy to compute, as opposed to the 4.504 · 1015
terms of the original method by simply enumerating the states. We see that
by introducing the new variables Y1, . . . , Y5, the computational load has been
significantly reduced. The same approach is useful in other systems where
the structure consists of many identical components and where there is a
strong symmetry. A difficulty with the method is that in practice, it may
not be possible to find efficient ways to introduce new variables. However,
as there is so much to be gained from the method when it works, it may be
worth spending some time trying to figure out which variables to introduce.

9.3. EXERCISES 201

A python implementation of the above methods can be found in Script
B.4.1 in Appendix B.4.

9.3 Exercises
Exercise 1. Use series- and parallel reductions to show that the conditional
probabilities in (9.19) are given by the expressions in (9.20).

Exercise 2. Explain why the 6 different values in (9.23) hold true (for
example, the only way Y4 + Y5 ≤ 0 for non-negative integers is for Y4 =
0, Y5 = 0).

202 CHAPTER 9. APPLICATIONS

Appendix A
Notations

AC The complement of a set. See Section 3.3.

≡ Identically equal.

φ(·) The structure function of a binary system. See equation (2.2).

h(·) The reliability function of a binary system. See equation (2.8).

$n
i=1 ai = a1 · a2 . . . · an The product operator.

<n
i=1 ai = 1−

$n
i=1(1− ai) The coproduct operator.

/
y∈{0,1}n . . . Sum over all possible n-dimensional binary vectors.

φD The dual structure function. See Definition 2.3.1.

0 A vector where all components are 0.

1 A vector where all components are 1.

203

204 APPENDIX A. NOTATIONS

Appendix B
Python scripts

This appendix contains various python scripts.

B.1 k-out-of-n systems and threshold systems
Script B.1.1
###
#
This program calculates the reliability of a k-out-of-n system
by finding the distribution of:
#
S = X_{1} + ... + X_{n}.
#
###

import numpy as np

Component reliabilities (p[0] is not in use)
p = [0.0, 0.75, 0.80, 0.82, 0.65, 0.88, 0.91, 0.92, 0.86]

Threshold
b = 6

Number of components
n = len(p) - 1

205

206 APPENDIX B. PYTHON SCRIPTS

After each iteration ps[s] = P(X_{1} + ... + X_{i+1} = s)
ps = np.zeros(n + 1)

Temporary storage of ps[s]
ph = np.zeros(n + 1)

Calculate ps[0] = P(X_{1} = 0) and ps[1] = P(X_{1} = 1):
ps[0] = 1 - p[1]
ps[1] = p[1]

Save these values for the next iteration
ph[0] = ps[0]
ph[1] = ps[1]

for j in range(1, n):
Calculate P(X_{1} + ... + X_{j+1} = 0):
ps[0] = ph[0] * (1 - p[j+1])

Calculate P(X_{1} + ... + X_{j+1} = s), s = 1, ..., j:
for s in range(1, j+1):

ps[s] = ph[s] * (1 - p[j+1]) + ph[s-1] * p[j+1]

Calculate P(X_{1} + ... + X_{j+1} = j+1):
ps[j+1] = ph[j] * p[j+1]

Save these values for the next iteration
for s in range(j+2):

ph[s] = ps[s]

At this stage ps[s] = P(X_{1} + ... + X_{n} = s), s = 0, 1, ..., n

for s in range(n+1):
print("P(S = ", s, ") = ", ps[s])

Calculate the system reliability h = P(S = b) + ... + P(S = n)
h = 0

B.1. K-OUT-OF-N SYSTEMS AND THRESHOLD SYSTEMS 207

for s in range(b, n+1):
h += ps[s]

print("h = ", h)

208 APPENDIX B. PYTHON SCRIPTS

Script B.1.2
###
#
This program calculates the reliability of a threshold system
by finding the distribution of:
#
S = a_{1} X_{1} + ... + a_{n} X_{n}.
#
###

import numpy as np

Component reliabilities (p[0] is not in use)
p = [0.0, 0.75, 0.80, 0.82, 0.65, 0.88, 0.91, 0.92, 0.86]

Component weights (a[0] is not in use)
a = [0, 2, 3, 5, 6, 7, 8, 8, 11]

Threshold
b = 32

Number of components
n = len(p) - 1

Cumulative weights (d[0] is not in use)
d = np.zeros(n+1, dtype=int)

for j in range(1, n + 1):
d[j] = a[j] + d[j-1]

After each iteration ps[s] = a_{1} X_{1} + ... + a_{n} X_{n} = s)
ps = np.zeros(d[n] + 1)

Temporary storage of ps[s]
ph = np.zeros(d[n] + 1)

Calculate ps[0] = P(X_{1} = 0) and ps[1] = P(X_{1} = 1):
ps[0] = 1 - p[1]
ps[a[1]] = p[1]

B.1. K-OUT-OF-N SYSTEMS AND THRESHOLD SYSTEMS 209

Save these values for the next iteration
ph[0] = ps[0]
ph[a[1]] = ps[a[1]]

for j in range(1, n):
Calculate P(a_{1} X_{1} + ... + a_{j} X_{j+1} = s), s < a[j+1]
for s in range(a[j+1]):

ps[s] = ph[s] * (1 - p[j+1])

Calculate P(a_{1} X_{1} + ... + a_{j} X_{j+1} = s), a[j+1] <= s <= d[j]
for s in range(a[j+1], d[j] + 1):

ps[s] = ph[s] * (1 - p[j+1]) + ph[s-a[j+1]] * p[j+1]

Calculate P(a_{1} X_{1} + ... + a_{j} X_{j+1} = s), s > d[j]
for s in range(d[j] + 1, d[j+1] + 1):

ps[s] = ph[s-a[j+1]] * p[j+1]

Save these values for the next iteration
for s in range(d[j+1] + 1):

ph[s] = ps[s]

At this stage ps[s] = P(a_{1} X_{1} + ... + a_{j} X_{j+1} = s),
s = 0, ... , d[n]

for s in range(d[n] + 1):
print("P(S = ", s, ") = ", ps[s])

Calculate the system reliability h = P(S = b) + ... + P(S = d[n])
h = 0

for s in range(d[n] + 1):
if s >= b:

h += ps[s]

print("h = ", h)

210 APPENDIX B. PYTHON SCRIPTS

Script B.1.3
###
#
This program calculates the reliability of a threshold system
by finding the distribution of:
#
S = (a_{1} X_{1} + ... + a_{n} X_{n}) / gcf.
#
where gcf denotes the greatest common factor of the
weights a_{1}, ..., a_{n}.
#
###

import numpy as np

Find the greatest common factor of a set of integers using
the Euclidean algorithm.
See: https://en.wikipedia.org/wiki/Greatest_common_divisor
def greatest_common_factor(x):

if len(x) == 1:
for i in x:

return i
m = np.inf
for i in x:

if i < m and i > 0:
m = i

y = {m}
for i in x:

if i > m:
y.add(i-m)

return greatest_common_factor(y)

Component reliabilities (p[0] is not in use)
p = [0.0, 0.75, 0.80, 0.82, 0.65, 0.88, 0.91, 0.92, 0.86]

Component weights (a[0] is not in use)
a = [0, 26, 39, 65, 78, 91, 104, 104, 143]

Threshold
b = 410

B.1. K-OUT-OF-N SYSTEMS AND THRESHOLD SYSTEMS 211

gcf = greatest_common_factor(set(a))
for i in range(len(a)):

a[i] = int(a[i] / gcf)

Number of components
n = len(p) - 1

Cumulative weights (d[0] is not in use)
d = np.zeros(n+1, dtype=int)

for j in range(1, n + 1):
d[j] = a[j] + d[j-1]

After each iteration ps[s] = a_{1} X_{1} + ... + a_{n} X_{n} = s)
ps = np.zeros(d[n] + 1)

Temporary storage of ps[s]
ph = np.zeros(d[n] + 1)

Calculate ps[0] = P(X_{1} = 0) and ps[1] = P(X_{1} = 1):
ps[0] = 1 - p[1]
ps[a[1]] = p[1]

Save these values for the next iteration
ph[0] = ps[0]
ph[a[1]] = ps[a[1]]

for j in range(1, n):
Calculate P(a_{1} X_{1} + ... + a_{j} X_{j+1} = s),
s = 0, 1, ... , (a[j+1]-1)
for s in range(a[j+1]):

ps[s] = ph[s] * (1 - p[j+1])

Calculate P(a_{1} X_{1} + ... + a_{j} X_{j+1} = s),
s = a[j+1], ..., d[j]:
for s in range(a[j+1], d[j] + 1):

ps[s] = ph[s] * (1 - p[j+1]) + ph[s-a[j+1]] * p[j+1]

Calculate P(a_{1} X_{1} + ... + a_{j} X_{j+1} = s),

212 APPENDIX B. PYTHON SCRIPTS

s = d[j]+1 , ... , d[j+1]:
for s in range(d[j] + 1, d[j+1] + 1):

ps[s] = ph[s-a[j+1]] * p[j+1]

Save these values for the next iteration
for s in range(d[j+1] + 1):

ph[s] = ps[s]

At this stage ps[s] = P(a_{1} X_{1} + ... + a_{j} X_{j+1} = s),
s = 0, 1, ... , d[n]

for s in range(d[n] + 1):
print("P(S = ", s, ") = ", ps[s])

Calculate the system reliability:
h = P(S = b) + ... + P(S = d[n])
h = 0

for s in range(d[n] + 1):
if gcf * s >= b:

h += ps[s]

print("h = ", h)

B.2. BINARY DECISION DIAGRAMS 213

B.2 Binary decision diagrams

Script B.2.1
###
#
This file contains various classes and methods
needed to handle BDDs [Filename: c_bdd.py]
#
###

Constants
LEVL_PREFIX = ’L’
COMP_PREFIX = ’C’
NODE_PREFIX = ’N’

FAILED = 0
FUNCTIONING = 1

PRINT_PROBABILITIES = True

class BDDLevel:
def __init__(self, sys, i):

self.system = sys
self.index = i
self.nodes = []

def getName(self):
return LEVL_PREFIX + str(self.index)

def getNextLevel(self):
return self.system.getLevel(self.index + 1)

def getPrevLevel(self):
return self.system.getLevel(self.index - 1)

def getFailedNode(self):
return self.system.getFailedNode()

def getFunctioningNode(self):
return self.system.getFunctioningNode()

214 APPENDIX B. PYTHON SCRIPTS

def addNode(self, nd):
self.nodes.append(nd)

def getNodeIndex(self, nd):
return self.nodes.index(nd)

def createLeaves(self):
k = len(self.nodes)
for j in range(k):

self.nodes[j].createLeaves()

def initializeProbability(self):
k = len(self.nodes)
for j in range(k):

self.nodes[j].initializeProbability()

def propagateProbability(self):
k = len(self.nodes)
for j in range(k):

self.nodes[j].propagateProbability()

def printLevel(self):
print(self.getName(), "[", sep = "", end = "")
k = len(self.nodes)
for j in range(k):

self.nodes[j].printNode()
if j < k-1:

print(", ", sep = "", end = "")
print("]")

class BDDStructure:
def __init__(self, n):

self.order = n
self.pivotIndex = 0
self.components = []

def addComponent(self, comp):
self.components.append(comp)

B.2. BINARY DECISION DIAGRAMS 215

def getPivotComponent(self):
self.selectPivotIndex()
return self.components[self.pivotIndex]

def selectPivotIndex(self):
pass

def restriction(self):
pass

def contraction(self):
pass

def isFunctioning(self):
pass

def isFailed(self):
pass

class BDDSystem:
def __init__(self, st):

self.structure = st
self.order = self.structure.order
self.components = []
for i in range(self.order):

comp = BDDComponent(self, i)
self.components.append(comp)
self.structure.addComponent(comp)

self.levels = []
for i in range(self.order):

levl = BDDLevel(self, i)
self.levels.append(levl)

self.root = BDDNode(self.levels[0], st)
self.levels[0].addNode(self.root)
self.failedNode = BDDNode(None, None, nm = "D0")
self.functioningNode = BDDNode(None, None, nm = "D1")
for i in range(self.order):

self.levels[i].createLeaves()

216 APPENDIX B. PYTHON SCRIPTS

def getLevel(self, i):
if i < 0:

return None
elif i < self.order:

return self.levels[i]
else:

return None

def getRoot(self):
return self.root

def getFailedNode(self):
return self.failedNode

def getFunctioningNode(self):
return self.functioningNode

Calculate reliability when all components have equal reliability.
rel = The common reliability
def calculateReliability0(self, rel):

for i in range(self.order):
self.components[i].setProbability(rel)

self.root.initializeProbability(1)
for i in range(1, self.order):

self.levels[i].initializeProbability()
self.failedNode.initializeProbability()
self.functioningNode.initializeProbability()
for i in range(self.order):

self.levels[i].propagateProbability()
return self.failedNode.getProbability(), \

self.functioningNode.getProbability()

Calculate reliability for a given vector of component reliabilities.
rv = The vector of component reliabilities
def calculateReliability(self, rv):

for i in range(self.order):
self.components[i].setProbability(rv[i])

self.root.initializeProbability(1)
for i in range(1, self.order):

B.2. BINARY DECISION DIAGRAMS 217

self.levels[i].initializeProbability()
self.failedNode.initializeProbability()
self.functioningNode.initializeProbability()
for i in range(self.order):

self.levels[i].propagateProbability()
return self.failedNode.getProbability(), \

self.functioningNode.getProbability()

def printSystem(self):
for i in range(self.order):

self.levels[i].printLevel()

class BDDComponent:
def __init__(self, sys, i):

self.system = sys
self.index = i
self.probability = 0

def getName(self):
return COMP_PREFIX + str(self.index)

def setProbability(self, p):
self.probability = p

def getProbability(self):
return self.probability

class BDDNode:
def __init__(self, lv, st, rt = None, nm = ""):

self.level = lv
self.structure = st
self.root = rt
if self.structure != None:

self.component = self.structure.getPivotComponent()
else:

self.component = None
self.left = None
self.right = None

218 APPENDIX B. PYTHON SCRIPTS

self.probability = 0
self.name = nm

def getName(self):
if self.level != None:

return NODE_PREFIX + str(self.level.getNodeIndex(self))
else:

return self.name

def isRoot(self):
return (self.root == None)

def isLeaf(self):
return (self.level == None)

def initializeProbability(self, p = 0):
self.probability = p

def addProbability(self, p):
self.probability += p

def getProbability(self):
return self.probability

def createLeaves(self):
if not self.isLeaf():

nextLevel = self.level.getNextLevel()
leftStructure = self.structure.restriction()
if leftStructure.isFailed():

self.left = self.level.getFailedNode()
elif nextLevel != None:

self.left = BDDNode(nextLevel, leftStructure, self)
nextLevel.addNode(self.left)

else:
self.left = self.level.getFailedNode()

rightStructure = self.structure.contraction()
if rightStructure.isFunctioning():

self.right = self.level.getFunctioningNode()
elif nextLevel != None:

self.right = BDDNode(nextLevel, rightStructure, self)

B.2. BINARY DECISION DIAGRAMS 219

nextLevel.addNode(self.right)
else:

self.right = self.level.getFunctioningNode()

def propagateProbability(self):
if self.component != None:

p = self.component.getProbability()
self.left.addProbability(self.probability * (1-p))
self.right.addProbability(self.probability * p)

def printNode(self):
if PRINT_PROBABILITIES:

print(self.getName(), "(", \
self.getProbability(), ")", sep = "", end = "")

else:
print(self.getName(), "()", sep = "", end = "")

220 APPENDIX B. PYTHON SCRIPTS

Script B.2.2
###
#
This file contains various classes and methods
needed to handle ROBDDs [Filename: c_robdd.py]
#
###

Constants
COMP_PREFIX = ’C’
NODE_PREFIX = ’N’

FAILED = 0
FUNCTIONING = 1

DO_SIMPLIFY = True
PRINT_PROBABILITIES = True

def SET_DO_SIMPLIFY(flag):
global DO_SIMPLIFY
DO_SIMPLIFY = flag

def SET_PRINT_PROBABILITIES(flag):
global PRINT_PROBABILITIES
PRINT_PROBABILITIES = flag

class ROBDDComponent:
def __init__(self, sys, i):

self.system = sys
self.index = i
self.nodes = []

def getName(self):
return COMP_PREFIX + str(self.index)

def getNextComponent(self):
return self.system.getComponent(self.index + 1)

def getPrevComponent(self):
return self.system.getComponent(self.index - 1)

B.2. BINARY DECISION DIAGRAMS 221

def getFailedNode(self):
return self.system.getFailedNode()

def getFunctioningNode(self):
return self.system.getFunctioningNode()

def addNode(self, nd):
self.nodes.append(nd)

def removeNode(self, nd):
self.nodes.remove(nd)

def getNodeIndex(self, nd):
return self.nodes.index(nd)

def createLeaves(self):
k = len(self.nodes)
for j in range(k):

self.nodes[j].createLeaves()

def simplify(self):
if DO_SIMPLIFY:

k1 = len(self.nodes)
for j1 in range(k1-1):

i1 = k1-2-j1
n1 = self.nodes[i1]
k2 = len(self.nodes)
for j2 in range(k2-i1-1):

i2 = k2-1-j2
n2 = self.nodes[i2]
if n1.isEquivalentTo(n2):

n1.mergeNode(n2)

def initializeProbability(self):
k = len(self.nodes)
for j in range(k):

self.nodes[j].initializeProbability()

def propagateProbability(self, rel):

222 APPENDIX B. PYTHON SCRIPTS

k = len(self.nodes)
for j in range(k):

self.nodes[j].propagateProbability(rel)

def printComponent(self):
print(self.getName(), "[", sep = "", end = "")
k = len(self.nodes)
for j in range(k):

self.nodes[j].printNode()
if j < k-1:

print(", ", sep = "", end = "")
print("]")

class ROBDDStructure:
def __init__(self, n):

self.order = n

def getOrder(self):
return self.order

def restriction(self):
pass

def contraction(self):
pass

def isFunctioning(self):
pass

def isFailed(self):
pass

def isEquivalentTo(self, s):
pass

def mergeStructure(self, s):
pass

B.2. BINARY DECISION DIAGRAMS 223

class ROBDDSystem:
def __init__(self, st):

self.structure = st
self.order = self.structure.getOrder()
self.components = []
for i in range(self.order):

comp = ROBDDComponent(self, i)
self.components.append(comp)

self.root = ROBDDNode(self.components[0], self.structure)
self.failedNode = ROBDDNode(None, None, nm = "D0")
self.functioningNode = ROBDDNode(None, None, nm = "D1")
for i in range(self.order):

self.components[i].createLeaves()
if (i+1) < self.order:

self.components[i+1].simplify()

def getComponent(self, i):
if i < 0:

return None
elif i < self.order:

return self.components[i]
else:

return None

def getRoot(self):
return self.root

def getFailedNode(self):
return self.failedNode

def getFunctioningNode(self):
return self.functioningNode

Calculate reliability when all components have equal reliability.
rel = The common reliability
def calculateReliability0(self, rel):

self.root.initializeProbability(1)
for i in range(1, self.order):

self.components[i].initializeProbability()
self.failedNode.initializeProbability()

224 APPENDIX B. PYTHON SCRIPTS

self.functioningNode.initializeProbability()
for i in range(self.order):

self.components[i].propagateProbability(rel)
return self.failedNode.getProbability(), \

self.functioningNode.getProbability()

Calculate reliability for a given vector of component reliabilities.
rv = The vector of component reliabilities
def calculateReliability(self, rv):

self.root.initializeProbability(1)
for i in range(1, self.order):

self.components[i].initializeProbability()
self.failedNode.initializeProbability()
self.functioningNode.initializeProbability()
for i in range(self.order):

self.components[i].propagateProbability(rv[i])
return self.failedNode.getProbability(), \

self.functioningNode.getProbability()

def printSystem(self):
for i in range(self.order):

self.components[i].printComponent()

class ROBDDNode:
def __init__(self, cp, st, rt = None, nm = ""):

self.component = cp
if cp != None:

self.component.addNode(self)
self.structure = st
if rt == None:

self.roots = None
else:

self.roots = [rt]
self.left = None
self.right = None
self.probability = 0
self.name = nm

def getName(self):

B.2. BINARY DECISION DIAGRAMS 225

if self.component != None:
return NODE_PREFIX + str(self.component.getNodeIndex(self))

else:
return self.name

def addRoot(self, rt):
if self.roots == None:

self.roots = [rt]
else:

self.roots.append(rt)

def replaceSucc(self, old_nd, new_nd):
if self.left == old_nd:

self.left = new_nd
if self.right == old_nd:

self.right = new_nd

def isEquivalentTo(self, nd):
return self.structure.isEquivalentTo(nd.structure)

def mergeNode(self, nd):
m = len(nd.roots)
for j in range(m):

self.addRoot(nd.roots[j])
nd.roots[j].replaceSucc(nd, self)

self.structure.mergeStructure(nd.structure)
self.component.removeNode(nd)

def isRoot(self):
return (self.roots == None)

def isLeaf(self):
return (self.component == None)

def initializeProbability(self, p = 0):
self.probability = p

def addProbability(self, p):
self.probability += p

226 APPENDIX B. PYTHON SCRIPTS

def getProbability(self):
return self.probability

def createLeaves(self):
if not self.isLeaf():

nextComponent = self.component.getNextComponent()
leftStructure = self.structure.restriction()
if leftStructure.isFailed():

self.left = self.component.getFailedNode()
elif nextComponent != None:

self.left = ROBDDNode(nextComponent, leftStructure, self)
else:

self.left = self.component.getFailedNode()
rightStructure = self.structure.contraction()
if rightStructure.isFunctioning():

self.right = self.component.getFunctioningNode()
elif nextComponent != None:

self.right = ROBDDNode(nextComponent, rightStructure, self)
else:

self.right = self.component.getFunctioningNode()

def propagateProbability(self, p):
self.left.addProbability(self.probability * (1-p))
self.right.addProbability(self.probability * p)

def printNode(self):
if PRINT_PROBABILITIES:

print(self.getName(), "(", \
self.getProbability(), ")", sep = "", end = "")

else:
print(self.getName(), "()", sep = "", end = "")

B.2. BINARY DECISION DIAGRAMS 227

Script B.2.3
###
#
This file contains various classes and methods
needed to handle threshold systems using either
BDD or ROBDD methods [Filename: c_threshold.py]
#
###

from c_bdd import BDDStructure
from c_robdd import ROBDDStructure

class BDDThreshold(BDDStructure):
def __init__(self, w, wsum, th):

super().__init__(len(w))
self.weights = w
self.weightsum = wsum
self.threshold = th

def selectPivotIndex(self):
max_w = -1
max_i = -1
for i in range(self.order):

if self.weights[i] > max_w:
max_w = self.weights[i]
max_i = i

self.pivotIndex = max_i

def restriction(self):
w = []
for i in range(self.order):

if i != self.pivotIndex:
w.append(self.weights[i])

wsum = self.weightsum - self.weights[self.pivotIndex]
struct = BDDThreshold(w, wsum, self.threshold)
for i in range(self.order):

if i != self.pivotIndex:
struct.addComponent(self.components[i])

return struct

228 APPENDIX B. PYTHON SCRIPTS

def contraction(self):
w = []
for i in range(self.order):

if i != self.pivotIndex:
w.append(self.weights[i])

wsum = self.weightsum - self.weights[self.pivotIndex]
struct = BDDThreshold(w, wsum, \

self.threshold - self.weights[self.pivotIndex])
for i in range(self.order):

if i != self.pivotIndex:
struct.addComponent(self.components[i])

return struct

def isFunctioning(self):
return self.threshold <= 0

def isFailed(self):
return self.threshold > self.weightsum

class ROBDDThreshold(ROBDDStructure):
def __init__(self, w, wsum, th):

super().__init__(len(w))
self.weights = w
self.weightsum = wsum
self.threshold = th

def restriction(self):
w = []
for i in range(1, self.order):

w.append(self.weights[i])
wsum = self.weightsum - self.weights[0]
return ROBDDThreshold(w, wsum, self.threshold)

def contraction(self):
w = []
for i in range(1, self.order):

w.append(self.weights[i])

B.2. BINARY DECISION DIAGRAMS 229

wsum = self.weightsum - self.weights[0]
return ROBDDThreshold(w, wsum, \

self.threshold - self.weights[0])

def isFunctioning(self):
return self.threshold <= 0

def isFailed(self):
return self.threshold > self.weightsum

def isEquivalentTo(self, s):
return self.threshold == s.threshold

230 APPENDIX B. PYTHON SCRIPTS

Script B.2.4
###
#
Construct a BDD and a ROBDD for a given threshold
system and evaluate its reliability
#
###

from c_bdd import BDDSystem
from c_robdd import ROBDDSystem
from c_threshold import BDDThreshold, ROBDDThreshold

Component reliabilities
p = 0.5

Component weights
a = [8, 7, 6, 5, 3, 2]

Threshold
b = 20

Number of components
n = len(a)

Sum of weights
wsum = 0
for wg in a:

wsum += wg

sys = BDDSystem(BDDThreshold(a, wsum, b))

result = sys.calculateReliability0(p)
sys.printSystem()

print("")
print("---------------")
print("BDD-method:")
print("---------------")
print("System unreliability = ", result[0])

B.2. BINARY DECISION DIAGRAMS 231

print("System reliability = ", result[1])

print("")
print("------------------------")
print("")

sys = ROBDDSystem(ROBDDThreshold(a, wsum, b))

result = sys.calculateReliability0(p)
sys.printSystem()

print("")
print("---------------")
print("ROBDD-method:")
print("---------------")
print("System unreliability = ", result[0])
print("System reliability = ", result[1])

232 APPENDIX B. PYTHON SCRIPTS

Script B.2.5
###
#
Construct a BDD and a ROBDD for a given threshold
system and evaluate its reliability
#
###

from c_bdd import BDDSystem
from c_robdd import ROBDDSystem
from c_threshold import BDDThreshold, ROBDDThreshold

Component reliabilities
p = 0.5

Component weights
a = [11, 8, 8, 7, 6, 5, 3, 2]

Threshold
b = 32

Number of components
n = len(a)

Sum of weights
wsum = 0
for wg in a:

wsum += wg

sys = BDDSystem(BDDThreshold(a, wsum, b))

result = sys.calculateReliability0(p)
sys.printSystem()

print("")
print("---------------")
print("BDD-method:")
print("---------------")
print("System unreliability = ", result[0])

B.2. BINARY DECISION DIAGRAMS 233

print("System reliability = ", result[1])

print("")
print("------------------------")
print("")

sys = ROBDDSystem(ROBDDThreshold(a, wsum, b))

result = sys.calculateReliability0(p)
sys.printSystem()

print("")
print("---------------")
print("ROBDD-method:")
print("---------------")
print("System unreliability = ", result[0])
print("System reliability = ", result[1])

234 APPENDIX B. PYTHON SCRIPTS

Script B.2.6
###
#
This file contains various classes and methods
needed to handle consecutive threshold systems
using either BDD or ROBDD methods
[Filename: c_conthreshold.py]
#
###

from c_bdd import BDDStructure
from c_robdd import ROBDDStructure

class BDDConsecutiveThreshold(BDDStructure):
def __init__(self, w, wsum, s0, th):

super().__init__(len(w))
self.weights = w
self.weightsum = wsum
self.initialvalue = s0
self.threshold = th

def selectPivotIndex(self):
return 0

def restriction(self):
w = []
for i in range(1, self.order):

w.append(self.weights[i])
struct = BDDConsecutiveThreshold(w, self.weightsum - self.weights[0], \

0, self.threshold)
for i in range(1, self.order):

struct.addComponent(self.components[i])
return struct

def contraction(self):
w = []
for i in range(1, self.order):

w.append(self.weights[i])
struct = BDDConsecutiveThreshold(w, self.weightsum - self.weights[0], \

self.initialvalue + self.weights[0], self.threshold)

B.2. BINARY DECISION DIAGRAMS 235

for i in range(1, self.order):
struct.addComponent(self.components[i])

return struct

def isFunctioning(self):
return self.threshold <= self.initialvalue

def isFailed(self):
return self.threshold > self.weightsum + self.initialvalue

class ROBDDConsecutiveThreshold(ROBDDStructure):
def __init__(self, w, wsum, s0, th):

super().__init__(len(w))
self.weights = w
self.weightsum = wsum
self.initialvalue = s0
self.threshold = th

def restriction(self):
w = []
for i in range(1, self.order):

w.append(self.weights[i])
return ROBDDConsecutiveThreshold(w, self.weightsum - self.weights[0], \

0, self.threshold)

def contraction(self):
w = []
for i in range(1, self.order):

w.append(self.weights[i])
return ROBDDConsecutiveThreshold(w, self.weightsum - self.weights[0], \

self.initialvalue + self.weights[0], self.threshold)

def isFunctioning(self):
return self.threshold <= self.initialvalue

def isFailed(self):
return self.threshold > self.weightsum + self.initialvalue

def isEquivalentTo(self, s):

236 APPENDIX B. PYTHON SCRIPTS

return self.initialvalue == s.initialvalue

B.2. BINARY DECISION DIAGRAMS 237

Script B.2.7
###
#
Construct a BDD and a ROBDD for a given consecutive
threshold system and evaluate its reliability
#
###

from c_bdd import BDDSystem
from c_robdd import ROBDDSystem
from c_conthreshold import \

BDDConsecutiveThreshold, ROBDDConsecutiveThreshold

Component reliabilities
p = 0.5

Component weights
a = [8, 7, 6, 5, 3, 2]

Threshold
b = 10

Number of components
n = len(a)

Sum of weights
wsum = 0
for wg in a:

wsum += wg

sys = BDDSystem(BDDConsecutiveThreshold(a, wsum, 0, b))

result = sys.calculateReliability0(p)
sys.printSystem()

print("")
print("---------------")
print("BDD-method:")

238 APPENDIX B. PYTHON SCRIPTS

print("---------------")
print("System unreliability = ", result[0])
print("System reliability = ", result[1])

print("")
print("------------------------")
print("")

sys = ROBDDSystem(ROBDDConsecutiveThreshold(a, wsum, 0, b))

result = sys.calculateReliability0(p)
sys.printSystem()

print("")
print("---------------")
print("ROBDD-method:")
print("---------------")
print("System unreliability = ", result[0])
print("System reliability = ", result[1])

B.2. BINARY DECISION DIAGRAMS 239

Script B.2.8
###
#
This file contains various classes and methods
needed to handle network systems
[Filename: c_graph.py]
#
###

import numpy as np

from c_bdd import BDDStructure
from c_robdd import ROBDDStructure

class GraphNode:
def __init__(self):

self.edges = []
self.marked = False
self.tempID = -1
self.state = 1 # 1 = FUNCTIONING, 0 = FAILED

def addEdge(self, e):
if (self.edges.count(e) == 0):

self.edges.append(e)

def removeEdge(self, e):
if (self.edges.count(e) > 0):

self.edges.remove(e)

def removeAllEgdes(self):
self.edges.clear()

def edgeCount(self):
return len(self.edges)

def mergeNode(self, n):
c = n.edgeCount()
for j in range(c):

e = n.edges[j]

240 APPENDIX B. PYTHON SCRIPTS

self.addEdge(e)
e.move(n, self)

n.removeAllEgdes()

def isMarked(self):
return self.marked

def mark(self):
self.marked = True

def unmark(self):
self.marked = False

def setTempID(self, i):
self.tempID = i

def getTempID(self):
return self.tempID

def setState(self, s):
self.state = s

def getState(self):
return self.state

def isFunctioning(self):
return (self.state == 1)

def isFailed(self):
return (self.state == 0)

def markByState(self):
if self.isFailed() or self.isMarked():

return
self.mark()
for edge in self.edges:

edge.markByState()

B.2. BINARY DECISION DIAGRAMS 241

class GraphEdge:
def __init__(self, n1, n2):

self.node1 = n1
self.node2 = n2 # We allow loops, i.e., n1 may be equal to n2
self.marked = False
self.tempID = -1
self.state = 1 # 1 = FUNCTIONING, 0 = FAILED

def move(self, fromNode, toNode):
if fromNode == self.node1:

self.node1 = toNode
if fromNode == self.node2:

self.node2 = toNode

def isMarked(self):
return self.marked

def mark(self):
self.marked = True

def unmark(self):
self.marked = False

def setTempID(self, i):
self.tempID = i

def getTempID(self):
return self.tempID

def setState(self, s):
self.state = s

def getState(self):
return self.state

def isFunctioning(self):
return (self.state == 1)

def isFailed(self):
return (self.state == 0)

242 APPENDIX B. PYTHON SCRIPTS

def markByState(self):
if self.isFailed() or self.isMarked():

return
self.mark()
self.node1.markByState()
self.node2.markByState()

class Graph:
def __init__(self):

self.nodes = []
self.edges = []
self.terminals = []

def addNode(self):
node = GraphNode()
self.nodes.append(node)

def addEdge(self, i1, i2):
node1 = self.nodes[i1]
node2 = self.nodes[i2]
edge = GraphEdge(node1, node2)
node1.addEdge(edge)
node2.addEdge(edge)
self.edges.append(edge)

def makeGraph(self, matrix):
m,n = matrix.shape
for _ in range(m):

self.addNode()
for j in range(n):

i1 = -1
i2 = -1
for ii in range(m):

if matrix[ii,j] == 1:
if i1 == -1:

i1 = ii
else:

i2 = ii

B.2. BINARY DECISION DIAGRAMS 243

if i2 == -1:
i2 = i1

self.addEdge(i1, i2)

def makeTerminals(self, tlist):
for i in tlist:

terminal = self.nodes[i]
self.terminals.append(terminal)

def isTerminal(self, node):
return (self.terminals.count(node) > 0)

def getIncidenceMatrix(self):
m = len(self.nodes)
for i in range(m):

self.nodes[i].setTempID(i)
n = len(self.edges)
matrix = np.zeros((m,n), dtype=int)
for j in range(n):

edge = self.edges[j]
r1 = edge.node1.getTempID()
r2 = edge.node2.getTempID()
matrix[r1, j] = 1
matrix[r2, j] = 1

return matrix

def getTerminalList(self):
m = len(self.nodes)
for i in range(m):

self.nodes[i].setTempID(i)
t = len(self.terminals)
tlist = []
for i in range(t):

terminal = self.terminals[i]
tlist.append(terminal.getTempID())

return tlist

def restriction(self, i = 0):
edge = self.edges[i]
self.edges.remove(edge)

244 APPENDIX B. PYTHON SCRIPTS

node1 = edge.node1
node2 = edge.node2
node1.removeEdge(edge)
node2.removeEdge(edge)

def contraction(self, i = 0):
edge = self.edges[i]
self.edges.remove(edge)
node1 = edge.node1
node2 = edge.node2
if (node1 == node2):

node1.removeEdge(edge)
else:

node1.removeEdge(edge)
node2.removeEdge(edge)
node1.mergeNode(node2)
self.nodes.remove(node2)
if self.isTerminal(node2):

self.terminals.remove(node2)
if not self.isTerminal(node1):

self.terminals.append(node1)

def unmarkAll(self):
for node in self.nodes:

node.unmark()
for edge in self.edges:

edge.unmark()

def setNodeState(self, i, s):
self.nodes[i].setState(s)

def getNodeState(self, i):
return self.nodes[i].getState()

def setEdgeState(self, i, s):
self.edges[i].setState(s)

def getEdgeState(self, i):
return self.edges[i].getState()

B.2. BINARY DECISION DIAGRAMS 245

def computeState(self):
self.unmarkAll()
self.terminals[0].markByState()
state = 1
for terminal in self.terminals:

if not terminal.isMarked():
state = 0 # If at least one terminal is not marked,
break # the system is failed.

return state # If all terminals are marked,
the system is functioning

class BDDGraph(BDDStructure):
def __init__(self, matrix, tlist):

super().__init__(matrix.shape[1])
self.incidenceMatrix = matrix
self.terminalList = tlist
self.graph = Graph()
self.graph.makeGraph(self.incidenceMatrix)
self.graph.makeTerminals(tlist)

def selectPivotIndex(self):
return 0

def restriction(self):
g = Graph()
g.makeGraph(self.incidenceMatrix)
g.makeTerminals(self.terminalList)
g.restriction(self.pivotIndex)
matrix = g.getIncidenceMatrix()
tlist = g.getTerminalList()
struct = BDDGraph(matrix, tlist)
for i in range(self.order):

if i != self.pivotIndex:
struct.addComponent(self.components[i])

return struct

def contraction(self):
g = Graph()
g.makeGraph(self.incidenceMatrix)

246 APPENDIX B. PYTHON SCRIPTS

g.makeTerminals(self.terminalList)
g.contraction(self.pivotIndex)
matrix = g.getIncidenceMatrix()
tlist = g.getTerminalList()
struct = BDDGraph(matrix, tlist)
for i in range(self.order):

if i != self.pivotIndex:
struct.addComponent(self.components[i])

return struct

def isFunctioning(self):
t = len(self.terminalList)
return (t <= 1)

def isFailed(self):
g = Graph()
g.makeGraph(self.incidenceMatrix)
g.makeTerminals(self.terminalList)
return (g.computeState() == 0)

class ROBDDGraph(ROBDDStructure):
def __init__(self, matrix, tlist):

super().__init__(matrix.shape[1])
self.incidenceMatrix = matrix
self.terminalList = tlist
self.graph = Graph()
self.graph.makeGraph(self.incidenceMatrix)
self.graph.makeTerminals(tlist)

def restriction(self):
g = Graph()
g.makeGraph(self.incidenceMatrix)
g.makeTerminals(self.terminalList)
g.restriction()
matrix = g.getIncidenceMatrix()
tlist = g.getTerminalList()
return ROBDDGraph(matrix, tlist)

def contraction(self):

B.2. BINARY DECISION DIAGRAMS 247

g = Graph()
g.makeGraph(self.incidenceMatrix)
g.makeTerminals(self.terminalList)
g.contraction()
matrix = g.getIncidenceMatrix()
tlist = g.getTerminalList()
return ROBDDGraph(matrix, tlist)

def isFunctioning(self):
t = len(self.terminalList)
return (t <= 1)

def isFailed(self):
g = Graph()
g.makeGraph(self.incidenceMatrix)
g.makeTerminals(self.terminalList)
return (g.computeState() == 0)

def isEquivalentTo(self, s):
m1,n1 = self.incidenceMatrix.shape
m2,n2 = s.incidenceMatrix.shape
t1 = len(self.terminalList)
t2 = len(s.terminalList)
First, we check if the dimensions are equal
if (m1 != m2) or (n1 != n2) or (t1 != t2):

return False
Next, we check if the incidenceMatrices are equal
matrixFlag = True
for i in range(m1):

for j in range(n1):
if self.incidenceMatrix[i,j] != s.incidenceMatrix[i,j]:

matrixFlag = False
break

if not matrixFlag:
break

if not matrixFlag:
return False

Finally, we check if the terminalLists are equal
terminalFlag = True
for i in range(t1):

248 APPENDIX B. PYTHON SCRIPTS

if self.terminalList[i] != s.terminalList[i]:
terminalFlag = False
break

return terminalFlag

B.2. BINARY DECISION DIAGRAMS 249

Script B.2.9

###
#
Construct a BDD and a ROBDD for a given network
system, and evaluate its reliability
#
###

from c_bdd import BDDSystem
from c_robdd import ROBDDSystem
from c_graph import BDDGraph, ROBDDGraph

import numpy as np

p = 0.5

matrix = np.array([[1, 1, 0, 0, 0], \
[1, 0, 1, 1, 0], \
[0, 1, 1, 0, 1], \
[0, 0, 0, 1, 1]])

tlist = [0,3]

sys = BDDSystem(BDDGraph(matrix, tlist))

result = sys.calculateReliability0(p)
sys.printSystem()

print("")
print("---------------")
print("BDD-method:")
print("---------------")
print("System unreliability = ", result[0])
print("System reliability = ", result[1])

print("")
print("------------------------")
print("")

sys = ROBDDSystem(ROBDDGraph(matrix, tlist))

250 APPENDIX B. PYTHON SCRIPTS

result = sys.calculateReliability0(p)
sys.printSystem()

print("")
print("---------------")
print("ROBDD-method:")
print("---------------")
print("System unreliability = ", result[0])
print("System reliability = ", result[1])

B.2. BINARY DECISION DIAGRAMS 251

Script B.2.10
###
#
Construct a BDD and a ROBDD for a given network
system, and evaluate its reliability
#
###

from c_bdd import BDDSystem
from c_robdd import ROBDDSystem
from c_graph import BDDGraph, ROBDDGraph

import numpy as np

Component reliabilities
p = 0.5

matrix = np.array([[1, 1, 0, 0, 0, 0, 0, 0], \
[1, 0, 1, 1, 0, 0, 0, 0], \
[0, 1, 1, 0, 1, 0, 0, 0], \
[0, 0, 0, 1, 0, 1, 1, 0], \
[0, 0, 0, 0, 1, 1, 0, 1], \
[0, 0, 0, 0, 0, 0, 1, 1]])

tlist = [0,5]

sys = BDDSystem(BDDGraph(matrix, tlist))

result = sys.calculateReliability0(p)
sys.printSystem()

print("")
print("---------------")
print("BDD-method:")
print("---------------")
print("System unreliability = ", result[0])
print("System reliability = ", result[1])

print("")
print("------------------------")

252 APPENDIX B. PYTHON SCRIPTS

print("")

sys = ROBDDSystem(ROBDDGraph(matrix, tlist))

result = sys.calculateReliability0(p)
sys.printSystem()

print("")
print("---------------")
print("ROBDD-method:")
print("---------------")
print("System unreliability = ", result[0])
print("System reliability = ", result[1])

B.3. DYNAMIC SYSTEM RELIABILITY 253

B.3 Dynamic System reliability

Script B.3.1
##
#
This script plots h(p(t)) as a function of t for a simple
2-out-of-3 system with Weibull-distributed component lifetimes.
#
##

from math import *
import matplotlib.pyplot as plt
import numpy as np

Time parameters
max_t = 120
steps = 120

Weibull-parameters for the components
alpha = [2.0, 2.5, 3.0]
beta = [50.0, 60.0, 70.0]

Component reliability vector
num_comps = 3
p = np.zeros(num_comps)

System reliabilities
h = np.zeros(steps)

def reliability(pp):
return pp[0] * pp[1] + pp[0] * pp[2] + pp[1] * pp[2] \

- 2 * pp[0] * pp[1] * pp[2]

The survival function of a Weibull-distribution
def weibull(aa, bb, t):

return exp(- (t / bb) ** aa)

time = np.linspace(0.0, max_t, steps)

for step in range(steps):

254 APPENDIX B. PYTHON SCRIPTS

for i in range(num_comps):
p[i] = weibull(alpha[i], beta[i], time[step])

h[step] = reliability(p)

fig = plt.figure(figsize = (7, 4))
plt.plot(time, h, label=’h(p(t))’)
plt.xlabel(’Time’)
plt.ylabel(’Reliability’)
plt.title("System reliability as a function of time")
plt.legend()
plt.show()

B.3. DYNAMIC SYSTEM RELIABILITY 255

Script B.3.2
###
#
This program plots h(p(t)) as a function of t for a system
with given minimal path sets using Monte Carlo simulations of
the component lifetimes and calculating the resulting system
lifetime.
#
###

from math import *
from random import *
import matplotlib.pyplot as plt
import numpy as np

Number of simulations
num_sims = 100000

Weibull-parameters for the components
alpha = [2.0, 2.5, 3.0, 1.0, 1.5]
beta = [50.0, 60.0, 70.0, 40.0, 50.0]

Number of components and paths
num_comps = 5
num_paths = 4

Minimal path sets
paths = [{1,4}, {1,3,5}, {2,3,4}, {2,5}]

Calculate the system lifetime given the component lifetimes
def sys_lifetime(tt):

sys_life = 0.0
for j in range(num_paths):

path_life = np.inf
for i in paths[j]:

if tt[i-1] < path_life:
path_life = tt[i-1]

if path_life > sys_life:
sys_life = path_life

return sys_life

256 APPENDIX B. PYTHON SCRIPTS

The upper percentile levels
q = np.zeros(num_sims)

The simulated system lifetimes
s = np.zeros(num_sims)

The simulated lifetimes of the components
t = np.zeros(num_comps)

for k in range(num_sims):
q[n] = 1.0 - n / num_sims
for i in range(num_comps):

t[i] = weibullvariate(beta[i], alpha[i])
s[k] = sys_lifetime(t)

s.sort()

fig = plt.figure(figsize = (7, 4))
plt.plot(s, q, label=’h(p(t))’)
plt.xlabel(’Time’)
plt.ylabel(’Reliability’)
plt.title("System reliability as a function of time")
plt.legend()
plt.show()

B.3. DYNAMIC SYSTEM RELIABILITY 257

Script B.3.3
###
#
This program plots h(p(t)) as a function of t for a threshold
system using Monte Carlo simulations of the component
lifetimes and calculating the resulting system lifetime.
#
###

from math import *
from random import *
import matplotlib.pyplot as plt
import numpy as np

Number of simulations
num_sims = 100000

Weibull-parameters for the components
alpha = [2.0, 2.5, 3.0, 1.0, 1.5]
beta = [50.0, 60.0, 70.0, 40.0, 50.0]

Threshold system weights and threshold
w = [2.0, 4.0, 2.3, 3.5, 1.9]
threshold = 5.0

Number of components
num_comps = 5

Component state vector
x = np.zeros(num_comps)

The structure function of the threshold system
def phi(xx):

wsum = 0.0
for i in range(num_comps):

wsum += w[i] * xx[i]
if wsum >= threshold:

return 1
else:

return 0

258 APPENDIX B. PYTHON SCRIPTS

Calculate the system lifetime given the component lifetimes
def sys_lifetime(tt):

Initialize component states
for i in range(num_comps):

x[i] = 1
Initialize system state and lifetime
sys_state = phi(x)
sys_life = 0.0
Determine the ordering of the failure times
order = tt.argsort()
Initialize failure counter
c = 0
Switch off one component at a time in the order of the failure times
while (sys_state == 1) and (c < num_comps):

x[order[c]] = 0
sys_life = tt[order[c]]
sys_state = phi(x)
c += 1

if sys_state == 0:
return sys_life

else: # This happens only for trivial systems where phi(0,...,0) = 1.
return np.inf

The upper percentile levels
q = np.zeros(num_sims)

The simulated system lifetimes
s = np.zeros(num_sims)

The simulated lifetimes of the components
t = np.zeros(num_comps)

for k in range(num_sims):
q[k] = 1.0 - k / num_sims
for i in range(num_comps):

t[i] = weibullvariate(beta[i], alpha[i])
s[k] = sys_lifetime(t)

s.sort()

B.3. DYNAMIC SYSTEM RELIABILITY 259

fig = plt.figure(figsize = (7, 4))
plt.plot(s, q, label=’h(p(t))’)
plt.xlabel(’Time’)
plt.ylabel(’Reliability’)
plt.title("System reliability as a function of time")
plt.legend()
plt.show()

260 APPENDIX B. PYTHON SCRIPTS

Script B.3.4
###
#
This program plots h(p(t)) as a function of t for a threshold
system using a ROBDD representation of the system.
#
Contrary to the previous script which uses MC simulation,
this script calculates reliability analytically. Thus, the
result is an exact h(p(t))-curve.
#
###

from math import exp
import matplotlib.pyplot as plt
import numpy as np
from c_robdd import ROBDDSystem
from c_threshold import ROBDDThreshold

Time parameters
max_t = 175
steps = 175

Weibull-parameters for the components
alpha = [2.0, 2.5, 3.0, 1.0, 1.5]
beta = [50.0, 60.0, 70.0, 40.0, 50.0]

Number of components in the system
num_comps = len(alpha)

Threshold system weights and threshold
a = [2.0, 4.0, 2.3, 3.5, 1.9]
b = 5.0

Calculate the weight sum
asum = 0
for i in range(num_comps):

asum += a[i]

The ROBDD representation of the threshold system

B.3. DYNAMIC SYSTEM RELIABILITY 261

sys = ROBDDSystem(ROBDDThreshold(a, asum, b))

The reliability function of the system
def reliability(pp):

result = sys.calculateReliability(pp)
return result[1]

The survival function of a Weibull-distribution
def weibull(aa, bb, t):

if t >= 0:
return exp(- (t / bb) ** aa)

else:
return 1.0

Component reliability vector
p = np.zeros(num_comps)

Time values and Reliability function
time = np.linspace(0.0, max_t, steps)
h = np.zeros(steps)

Calculate the Reliability function
for step in range(steps):

for i in range(num_comps):
p[i] = weibull(alpha[i], beta[i], time[step])

h[step] = reliability(p)

Plot the results
fig = plt.figure(figsize = (7, 4))
plt.plot(time, h, label=’h(p(t))’)
plt.xlabel(’Time’)
plt.ylabel(’Reliability’)
plt.title("System reliability as a function of time")
plt.legend()
plt.show()

262 APPENDIX B. PYTHON SCRIPTS

Script B.3.5
###
#
This program plots h(p(t)) as a function of t for a network
system using Monte Carlo simulations of the component
lifetimes and calculating the resulting system lifetime.
#
###

from math import *
from random import *
import matplotlib.pyplot as plt
import numpy as np

Number of simulations
num_sims = 100000

Weibull-parameters for the components
alpha = [2.0, 2.5, 3.0, 1.0, 1.5, 2.0, 2.5]
beta = [50.0, 60.0, 70.0, 40.0, 50.0, 55.0, 65.0]

Number of components
num_comps = 7

Component state vector
x = np.zeros(num_comps)

The coproduct function
def coprod(x1, x2):

return x1 + x2 - x1 * x2

The structure function given that component 3 is functioning
def phi_3_1(xx):

return coprod(xx[2],xx[4])*coprod(xx[0],xx[1])*coprod(xx[5],xx[6]) \
+ (1 - coprod(xx[2], xx[4]))*coprod(xx[0]*xx[5], xx[1]*xx[6])

The structure function given that component 3 is failed
def phi_3_0(xx):

return coprod(xx[0] * xx[2], xx[1]) * coprod(xx[4] * xx[5], xx[6])

B.3. DYNAMIC SYSTEM RELIABILITY 263

The structure function of the network system (using pivotal decomposition)
def phi(xx):

return xx[3] * phi_3_1(xx) + (1 - xx[3]) * phi_3_0(xx)

Calculate the system lifetime given the component lifetimes
def sys_lifetime(tt):

Initialize component states
for i in range(num_comps):

x[i] = 1
Initialize system state and lifetime
sys_state = phi(x)
sys_life = 0.0
Determine the ordering of the failure times
order = tt.argsort()
Initialize failure counter
c = 0
Switch off one component at a time in the order of the failure times
while (sys_state == 1) and (c < num_comps):

x[order[c]] = 0
sys_life = tt[order[c]]
sys_state = phi(x)
c += 1

if sys_state == 0:
return sys_life

else: # This happens only for trivial systems where phi(0,...,0) = 1.
return np.inf

The upper percentile levels
q = np.zeros(num_sims)

The simulated system lifetimes
s = np.zeros(num_sims)

The simulated lifetimes of the components
t = np.zeros(num_comps)

for k in range(num_sims):
q[k] = 1.0 - k / num_sims
for i in range(num_comps):

t[i] = weibullvariate(beta[i], alpha[i])

264 APPENDIX B. PYTHON SCRIPTS

s[k] = sys_lifetime(t)

s.sort()

fig = plt.figure(figsize = (7, 4))
plt.plot(s, q, label=’h(p(t))’)
plt.xlabel(’Time’)
plt.ylabel(’Reliability’)
plt.title("System reliability as a function of time")
plt.legend()
plt.show()

B.3. DYNAMIC SYSTEM RELIABILITY 265

Script B.3.6
##
#
This program plots I_B^{(i)}(t) as a function of t for a simple
2-out-of-3 system with Weibull-distributed component lifetimes.
#
##

from math import exp
import matplotlib.pyplot as plt
import numpy as np

Time parameters
max_t = 120
steps = 120

Weibull-parameters for the components
alpha = [2.0, 2.5, 3.0]
beta = [50.0, 60.0, 70.0]

Number of components in the system
num_comps = len(alpha)

The reliability function of the system
def reliability(pp):

return pp[0] * pp[1] + pp[0] * pp[2] + pp[1] * pp[2] - 2 * pp[0] * pp[1] * pp[2]

The survival function of a Weibull-distribution
def weibull(aa, bb, t):

if t >= 0:
return exp(- (t / bb) ** aa)

else:
return 1.0

Component reliability vector
p = np.zeros(num_comps)

Time values and Birnbaum measures
time = np.linspace(0.0, max_t, steps)
IB = np.zeros((num_comps, steps))

266 APPENDIX B. PYTHON SCRIPTS

Calculate the Birnbaum measures
for step in range(steps):

for i in range(num_comps):
p[i] = weibull(alpha[i], beta[i], time[step])

for i in range(num_comps):
temp = p[i]
p[i] = 1
h1 = reliability(p)
p[i] = 0
h0 = reliability(p)
p[i] = temp
IB[i][step] = h1 - h0

Plot the results
fig = plt.figure(figsize = (7, 4))
for i in range(num_comps):

plt.plot(time, IB[i], label=’IB(’ + str(i+1) + ", t)")
plt.xlabel(’Time’)
plt.ylabel(’Importance’)
plt.title("Importance as a function of time")
plt.legend()
plt.show()

B.3. DYNAMIC SYSTEM RELIABILITY 267

Script B.3.7
###
#
This program plots I_B^{(i)}(t) as a function of t for a
system with given minimal path sets using Monte Carlo
simulations of the component lifetimes and calculating the
resulting system lifetime.
#
###

from math import *
from random import *
import matplotlib.pyplot as plt
import numpy as np

Time parameters
max_t = 120
steps = 120

Number of simulations
num_sims = 100000

Weibull-parameters for the components
alpha = [2.0, 2.5, 3.0, 1.0, 1.5]
beta = [50.0, 60.0, 70.0, 40.0, 50.0]

Number of components and minimal paths
num_comps = 5
num_paths = 4

Birnbaum measures
IB = np.zeros((num_comps, steps))

A component is identified as critical when t is in [L, U)
L = np.zeros(num_comps)
U = np.zeros(num_comps)

Minimal path sets
paths = [{1,4}, {1,3,5}, {2,3,4}, {2,5}]

268 APPENDIX B. PYTHON SCRIPTS

Calculate the system lifetime given the component lifetimes
def sys_lifetime(tt):

sys_life = 0.0
for j in range(num_paths):

path_life = np.inf
for i in paths[j]:

if tt[i-1] < path_life:
path_life = tt[i-1]

if path_life > sys_life:
sys_life = path_life

return sys_life

The simulated lifetimes of the components
t = np.zeros(num_comps)

Time steps
time = np.linspace(0.0, max_t, steps)

Run simulations
for k in range(num_sims):

for i in range(num_comps):
t[i] = weibullvariate(beta[i], alpha[i])

for i in range(num_comps):
temp = t[i]
t[i] = np.inf
U[i] = sys_lifetime(t)
t[i] = 0
L[i] = sys_lifetime(t)
t[i] = temp

for step in range(steps):
for i in range(num_comps):

if L[i] <= time[step] and time[step] < U[i]:
IB[i][step] += 1

Calculate average importance values
for step in range(steps):

for i in range(num_comps):
IB[i][step] = IB[i][step] / num_sims

fig = plt.figure(figsize = (7, 4))

B.3. DYNAMIC SYSTEM RELIABILITY 269

for i in range(num_comps):
plt.plot(time, IB[i], label=’IB(’ + str(i+1) + ", t)")

plt.xlabel(’Time’)
plt.ylabel(’Importance’)
plt.title("Importance as a function of time")
plt.legend()
plt.show()

270 APPENDIX B. PYTHON SCRIPTS

Script B.3.8
###
#
This program plots I_B^{(i)}(t) as a function of t for a
threshold system using Monte Carlo simulations of the
component lifetimes and calculating the resulting system
lifetime.
#
###

from math import *
from random import *
import matplotlib.pyplot as plt
import numpy as np

Time parameters
max_t = 120
steps = 120

Number of simulations
num_sims = 100000

Weibull-parameters for the components
alpha = [2.0, 2.5, 3.0, 1.0, 1.5]
beta = [50.0, 60.0, 70.0, 40.0, 50.0]

Threshold system weights and threshold
w = [2.0, 4.0, 2.3, 3.5, 1.9]
threshold = 5.0

Number of components and minimal paths
num_comps = 5

Birnbaum measures
IB = np.zeros((num_comps, steps))

A component is identified as critical when t is in [L, U)
L = np.zeros(num_comps)
U = np.zeros(num_comps)

B.3. DYNAMIC SYSTEM RELIABILITY 271

Component state vector
x = np.zeros(num_comps)

The structure function of the threshold system
def phi(xx):

wsum = 0.0
for i in range(num_comps):

wsum += w[i] * xx[i]
if wsum >= threshold:

return 1
else:

return 0

Calculate the system lifetime given the component lifetimes
def sys_lifetime(tt):

Initialize component states
for i in range(num_comps):

x[i] = 1
Initialize system state and lifetime
sys_state = phi(x)
sys_life = 0.0
Determine the ordering of the failure times
order = tt.argsort()
Initialize failure counter
c = 0
Switch off one component at a time in the order of the failure times
while (sys_state == 1) and (c < num_comps):

x[order[c]] = 0
sys_life = tt[order[c]]
sys_state = phi(x)
c += 1

if sys_state == 0:
return sys_life

else: # This happens only for trivial systems where phi(0,...,0) = 1.
return np.inf

The simulated lifetimes of the components
t = np.zeros(num_comps)

Time steps

272 APPENDIX B. PYTHON SCRIPTS

time = np.linspace(0.0, max_t, steps)

Run simulations
for k in range(num_sims):

for i in range(num_comps):
t[i] = weibullvariate(beta[i], alpha[i])

for i in range(num_comps):
temp = t[i]
t[i] = np.inf
U[i] = sys_lifetime(t)
t[i] = 0
L[i] = sys_lifetime(t)
t[i] = temp

for step in range(steps):
for i in range(num_comps):

if L[i] <= time[step] and time[step] < U[i]:
IB[i][step] += 1

Calculate average importance values
for step in range(steps):

for i in range(num_comps):
IB[i][step] = IB[i][step] / num_sims

fig = plt.figure(figsize = (7, 4))
for i in range(num_comps):

plt.plot(time, IB[i], label=’IB(’ + str(i+1) + ", t)")
plt.xlabel(’Time’)
plt.ylabel(’Importance’)
plt.title("Importance as a function of time")
plt.legend()
plt.show()

B.3. DYNAMIC SYSTEM RELIABILITY 273

Script B.3.9
###
#
This program plots I_B^{(i)}(t), i = 1, ..., 5 as a function
of t for a threshold system using a ROBDD representation of
the system.
#
Contrary to the previous script which uses MC simulation,
this script calculates importance analytically. Thus, the
results are exact I_B^{(i)}(t)-curves.
#
###

from math import exp
import matplotlib.pyplot as plt
import numpy as np
from c_robdd import ROBDDSystem
from c_threshold import ROBDDThreshold

Time parameters
max_t = 120
steps = 120

Weibull-parameters for the components
alpha = [2.0, 2.5, 3.0, 1.0, 1.5]
beta = [50.0, 60.0, 70.0, 40.0, 50.0]

Number of components in the system
num_comps = len(alpha)

Threshold system weights and threshold
a = [2.0, 4.0, 2.3, 3.5, 1.9]
b = 5.0

Calculate the weight sum
asum = 0
for i in range(num_comps):

asum += a[i]

The ROBDD representation of the threshold system

274 APPENDIX B. PYTHON SCRIPTS

sys = ROBDDSystem(ROBDDThreshold(a, asum, b))

The reliability function of the system
def reliability(pp):

result = sys.calculateReliability(pp)
return result[1]

The survival function of a Weibull-distribution
def weibull(aa, bb, t):

if t >= 0:
return exp(- (t / bb) ** aa)

else:
return 1.0

Component reliability vector
p = np.zeros(num_comps)

Time values and Birnbaum measures
time = np.linspace(0.0, max_t, steps)
IB = np.zeros((num_comps, steps))

Calculate the Birnbaum measures
for step in range(steps):

for i in range(num_comps):
p[i] = weibull(alpha[i], beta[i], time[step])

for i in range(num_comps):
temp = p[i]
p[i] = 1
h1 = reliability(p)
p[i] = 0
h0 = reliability(p)
p[i] = temp
IB[i][step] = h1 - h0

Plot the results
fig = plt.figure(figsize = (7, 4))
for i in range(num_comps):

plt.plot(time, IB[i], label=’IB(’ + str(i+1) + ", t)")
plt.xlabel(’Time’)
plt.ylabel(’Importance’)

B.3. DYNAMIC SYSTEM RELIABILITY 275

plt.title("Importance as a function of time")
plt.legend()
plt.show()

276 APPENDIX B. PYTHON SCRIPTS

Script B.3.10
###
#
This program plots I_B^{(i)}(t) as a function of t for an
undirected network system using Monte Carlo simulations of
the component lifetimes and calculating the resulting system
lifetime.
#
###

from math import *
from random import *
import matplotlib.pyplot as plt
import numpy as np

Time parameters
max_t = 120
steps = 120

Number of simulations
num_sims = 100000

Weibull-parameters for the components
alpha = [2.0, 2.5, 3.0, 1.0, 1.5, 2.0, 2.5]
beta = [50.0, 60.0, 70.0, 40.0, 50.0, 55.0, 65.0]

Number of components
num_comps = 7

Birnbaum measures
IB = np.zeros((num_comps, steps))

A component is identified as critical when t is in [L, U)
L = np.zeros(num_comps)
U = np.zeros(num_comps)

Component state vector
x = np.zeros(num_comps)

The coproduct function

B.3. DYNAMIC SYSTEM RELIABILITY 277

def coprod(x1, x2):
return x1 + x2 - x1 * x2

The structure function given that component 3 is functioning
def phi_3_1(xx):

return coprod(xx[2],xx[4])*coprod(xx[0],xx[1])*coprod(xx[5],xx[6]) \
+ (1 - coprod(xx[2], xx[4]))*coprod(xx[0]*xx[5], xx[1]*xx[6])

The structure function given that component 3 is failed
def phi_3_0(xx):

return coprod(xx[0] * xx[2], xx[1])*coprod(xx[4] * xx[5], xx[6])

The structure function of the network system (using pivotal decomposition)
def phi(xx):

return xx[3] * phi_3_1(xx) + (1 - xx[3]) * phi_3_0(xx)

Calculate the system lifetime given the component lifetimes
def sys_lifetime(tt):

Initialize component states
for i in range(num_comps):

x[i] = 1
Initialize system state and lifetime
sys_state = phi(x)
sys_life = 0.0
Determine the ordering of the failure times
order = tt.argsort()
Initialize failure counter
c = 0
Switch off one component at a time in the order of the failure times
while (sys_state == 1) and (c < num_comps):

x[order[c]] = 0
sys_life = tt[order[c]]
sys_state = phi(x)
c += 1

if sys_state == 0:
return sys_life

else: # This happens only for trivial systems where phi(0,...,0) = 1.
return np.inf

The simulated lifetimes of the components

278 APPENDIX B. PYTHON SCRIPTS

t = np.zeros(num_comps)

Time steps
time = np.linspace(0.0, max_t, steps)

Run simulations
for k in range(num_sims):

for i in range(num_comps):
t[i] = weibullvariate(beta[i], alpha[i])

for i in range(num_comps):
temp = t[i]
t[i] = np.inf
U[i] = sys_lifetime(t)
t[i] = 0
L[i] = sys_lifetime(t)
t[i] = temp

for step in range(steps):
for i in range(num_comps):

if L[i] <= time[step] and time[step] < U[i]:
IB[i][step] += 1

Calculate average importance values
for step in range(steps):

for i in range(num_comps):
IB[i][step] = IB[i][step] / num_sims

fig = plt.figure(figsize = (7, 4))
for i in range(num_comps):

plt.plot(time, IB[i], label=’IB(’ + str(i+1) + ", t)")
plt.xlabel(’Time’)
plt.ylabel(’Importance’)
plt.title("Importance as a function of time")
plt.legend()
plt.show()

B.3. DYNAMIC SYSTEM RELIABILITY 279

Script B.3.11
###
#
This program estimates the Barlow-Proschan importance measure
for components in a system with given minimal path sets using
Monte Carlo simulations.
#
###

from math import *
from random import *
import matplotlib.pyplot as plt
import numpy as np

Number of simulations
num_sims = 100000

Weibull-parameters for the components
alpha = [2.0, 2.5, 3.0, 1.0, 1.5]
beta = [50.0, 60.0, 70.0, 40.0, 50.0]

Number of components and minimal paths
num_comps = 5
num_paths = 4

Minimal path sets
paths = [{1,4}, {1,3,5}, {2,3,4}, {2,5}]

Calculate the system lifetime given the component lifetimes
def sys_lifetime(tt):

sys_life = 0.0
for j in range(num_paths):

path_life = np.inf
for i in paths[j]:

if tt[i-1] < path_life:
path_life = tt[i-1]

if path_life > sys_life:
sys_life = path_life

return sys_life

280 APPENDIX B. PYTHON SCRIPTS

The simulated lifetimes of the components
t = np.zeros(num_comps)

The number of times the components are critical when failing
c = np.zeros(num_comps)

for k in range(num_sims):
for i in range(num_comps):

t[i] = weibullvariate(beta[i], alpha[i])
s = sys_lifetime(t)
for i in range(num_comps):

if t[i] == s:
c[i] += 1

bp_imp = np.zeros(num_comps)
for i in range(num_comps):

bp_imp[i] = c[i] / num_sims

comp = np.linspace(1, num_comps, num_comps)

fig = plt.figure(figsize = (7, 4))
plt.bar(comp, bp_imp, color =’gray’, width = 0.4)
plt.xlabel("Components")
plt.ylabel("Importance")
plt.title("Barlow-Proschan importance")
plt.show()

B.3. DYNAMIC SYSTEM RELIABILITY 281

Script B.3.12
###
#
This program estimates the Barlow-Proschan importance measure
for components in a threshold system using Monte Carlo
simulations.
#
###

from math import *
from random import *
import matplotlib.pyplot as plt
import numpy as np

Number of simulations
num_sims = 100000

Weibull-parameters for the components
alpha = [2.0, 2.5, 3.0, 1.0, 1.5]
beta = [50.0, 60.0, 70.0, 40.0, 50.0]

Threshold system weights and threshold
w = [2.0, 4.0, 2.3, 3.5, 1.9]
threshold = 5.0

Number of components and minimal paths
num_comps = 5

Component state vector
x = np.zeros(num_comps)

The structure function of the threshold system
def phi(xx):

wsum = 0.0
for i in range(num_comps):

wsum += w[i] * xx[i]
if wsum >= threshold:

return 1
else:

return 0

282 APPENDIX B. PYTHON SCRIPTS

Calculate the system lifetime given the component lifetimes
def sys_lifetime(tt):

Initialize component states
for i in range(num_comps):

x[i] = 1
Initialize system state and lifetime
sys_state = phi(x)
sys_life = 0.0
Determine the ordering of the failure times
order = tt.argsort()
Initialize failure counter
c = 0
Switch off one component at a time in the order of the failure times
while (sys_state == 1) and (c < num_comps):

x[order[c]] = 0
sys_life = tt[order[c]]
sys_state = phi(x)
c += 1

if sys_state == 0:
return sys_life

else: # This happens only for trivial systems where phi(0,...,0) = 1.
return np.inf

The simulated lifetimes of the components
t = np.zeros(num_comps)

The number of times the components are critical when failing
c = np.zeros(num_comps)

for k in range(num_sims):
for i in range(num_comps):

t[i] = weibullvariate(beta[i], alpha[i])
s = sys_lifetime(t)
for i in range(num_comps):

if t[i] == s:
c[i] += 1

bp_imp = np.zeros(num_comps)
for i in range(num_comps):

B.3. DYNAMIC SYSTEM RELIABILITY 283

bp_imp[i] = c[i] / num_sims

comp = np.linspace(1, num_comps, num_comps)

fig = plt.figure(figsize = (7, 4))
plt.bar(comp, bp_imp, color =’gray’, width = 0.4)
plt.xlabel("Components")
plt.ylabel("Importance")
plt.title("Barlow-Proschan importance")
plt.show()

284 APPENDIX B. PYTHON SCRIPTS

Script B.3.13
###
#
This program estimates the Barlow-Proschan importance measure
for components in an undirected network system using Monte
Carlo simulations.
#
###

from math import *
from random import *
import matplotlib.pyplot as plt
import numpy as np

Number of simulations
num_sims = 100000

Weibull-parameters for the components
alpha = [2.0, 2.5, 3.0, 1.0, 1.5, 2.0, 2.5]
beta = [50.0, 60.0, 70.0, 40.0, 50.0, 55.0, 65.0]

Number of components
num_comps = 7

Component state vector
x = np.zeros(num_comps)

The coproduct function
def coprod(x1, x2):

return x1 + x2 - x1 * x2

The structure function given that component 3 is functioning
def phi_3_1(xx):

return coprod(xx[2], xx[4]) * coprod(xx[0], xx[1]) * coprod(xx[5], xx[6]) \
+ (1 - coprod(xx[2], xx[4])) * coprod(xx[0] * xx[5], xx[1] * xx[6])

The structure function given that component 3 is failed
def phi_3_0(xx):

return coprod(xx[0] * xx[2], xx[1]) * coprod(xx[4] * xx[5], xx[6])

B.3. DYNAMIC SYSTEM RELIABILITY 285

The structure function of the network system (using pivotal decomposition)
def phi(xx):

return xx[3] * phi_3_1(xx) + (1 - xx[3]) * phi_3_0(xx)

Calculate the system lifetime given the component lifetimes
def sys_lifetime(tt):

Initialize component states
for i in range(num_comps):

x[i] = 1
Initialize system state and lifetime
sys_state = phi(x)
sys_life = 0.0
Determine the ordering of the failure times
order = tt.argsort()
Initialize failure counter
c = 0
Switch off one component at a time in the order of the failure times
while (sys_state == 1) and (c < num_comps):

x[order[c]] = 0
sys_life = tt[order[c]]
sys_state = phi(x)
c += 1

if sys_state == 0:
return sys_life

else: # This happens only for trivial systems where phi(0,...,0) = 1.
return np.inf

The simulated lifetimes of the components
t = np.zeros(num_comps)

The number of times the components are critical when failing
c = np.zeros(num_comps)

for k in range(num_sims):
for i in range(num_comps):

t[i] = weibullvariate(beta[i], alpha[i])
s = sys_lifetime(t)
for i in range(num_comps):

if t[i] == s:
c[i] += 1

286 APPENDIX B. PYTHON SCRIPTS

bp_imp = np.zeros(num_comps)
for i in range(num_comps):

bp_imp[i] = c[i] / num_sims

comp = np.linspace(1, num_comps, num_comps)

fig = plt.figure(figsize = (7, 4))
plt.bar(comp, bp_imp, color =’gray’, width = 0.4)
plt.xlabel("Components")
plt.ylabel("Importance")
plt.title("Barlow-Proschan importance")
plt.show()

B.3. DYNAMIC SYSTEM RELIABILITY 287

Script B.3.14
###
#
This program estimates the Natvig importance measure for
components in a system with given minimal path sets using
Monte Carlo simulations.
#
###

from math import *
from random import *
import matplotlib.pyplot as plt
import numpy as np

Number of simulations
num_sims = 100000

Weibull-parameters for the components
alpha = [2.0, 2.5, 3.0, 1.0, 1.5]
beta = [50.0, 60.0, 70.0, 40.0, 50.0]

Number of components and minimal paths
num_comps = 5
num_paths = 4

Minimal path sets
paths = [{1,4}, {1,3,5}, {2,3,4}, {2,5}]

Calculate the system lifetime given the component lifetimes
def sys_lifetime(tt):

sys_life = 0.0
for j in range(num_paths):

path_life = np.inf
for i in paths[j]:

if tt[i-1] < path_life:
path_life = tt[i-1]

if path_life > sys_life:
sys_life = path_life

return sys_life

288 APPENDIX B. PYTHON SCRIPTS

The improvement in system lifetimes
due to minimal repairs
z = np.zeros(num_comps)

The simulated lifetimes of the components
t = np.zeros(num_comps)

The simulated lifetimes of the components
sampled from the conditional distribution
given that they exceed the corresponding t
v = np.zeros(num_comps)

for k in range(num_sims):
for i in range(num_comps):

t[i] = weibullvariate(beta[i], alpha[i])
v[i] = 0.0
while v[i] < t[i]:

v[i] = weibullvariate(beta[i], alpha[i])
s = sys_lifetime(t)
for i in range(num_comps):

temp = t[i]
t[i] = v[i]
z[i] += (sys_lifetime(t) - s)
t[i] = temp

Calculate the unstandardized Natvig measure
z_sum = 0.0
z_imp = np.zeros(num_comps)
for i in range(num_comps):

z_imp[i] = z[i] / num_sims
z_sum += z_imp[i]

Standardize the measure so that it adds up to 1
nat_imp = np.zeros(num_comps)
for i in range(num_comps):

nat_imp[i] = z_imp[i] / z_sum

comp = np.linspace(1, num_comps, num_comps)

fig = plt.figure(figsize = (7, 4))

B.3. DYNAMIC SYSTEM RELIABILITY 289

plt.bar(comp, nat_imp, color =’gray’, width = 0.4)
plt.xlabel("Components")
plt.ylabel("Importance")
plt.title("Natvig importance")
plt.show()

290 APPENDIX B. PYTHON SCRIPTS

Script B.3.15
###
#
This program estimates the Natvig importance measure
for components in a threshold system using Monte Carlo
simulations.
#
###

from math import *
from random import *
import matplotlib.pyplot as plt
import numpy as np

Number of simulations
num_sims = 100000

Weibull-parameters for the components
alpha = [2.0, 2.5, 3.0, 1.0, 1.5]
beta = [50.0, 60.0, 70.0, 40.0, 50.0]

Threshold system weights and threshold
w = [2.0, 4.0, 2.3, 3.5, 1.9]
threshold = 5.0

Number of components and minimal paths
num_comps = 5

Component state vector
x = np.zeros(num_comps)

The structure function of the threshold system
def phi(xx):

wsum = 0.0
for i in range(num_comps):

wsum += w[i] * xx[i]
if wsum >= threshold:

return 1
else:

return 0

B.3. DYNAMIC SYSTEM RELIABILITY 291

Calculate the system lifetime given the component lifetimes
def sys_lifetime(tt):

Initialize component states
for i in range(num_comps):

x[i] = 1
Initialize system state and lifetime
sys_state = phi(x)
sys_life = 0.0
Determine the ordering of the failure times
order = tt.argsort()
Initialize failure counter
c = 0
Switch off one component at a time in the order of the failure times
while (sys_state == 1) and (c < num_comps):

x[order[c]] = 0
sys_life = tt[order[c]]
sys_state = phi(x)
c += 1

if sys_state == 0:
return sys_life

else: # This happens only for trivial systems where phi(0,...,0) = 1.
return np.inf

The improvement in system lifetimes
due to minimal repairs
z = np.zeros(num_comps)

The simulated lifetimes of the components
t = np.zeros(num_comps)

The simulated lifetimes of the components
sampled from the conditional distribution
given that they exceed the corresponding t
v = np.zeros(num_comps)

for k in range(num_sims):
for i in range(num_comps):

t[i] = weibullvariate(beta[i], alpha[i])
v[i] = 0.0

292 APPENDIX B. PYTHON SCRIPTS

while v[i] < t[i]:
v[i] = weibullvariate(beta[i], alpha[i])

s = sys_lifetime(t)
for i in range(num_comps):

temp = t[i]
t[i] = v[i]
z[i] += (sys_lifetime(t) - s)
t[i] = temp

Calculate the unstandardized Natvig measure
z_sum = 0.0
z_imp = np.zeros(num_comps)
for i in range(num_comps):

z_imp[i] = z[i] / num_sims
z_sum += z_imp[i]

Standardize the measure so that it adds up to 1
nat_imp = np.zeros(num_comps)
for i in range(num_comps):

nat_imp[i] = z_imp[i] / z_sum

comp = np.linspace(1, num_comps, num_comps)

fig = plt.figure(figsize = (7, 4))
plt.bar(comp, nat_imp, color =’gray’, width = 0.4)
plt.xlabel("Components")
plt.ylabel("Importance")
plt.title("Natvig importance")
plt.show()

B.3. DYNAMIC SYSTEM RELIABILITY 293

Script B.3.16
###
#
This program estimates the Natvig importance measure
for components in an undirected network system using Monte
Carlo simulations.
#
###

from math import *
from random import *
import matplotlib.pyplot as plt
import numpy as np

Number of simulations
num_sims = 100000

Weibull-parameters for the components
alpha = [2.0, 2.5, 3.0, 1.0, 1.5, 2.0, 2.5]
beta = [50.0, 60.0, 70.0, 40.0, 50.0, 55.0, 65.0]

Number of components
num_comps = 7

Component state vector
x = np.zeros(num_comps)

The coproduct function
def coprod(x1, x2):

return x1 + x2 - x1 * x2

The structure function given that component 3 is functioning
def phi_3_1(xx):

return coprod(xx[2], xx[4]) * coprod(xx[0], xx[1]) * coprod(xx[5], xx[6]) \
+ (1 - coprod(xx[2], xx[4])) * coprod(xx[0] * xx[5], xx[1] * xx[6])

The structure function given that component 3 is failed
def phi_3_0(xx):

return coprod(xx[0] * xx[2], xx[1]) * coprod(xx[4] * xx[5], xx[6])

294 APPENDIX B. PYTHON SCRIPTS

The structure function of the network system (using pivotal decomposition)
def phi(xx):

return xx[3] * phi_3_1(xx) + (1 - xx[3]) * phi_3_0(xx)

Calculate the system lifetime given the component lifetimes
def sys_lifetime(tt):

Initialize component states
for i in range(num_comps):

x[i] = 1
Initialize system state and lifetime
sys_state = phi(x)
sys_life = 0.0
Determine the ordering of the failure times
order = tt.argsort()
Initialize failure counter
c = 0
Switch off one component at a time in the order of the failure times
while (sys_state == 1) and (c < num_comps):

x[order[c]] = 0
sys_life = tt[order[c]]
sys_state = phi(x)
c += 1

if sys_state == 0:
return sys_life

else: # This happens only for trivial systems where phi(0,...,0) = 1.
return np.inf

The improvement in system lifetimes
due to minimal repairs
z = np.zeros(num_comps)

The simulated lifetimes of the components
t = np.zeros(num_comps)

The simulated lifetimes of the components
sampled from the conditional distribution
given that they exceed the corresponding t
v = np.zeros(num_comps)

for k in range(num_sims):

B.3. DYNAMIC SYSTEM RELIABILITY 295

for i in range(num_comps):
t[i] = weibullvariate(beta[i], alpha[i])
v[i] = 0.0
while v[i] < t[i]:

v[i] = weibullvariate(beta[i], alpha[i])
s = sys_lifetime(t)
for i in range(num_comps):

temp = t[i]
t[i] = v[i]
z[i] += (sys_lifetime(t) - s)
t[i] = temp

Calculate the unstandardized Natvig measure
z_sum = 0.0
z_imp = np.zeros(num_comps)
for i in range(num_comps):

z_imp[i] = z[i] / num_sims
z_sum += z_imp[i]

Standardize the measure so that it adds up to 1
nat_imp = np.zeros(num_comps)
for i in range(num_comps):

nat_imp[i] = z_imp[i] / z_sum

comp = np.linspace(1, num_comps, num_comps)

fig = plt.figure(figsize = (7, 4))
plt.bar(comp, nat_imp, color =’gray’, width = 0.4)
plt.xlabel("Components")
plt.ylabel("Importance")
plt.title("Natvig importance")
plt.show()

296 APPENDIX B. PYTHON SCRIPTS

B.4 Transmission of electronic pulses

Script B.4.1
###
#
Python script calculating reliability at a given point of
time of a subsea network for transmitting electronic pulses.
See Section 9.2 of Huseby and Dahl (2021)
#
###

from math import *

import matplotlib.pyplot as plt
import numpy as np

def mcomb(n, k1, k2, k3):
return factorial(n) / (factorial(k1) * factorial(k2) \

* factorial(k3) * factorial(n-k1-k2-k3))

def binomialDist(n, k, p):
return comb(n, k) * p**k * (1-p)**(n-k)

def multinomialDist(n, k1, k2, k3, p1, p2, p3):
return mcomb(n, k1, k2, k3) * p1**k1 * p2**k2 * p3**k3 * \

(1 - p1 - p2 - p3)**(n-k1-k2-k3)

minTime: float = 0.0
maxTime: float = 50.0

r[0] : Failure rate pr time unit for the wires.
r[1], ... , r[8] : Failure rates of the communication links
r = [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]

p[0] : Survival probability for the wires.
p[1], ... , p[8] : Survival probabilities of the comm. links
q = np.zeros(9)

reliability = np.zeros(6)

B.4. TRANSMISSION OF ELECTRONIC PULSES 297

def initReliabilities():
for i in range(6):

reliability[i] = 0.0

def calcLinkProbabilities(t):
for i in range(9):

q[i] = exp(-r[i] * t)

def calcConnectionProbabilities():
q_A = q[1] * q[6] * (q[4] + q[3] * q[5] - q[3] \

* q[4] * q[5]) * (q[7] + q[8] - q[7] * q[8])\
+ q[1] * (1 - q[6]) * (q[4] * q[7] + q[3] * q[5] \

* q[8] - q[3] * q[4] * q[5] * q[7] * q[8])
q_B = q[2] * q[6] * (q[5] + q[3] * q[4] - q[3] \

* q[4] * q[5]) * (q[7] + q[8] - q[7] * q[8]) \
+ q[2] * (1 - q[6]) * (q[5] * q[8] + q[3] * q[4] \

* q[7] - q[3] * q[4] * q[5] * q[7] * q[8])
q_AB_1_1 = q[1] * q[2] * (q[4] + q[5] - q[4] * q[5]) \

* (q[7] + q[8] - q[7] * q[8])
q_AB_1_0 = q[1] * q[2] * (q[4] * q[7] + q[5] \

* q[8] - q[4] * q[5] * q[7] * q[8])
q_AB_0_1 = q[1] * q[2] * q[4] * q[5] \

* (q[7] + q[8] - q[7] * q[8])
q_AB_0_0 = q[1] * q[2] * q[4] * q[5] \

* q[7] * q[8]
q_AB = q_AB_1_1 * q[3] * q[6] \

+ q_AB_1_0 * q[3] * (1 - q[6])\
+ q_AB_0_1 * (1-q[3]) * q[6] \
+ q_AB_0_0 * (1-q[3]) * (1 - q[6])

return q_AB, q_A, q_B

def calcReliabilities(t):
initReliabilities()
calcLinkProbabilities(t)
result = calcConnectionProbabilities() # q_AB, q_A, q_B
p_AB = result[0] # p_AB = q_AB

298 APPENDIX B. PYTHON SCRIPTS

p_A = result[1] - result[0] # p_A = q_A - q_AB
p_B = result[2] - result[0] # p_B = q_B - q_AB
for y1 in range(7):

for y2 in range(7):
for y3 in range(6):

for y4 in range(6 - y3):
for y5 in range(6 - y3 - y4):

py1 = binomialDist(6, y1, q[0])
py2 = binomialDist(6, y2, q[0])
py345 = multinomialDist(5, \

y3, y4, y5, p_AB, p_A, p_B)
w1 = min(y1, y4)
w2 = min(y2, y5)
w3 = min((y1-w1) + (y2-w2), y3)
phi = w1 + w2 + w3
reliability[phi] += (py1 * py2 * py345)

time = np.zeros(101)
rel1 = np.zeros(101)
rel2 = np.zeros(101)
rel3 = np.zeros(101)
rel4 = np.zeros(101)
rel5 = np.zeros(101)

for s in range(101):
t = minTime + (maxTime - minTime) * s / 100
time[s] = t
calcReliabilities(t)
rel5[s] = reliability[5]
rel4[s] = rel5[s] + reliability[4]
rel3[s] = rel4[s] + reliability[3]
rel2[s] = rel3[s] + reliability[2]
rel1[s] = rel2[s] + reliability[1]

plt.plot(time, rel1, label=’P(phi >= 1)’)
plt.plot(time, rel2, label=’P(phi >= 2)’)
plt.plot(time, rel3, label=’P(phi >= 3)’)
plt.plot(time, rel4, label=’P(phi >= 4)’)
plt.plot(time, rel5, label=’P(phi >= 5)’)

B.4. TRANSMISSION OF ELECTRONIC PULSES 299

plt.xlabel(’time’)
plt.ylabel(’Reliability’)
plt.title("Reliabilities as functions of time")
plt.legend()
plt.show()

300 APPENDIX B. PYTHON SCRIPTS

Bibliography

[1] Akers, S. B., Binary Decision Diagrams, IEEE Transactions on Computers,
C-27-6, 509–516, 1978.

[2] Baarholm, G.S., Haver, S. and Økland, O.D. Combining contours of signif-
icant wave height and peak period with platform response distributions for
predicting design response. Marine Structures 23, 147–163, 2010.

[3] Ball, M. O., The complexity of network reliability computations. Networks,
10, 253–278, 1977.

[4] Banks, J., Carson, J., Nelson, B.L., and Nicol, D. Discrete-Event System
Simulation (4th Edition). Prentice-Hall International Series in Industrial and
Systems, 2004.

[5] Barlow, R. E. and Proschan, F., Importance of system components and fault
tree events, Stochastic Processes and their Applications, 3, 153–173, 1975.

[6] Barlow, R. E. and Proschan, F., Statistical Theory of Reliability and Life
Testing, To Begin With, Silver Spring, MD, 1981.

[7] Barlow, R. E. and Proschan, F., Mathematical Theory of Reliability, SIAM,
Philadelphia, 1996.

[8] Birnbaum, Z. W., On the Importance of Different Components in a Multi-
component System, Multivariate Analysis - II, Edited by P. R. Krishnaiah,
Academic Press, 581–592, 1969.

[9] Bobbio, A., Terruggia, R., Binary decision diagrams in network reliability
analysis, 1st IFAC Workshop on Dependable Control of Discrete Systems, 6
pages, 2007.

301

302 BIBLIOGRAPHY

[10] Broström, G. and L. Nilsson, L., Acceptance/rejection sampling from the
conditional distribution of independent discrete random variables, given their
sum, Statistics, 34, 247, 2000.

[11] Brace, K. S., Rudell, R. L., Bryant, R. G., Efficient Implementation of a BDD
Package, 27th ACM/IEEE Design Automation Conference, 0738, 40–45, 1990.

[12] Bryant, R. G., Graph-Based Algorithms for Boolean Function Manipulation,
IEEE Transactions on Computers, C-35-8, 677–691, 1986.

[13] Burch, J.R., E.M. Clarke, K.L. McMillan, D.L. Dill and J. Hwang, Symbolic
model checking: 1020 states and beyond, Information and Computation, 98,
142–170, 1992.

[14] Calkin, N. J., Edds, J. D. and Shier, D. R. Cancellation in cyclic consecutive
systems, Journ. of Comp. and Appl. Math., 142, 13–26, 2002.

[15] Cancela, H. and El Khadari, M., A recursive variance-reduction algorithm for
estimating communication-network reliability, IEEE Transactions on Relia-
bility, R-44, 1995.

[16] Cancela, H. and El Khadari, M., Series-parallel reductions in Monte Carlo
network reliability evaluation, IEEE Transactions on Reliability, R-47, 1998.

[17] Cancela, H. and El Khadari, M., The recursive variance-reduction simulation
algorithm for network reliability evaluation, IEEE Transactions on Reliability,
R-52, 2003.

[18] Chang, G. J., Wang, F. H., and Cui, L., Reliabilities of Consecutive-k Systems,
In: Handbook of Reliability Engineering, Springer Verlag, London, 37–59, 2003.

[19] Chiang, D. T. and Niu, S. C., Reliability of Consecutive-k-out-of-n: F System,
IEEE Transactions on Reliability, R-30 (1), 87–89, 1981.

[20] Coudert, O. and Madre, J., Fault tree analysis: 1020 prime implicants and
beyond, In Proceedings of the Annual Reliability and Maintainability Sympo-
sium, ARMS’93, Atlanta NC, USA, 1993.

[21] Derman, C., Lieberman, G. J. and Ross, S. M., On the Consecutive-k-out-of-n:
F System, IEEE Transactions on Reliability, R-31 (1), 57–63, 1982.

[22] Ditlevsen, O., Stochastic model for joint wave and wind loads on offshore
structures, Structural Safety, 24, 139–163, 2002.

BIBLIOGRAPHY 303

[23] Fontaine, E., Orsero, P., Ledoux, A., Nerzic, R., Prevesto, M. and Quiniou,
V., Reliability analysis and response based design of a moored FPSO in West
Africa, Structural Safety, 41, 82–96, 2013.

[24] Fishman, G. S., A Monte Carlo sampling plan for estimating network relia-
bility, Operations Research, 34, 1986.

[25] Fishman, G. S., A comparison of four Monte Carlo methods for estimating
the probability of s−t connectedness, IEEE Transactions on Reliability, R-35,
1986.

[26] Gao, K., Liu, X., Wang, H., Ma, X., Peng, R., A New Iterative Approach to
Evaluate the Reliability of a Combined Consecutive k and v-out-of-n System,
International Journal of Performability Engineering, 14 (12), 2983–2993, 2018.

[27] Garey, M. R. and Johnson, D. S., Computers and Intractibility: A Guide to
the theory of NP-Completeness, W. H. Freeman, San Francisco, 1979.

[28] Glasserman, P. and Yao, D. D., Monotone Structure in Discrete-event Sys-
tems, John Wiley and Sons, Inc., 1994.

[29] Glasserman, P., Monte Carlo Methods in Financial Engineering, Springer
Verlag, 2004.

[30] Haver, S., On the joint distribution of heights and periods of sea waves., Ocean
Engineering 14, 359–376, 1987.

[31] Haver, S. and Winterstein, S., Environmental contour lines: A method for
estimating long term extremes by a short term analysis., Transactions of the
Society of Naval Architects and Marine Engineers 116, 116–127, 2009.

[32] Huseby, A. B., A unified theory of domination and signed domination with
application to exact reliability computations, Statistical Research Report No.
3, Department of Mathematics, University of Oslo, 1984.

[33] Huseby, A. B., Domination theory and the Crapo β-invariant, Networks, 19,
135–149, 1989.

[34] Huseby, A. B. , Naustdal, M. and Vårli, I. D.,System reliability evaluation us-
ing conditional Monte Carlo methods,Department of Mathematics, University
of Oslo, 2004.

[35] Huseby, A. B.,Oriented matroid systems,Discrete Applied Mathematics, 159,
1, 31–45, 2011.

304 BIBLIOGRAPHY

[36] Huseby, A. B., Vanem, E., Natvig, B., A new approach to environmental
contours for ocean engineering applications based on direct Monte Carlo sim-
ulations, Ocean Engineering, 60, 124–135, 2013.

[37] Huseby, A. B., Vanem, E., Natvig, B., A new Monte Carlo method for en-
vironmental contour estimation, In Safety and Reliability : Methodology and
Applications, Proceedings of the European safety and reliability Conference,
Taylor & Francis. Chapter 270, 2091–2098, 2015.

[38] Huseby, A. B., Vanem, E., Natvig, B., Alternative environmental contours for
structural reliability analysis, Structural Safety, 54, 32–45, 2015.

[39] Huseby, A. B. and Vanem, E. and Eskeland, K., Evaluating properties of envi-
ronmental contours, In Safety and Reliability, Theory and Applications. Pro-
ceedings of the European safety and reliability Conference, CRC Press. Chapter
893, 2101–2109, 2017.

[40] Jonathan, P. and Ewans, K. and Flynn, J., On the estimation of ocean engi-
neering design contours, Journal of Offshore Mech. Arct. Eng, 136(4), 8 pages,
2011.

[41] Jonathan, P., Ewans, K. and Flynn, J. On the estimation of ocean engineering
design contours. In: Proc. 30th International Conference on Offshore Mechan-
ics and Arctic Engineering (OMAE 2011) American Society of Mechanical
Engineers (ASME), 2011.

[42] Hardy, G., C. Lucet and N. Limnios, Computing all-terminal reliability of
stochastic networks by bdds, In: Proc Applied Stochastic Modeling and Data
Analysis, ASMDA, 2005.

[43] Klebaner, F. C., Introduction to stochastic calculus with applications. Imperial
College Press, 2005.

[44] Knuth, D. E., The art of computer programming, Vol. 2, Seminumerical
algorithms, Addison-Wesley, Reading, Mass. second edition, 1981.

[45] Lee, C.Y., Representation of Switching Circuits by Binary-Decision Programs,
Bell System Technical Journal, 38, 985–999, 1959.

[46] Leira, B. J., A comparison of stochastic process models for definition of design
contours, Structural Safety, 30, 493–505, 2008.

[47] Lindqvist, B. H. and Taraldsen, G., Monte Carlo Conditioning on a Suffi-
cient Statistics, Preprint Statistics 9, Norwegian University of Science and
Technology, 2001.

BIBLIOGRAPHY 305

[48] Moan, T., Development of accidental collapse limit state criteria for offshore
structures, Structural Safety, 31, 124–135, 2009.

[49] Natvig, B., A suggestion for a new measure of importance of system compo-
nents,Stochastic Processes and their Applications, 9, 319–330, 1979.

[50] Natvig, B., Pålitelighetsanalyse med teknologiske anvendelser, lecture notes,
Department of Mathematics, University of Oslo, 3rd ed. 1998.

[51] Natvig, B., Multistate Systems Reliability Theory with Applications, John
Wiley and Sons Ltd., Chichester, 2011.

[52] Naustdal, M., Forbedrede betingede Monte Carlo metoder i pålitelighetsbereg-
ninger (in Norwegian), Cand. Scient. thesis, Department of Mathematics,
University of Oslo, 2001.

[53] Newman, M., The structure and function of complex networks, SIAM Rev,
45, 167–256, 2003.

[54] Nilsson, L., On the simulation of conditional distributions in the Bernoulli
case, Research report 14, Department of Mathematical Statistics, Umeå Uni-
versity, Sweden 1997.

[55] Pflug, G., Some remarks on the value-at-risk and the conditional value-at-risk,
In Uryasev, S. P. (Ed.) Probabilistic Constrained Optimization. Methodology
and Applications. Norwell, Kluwer Academic Publishers, 272–281, 2000.

[56] Rockafellar, R. T., Coherent Approaches to Risk in Optimization Under Un-
certainty, In OR Tools and Applications: Glimpses of Future Technologies,
INFORMS Tutorials in Operations Research, Ch. 3, 38–61, 2007.

[57] Rockafellar, R. T. and Royset, J. O., On buffered failure probability in design
and optimization of structures, Reliability Engineering and System Safety, 95,
499–510, 2010.

[58] Rockafellar, R. T. and Uryasev, S. P., Optimization of conditional value-at-
risk, Journal of Risk, 2, 21–42, 2000.

[59] Rosenblatt, M., Remarks on a Multivariate Transformation, The Annals of
Mathematical Statistics, 23, No 3, 470–472, 1952.

[60] Rosenthal, A., Computing the reliability of complex networks, SIAM, Journal
of Applied Math., 32, 384–393, 1977.

306 BIBLIOGRAPHY

[61] Rauzy, A., New algorithms for fault tree analysis, Reliability Engineering and
System Safety, 40, 203–211, 1993.

[62] Rauzy, A., Binary Decision Diagrams for Reliability Studies, In: Handbook of
Performability Engineering, Ed. Mishra, K. B., Springer Verlag, London, Ch.
25, 381–396, 2008.

[63] Satyanarayana, A., A unified formula for analysis of some network reliability
problems, IEEE Trans. Reliability, 31, 23–32, 1982.

[64] Satyanarayana, A. and Chang, M. K., Network Reliability and the Factoring
Theorem, Networks, 13, 107–120, 1983.

[65] Prabhakar, A. and Satyanarayana, A., New topological formula and rapid
algorithm for reliability analysis of complex networks, IEEE Trans. Reliability,
27, 82–100, 1978.

[66] Triantafyllou, I. S., Consecutive-Type Reliability Systems: An Overview and
Some Applications, Journal of Quality and Reliability Engineering, 1–20, 2015.

[67] Vanem, E. and Bitner-Gregersen, E., Stochastic modelling of long-term trends
in wave climate and its potential impact on ship structural loads, Applied
Ocean Research, 37, 235–248, 2012.

[68] Vanem, E. and Bitner-Gregersen, E., Alternative Environmental Contours
for Marine Structural Design – A Comparison Study, Journal of Offshore
Mechanics and Arctic Engineering, 137, 051601-1–051601-8, 2015.

[69] Vårli, I. D. Forbedrede Monte Carlo metoder i pålitelighetsberegninger, (in
Norwegian), Cand. Scient. thesis, Department of Mathematics, University of
Oslo, 1996.

[70] Winterstein, S., Ude, T., Cornell, C., Bjerager, P. and Haver, S., Environmen-
tal parameters for extreme response: Inverse FORM with omission factors. In:
Proc. 6th International Conference on Structural Safety and Reliability, 1993.

[71] Winther, R., Threshold systems, PhD-thesis, University of Oslo, 1996.

Index

307

